Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review
Abstract
:1. Introduction
2. Methods
3. Intraradicular Dentin as a Restorative Substrate
3.1. Resin–Dentin Bond
3.1.1. Degradation of Dentin Bonding
3.1.2. Hybrid Layer Degradation
4. Multiple Roles of Metalloproteinases Have Been Described over Time
- (1)
- Collagenases (MMP-1, MMP-8, MMP-13, and MMP-18);
- (2)
- Gelatinases (MMP-2 and MMP -9);
- (3)
- Stromelysins (MMP-3, MMP-10, and MMP11);
- (4)
- Membrane-type matrix metalloproteinases (MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25);
- (5)
- Others (MMP-12, MMP-19, MMP-20, MMP-21, MMP-22, MMP-23, MMP-27, and MMP-28).
4.1. Implication of MMPs with the Performance of Composite Restoration
4.2. Presence of MMPs in Coronal Dentin
4.3. MMPs in Radicular Dentin
5. Synthetic and Natural MMP Inhibitors
5.1. Clorhexidine
5.2. Carbodiimides
5.3. Epigallocatechin Gallate
5.4. Baicalein
6. Adhesive Systems with Greater Effectiveness When Used with MMP Inhibitors
6.1. Effect of MMP Inhibitors When Included in Root Dentin Adhesion Protocols
6.1.1. Carbodiimide Reduces Endogenous Enzymatic Activities Within the Hybrid Layer
6.1.2. Green Tea Extracts Demonstrate Inhibitory Effect on MMPs
6.1.3. Baicalein Inhibits Dentinal Gelatinase and Collagenase Activities
6.1.4. Chlorhexidine Is an MMP Inhibitor Substance
7. Discussion
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ten Cate, A.R. Alkaline phosphatase activity and the formation of human circumpulpal dentine. Arch. Oral Biol. 1966, 11, 267–268. [Google Scholar] [CrossRef]
- Dai, X.F.; Ten Cate, A.R.; Limeback, H. The extent and distribution of intratubular collagen fibrils in human dentine. Arch. Oral Biol. 1991, 36, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; An, B.; Zhang, D. Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies. Appl. Math. Mech. 2015, 36, 1347–1358. [Google Scholar] [CrossRef]
- Zaslansky, P.; Friesem, A.A.; Weiner, S. Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: Insight into tooth function. J. Struct. Biol. 2006, 153, 188–199. [Google Scholar] [CrossRef]
- Marshall, G.W., Jr.; Marshall, S.J.; Kinney, J.H.; Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, G.; Cutroneo, G.; Centofanti, A.; Artemisia, A.; Bramanti, E.; Militi, A.; Rizzo, G.; Favaloro, A.; Irrera, A.; Lo Giudice, R.; et al. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study. BioMed Res. Int. 2015, 2015, 164065. [Google Scholar] [CrossRef]
- Yoshiyama, M.; Carvalho, R.M.; Sano, H.; Horner, J.A.; Brewer, P.D.; Pashley, D.H. Regional bond strengths of resins to human root dentine. J. Dent. 1996, 24, 435–442. [Google Scholar] [CrossRef]
- Özcan, M.; Volpato, C.A.M. Current perspectives on dental adhesion: (3) Adhesion to intraradicular dentin: Concepts and applications. Jpn. Dent. Sci. Rev. 2020, 56, 216–223. [Google Scholar] [CrossRef]
- Löffek, S.; Schilling, O.; Franzke, C.W. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011, 38, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Charadram, N.; Austin, C.; Trimby, P.; Simonian, M.; Swain, M.V.; Hunter, N. Structural analysis of reactionary dentin formed in response to polymicrobial invasion. J. Struct. Biol. 2013, 181, 207–222. [Google Scholar] [CrossRef]
- Agrawal, P.; Nikhade, P.; Chandak, M.; Ikhar, A.; Bhonde, R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022, 14, e27946. [Google Scholar] [CrossRef] [PubMed]
- Helfer, A.R.; Melnick, S.; Schilder, H. Determination of the moisture content of vital and pulpless teeth. Oral Surg. Oral Med. Oral Pathol. 1972, 34, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Mazzoni, A.; De Stefano Dorigo, E.; Ferrari, M. Adhesion to Intraradicular Dentin: A Review. J. Adhes. Sci. Technol. 2009, 23, 1053–1083. [Google Scholar] [CrossRef]
- Thitthaweerat, S.; Nakajima, M.; Foxton, R.M.; Tagami, J. Effect of waiting interval on chemical activation mode of dual-cure one-step self-etching adhesives on bonding to root canal dentin. J. Dent. 2012, 40, 1109–1118. [Google Scholar] [CrossRef]
- Scaffa, P.M.; Vidal, C.M.; Barros, N.; Gesteira, T.F.; Carmona, A.K.; Breschi, L.; Pashley, D.H.; Tjäderhane, L.; Tersariol, I.L.; Nascimento, F.D.; et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J. Dent. Res. 2012, 91, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Marshall, S.J.; Marshall, G.W. The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 2003, 14, 13–29. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Carrilho, M.R.; Breschi, L.; Tay, F.R.; Pashley, D.H. Dentin basic structure and composition—An overview. Endod. Top. 2012, 20, 3–29. [Google Scholar] [CrossRef]
- Schilke, R.; Lisson, J.A.; Bauss, O.; Geurtsen, W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 2000, 45, 355–361. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Bitter, K.; Kielbassa, A.M. Post-endodontic restorations with adhesively luted fiber-reinforced composite post systems: A review. Am. J. Dent. 2007, 20, 353–360. [Google Scholar]
- Naumann, M.; Koelpin, M.; Beuer, F.; Meyer-Lueckel, H. 10-year Survival Evaluation for Glass-fiber-supported Postendodontic Restoration: A Prospective Observational Clinical Study. J. Endodont. 2012, 38, 432–435. [Google Scholar] [CrossRef]
- Ishioka, S.; Caputo, A.A. Interaction between the Dentinal Smear Layer and Composite Bond Strength. J. Prosthet. Dent. 1989, 61, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Sadek, F.T.; Fabianelli, A.; Tay, F.R.; Ferrari, M. Evaluation of the adhesion of fiber posts to intraradicular dentin. Oper. Dent. 2005, 30, 627–635. [Google Scholar] [PubMed]
- Moreno-Sanchez, P.L.; Ramirez-Alvarez, M.; Ayala-Ham, A.D.; Silva-Benitez, E.D.; Casillas-Santana, M.A.; del Rio, D.L.; Espinosa-Cristobal, L.F.; Lizarraga-Verdugo, E.; Avendano-Felix, M.M.; Soto-Sainz, J.E. Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review. Appl. Sci. 2023, 13, 8083. [Google Scholar] [CrossRef]
- Torabinejad, M.; Handysides, R.; Khademi, A.A.; Bakland, L.K.; Linda, L. Clinical implications of the smear layer in endodontics: A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2002, 94, 658–666. [Google Scholar] [CrossRef]
- Pallares, A.; Faus, V.; Glickman, G.N. The Adaptation of Mechanically Softened Gutta-Percha to the Canal Walls in the Presence or Absence of Smear Layer—A Scanning Electron-Microscopic Study. Int. Endod. J. 1995, 28, 266–269. [Google Scholar] [CrossRef]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjaderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Nakamura, M.; Yasuda, N. Hybrid layer as a dentin-bonding mechanism. J. Esthet. Dent. 1991, 3, 133–138. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P.; Van Landuyt, K.; Lambrechts, P.; Vanherle, G. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Cardoso, M.V.; de Almeida Neves, A.; Mine, A.; Coutinho, E.; Van Landuyt, K.; De Munck, J.; Van Meerbeek, B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust. Dent. J. 2011, 56 (Suppl. 1), 31–44. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Kanumilli, P.; De Munck, J.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Bond strength of a mild self-etch adhesive with and without prior acid-etching. J. Dent. 2006, 34, 77–85. [Google Scholar] [CrossRef]
- Hanabusa, M.; Mine, A.; Kuboki, T.; Momoi, Y.; Van Ende, A.; Van Meerbeek, B.; De Munck, J. Bonding effectiveness of a new ‘multi-mode’ adhesive to enamel and dentine. J. Dent. 2012, 40, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Osorio, R.; de Leonardi, G.; Rosales-Leal, J.I.; Ceballos, L.; Cabrerizo-Vilchez, M.A. Influence of self-etching primer on the resin adhesion to enamel and dentin. Am. J. Dent. 2001, 14, 205–210. [Google Scholar] [PubMed]
- Alonso, J.R.L.; Basso, F.G.; Scheffel, D.L.S.; de-Souza-Costa, C.A.; Hebling, J. Effect of crosslinkers on bond strength stability of fiber posts to root canal dentin and in situ proteolytic activity. J. Prosthet. Dent. 2018, 119, 494.e1–494.e9. [Google Scholar] [CrossRef] [PubMed]
- Comba, A.; Scotti, N.; Mazzon, A.; Maravic, T.; Cunha, S.R.; Tempesta, R.M.; Carossa, M.; Pashley, D.H.; Tay, F.R.; Breschi, L. Carbodiimide inactivation of matrix metalloproteinases in radicular dentine. J. Dent. 2019, 82, 56–62. [Google Scholar] [CrossRef]
- Lopes, F.C.; Roperto, R.; Akkus, A.; de Queiroz, A.M.; de Oliveira, H.F.; Sousa-Neto, M.D. Effect of carbodiimide and chlorhexidine on the bond strength longevity of resin cement to root dentine after radiation therapy. Int. Endod. J. 2020, 53, 539–552. [Google Scholar] [CrossRef]
- Yu, F.; Luo, M.L.; Xu, R.C.; Huang, L.; Zhou, W.; Li, J.; Tay, F.R.; Niu, L.N.; Chen, J.H. Evaluation of a Collagen-Reactive Monomer with Advanced Bonding Durability. J. Dent. Res. 2020, 99, 813–819. [Google Scholar] [CrossRef]
- Hebling, J.; Pashley, D.H.; Tjaderhane, L.; Tay, F.R. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J. Dent. Res. 2005, 84, 741–746. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ohno, H.; Kaga, M.; Endo, K.; Sano, H.; Oguchi, H. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J. Dent. Res. 2000, 79, 1385–1391. [Google Scholar] [CrossRef]
- Tjaderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.S.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R.; et al. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef]
- Pashley, D.H. Dynamics of the pulpo-dentin complex. Crit. Rev. Oral Biol. Med. 1996, 7, 104–133. [Google Scholar] [CrossRef] [PubMed]
- Manso, A.P.; Bedran-Russo, A.K.; Suh, B.; Pashley, D.H.; Carvalho, R.M. Mechanical stability of adhesives under water storage. Dent. Mater. 2009, 25, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 2003, 69, 726–731. [Google Scholar] [PubMed]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2016, 32, E41–E53. [Google Scholar] [CrossRef] [PubMed]
- van Meerbeek, B.; van Landuyt, K.; de Munck, J.; Hashimoto, M.; Peumans, M.; Lambrechts, P.; Yoshida, Y.; Inoue, S.; Suzuki, K. Technique-sensitivity of contemporary adhesives. Dent. Mater. J. 2005, 24, 1–13. [Google Scholar] [CrossRef]
- Mokeem, L.S.; Garcia, I.M.; Melo, M.A. Degradation and Failure Phenomena at the Dentin Bonding Interface. Biomedicines 2023, 11, 1256. [Google Scholar] [CrossRef]
- Jacobsen, T.; Soderholm, K.J. Some Effects of Water on Dentin Bonding. Dent. Mater. 1995, 11, 132–136. [Google Scholar] [CrossRef]
- Cadenaro, M.; Antoniolli, F.; Sauro, S.; Tay, F.R.; Di Lenarda, R.; Prati, C.; Biasotto, M.; Contardo, L.; Breschi, L. Degree of conversion and permeability of dental adhesives. Eur. J. Oral. Sci. 2005, 113, 525–530. [Google Scholar] [CrossRef]
- Oyarzun, A.; Rathkamp, H.; Dreyer, E. Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans. Eur. J. Oral Sci. 2000, 108, 546–554. [Google Scholar] [CrossRef]
- Wang, L.; Pinto, T.A.; Silva, L.M.; Araujo, D.F.G.; Martins, L.M.; Hannas, A.R.; Pedreira, A.P.R.V.; Francisconi, P.A.S.; Honorio, H.M. Effect of 2% chlorhexidine digluconate on bond strength of a glass-fibre post to root dentine. Int. Endod. J. 2013, 46, 847–854. [Google Scholar] [CrossRef]
- Dionysopoulos, D. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review. J. Conserv. Dent. 2016, 19, 11–16. [Google Scholar] [CrossRef]
- Santos, J.; Carrilho, M.; Tervahartiala, T.; Sorsa, T.; Breschi, L.; Mazzoni, A.; Pashley, D.; Tay, F.; Ferraz, C.; Tjaderhane, L. Determination of Matrix Metalloproteinases in Human Radicular Dentin. J. Endodont. 2009, 35, 686–689. [Google Scholar] [CrossRef]
- Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA 1962, 48, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, T.; Tjäderhane, L.; Salo, T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004, 10, 311–318. [Google Scholar] [CrossRef]
- Zitka, O.; Kukacka, J.; Krizkova, S.; Huska, D.; Adam, V.; Masarik, M.; Prusa, R.; Kizek, R. Matrix metalloproteinases. Curr. Med. Chem. 2010, 17, 3751–3768. [Google Scholar] [CrossRef] [PubMed]
- Baruwa, A.O.; Martins, J.N.R.; Maravic, T.; Mazzitelli, C.; Mazzoni, A.; Ginjeira, A. Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review. Dent. J. 2022, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Sulkala, M.; Tervahartiala, T.; Sorsa, T.; Larmas, M.; Salo, T.; Tjäderhane, L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch. Oral Biol. 2007, 52, 121–127. [Google Scholar] [CrossRef]
- Femiano, F.; Femiano, R.; Femiano, L.; Jamilian, A.; Rullo, R.; Perillo, L. Dentin caries progression and the role of metalloproteinases: An update. Eur. J. Paediatr. Dent. 2016, 17, 243–247. [Google Scholar]
- Shailendra, M.; Bhandari, S.; Kulkarni, S.; Janavathi, K.; Ghatole, K. Evaluation of indomethacin as matrix metalloproteases inhibitor in human dentin. J. Conserv. Dent. 2019, 22, 598–601. [Google Scholar] [CrossRef]
- Collares, F.M.; Rodrigues, S.B.; Leitune, V.C.; Celeste, R.K.; Borba de Araújo, F.; Samuel, S.M. Chlorhexidine application in adhesive procedures: A meta-regression analysis. J. Adhes. Dent. 2013, 15, 11–18. [Google Scholar]
- Jain, A.; Bahuguna, R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J. Oral Biol. Craniofacial Res. 2015, 5, 212–218. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, W.J. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 10546. [Google Scholar] [CrossRef] [PubMed]
- Ou, Q.; Hu, Y.; Yao, S.; Wang, Y.; Lin, X. Effect of matrix metalloproteinase 8 inhibitor on resin–dentin bonds. Dent. Mater. 2018, 34, 756–763. [Google Scholar] [CrossRef]
- Boushell, L.W.; Nagaoka, H.; Nagaoka, H.; Yamauchi, M. Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries. Caries Res. 2011, 45, 453–459. [Google Scholar] [CrossRef]
- Charadram, N.; Farahani, R.M.; Harty, D.; Rathsam, C.; Swain, M.V.; Hunter, N. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix. Bone 2012, 50, 265–275. [Google Scholar] [CrossRef]
- Mazzoni, A.; Tjäderhane, L.; Checchi, V.; Di Lenarda, R.; Salo, T.; Tay, F.R.; Pashley, D.H.; Breschi, L. Role of dentin MMPs in caries progression and bond stability. J. Dent. Res. 2015, 94, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Elgezawi, M.; Haridy, R.; Almas, K.; Abdalla, M.A.; Omar, O.; Abuohashish, H.; Elembaby, A.; Christine Wölfle, U.; Siddiqui, Y.; Kaisarly, D. Matrix Metalloproteinases in Dental and Periodontal Tissues and Their Current Inhibitors: Developmental, Degradational and Pathological Aspects. Int. J. Mol. Sci. 2022, 23, 8929. [Google Scholar] [CrossRef] [PubMed]
- Kritikou, K.; Greabu, M.; Imre, M.; Miricescu, D.; Ripszky Totan, A.; Burcea, M.; Stanescu, S., II.; Spinu, T. ILs and MMPs Levels in Inflamed Human Dental Pulp: A Systematic Review. Molecules 2021, 26, 4129. [Google Scholar] [CrossRef] [PubMed]
- Chaussain, C.; Boukpessi, T.; Khaddam, M.; tjaderhane, l.; George, A.; Menashi, S. Dentin matrix degradation by host matrix metalloproteinases: Inhibition and clinical perspectives toward regeneration. Front. Physiol. 2013, 4, 308. [Google Scholar] [CrossRef]
- Behm, C.; Nemec, M.; Weissinger, F.; Rausch, M.A.; Andrukhov, O.; Jonke, E. MMPs and TIMPs Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2021, 22, 6967. [Google Scholar] [CrossRef] [PubMed]
- Boushell, L.W.; Kaku, M.; Mochida, Y.; Bagnell, R.; Yamauchi, M. Immunohistochemical localization of matrixmetalloproteinase-2 in human coronal dentin. Arch. Oral Biol. 2008, 53, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Boushell, L.W.; Kaku, M.; Mochida, Y.; Yamauchi, M. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin. Int. J. Oral Sci. 2011, 3, 192–199. [Google Scholar] [CrossRef]
- Niu, L.N.; Zhang, L.; Jiao, K.; Li, F.; Ding, Y.X.; Wang, D.Y.; Wang, M.Q.; Tay, F.R.; Chen, J.H. Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J. Dent. 2011, 39, 536–542. [Google Scholar] [CrossRef]
- Lee, T.Y.; Jin, E.J.; Choi, B. MMP-13 expression in coronal and radicular dentin according to caries progression—A pilot study. Tissue Eng. Regen. Med. 2013, 10, 317–321. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Li, F.; Ma, K.; Chen, J. Localization and quantitative detection of matrix metalloproteinase in human coronal dentine. Chin. J. Stomatol. 2014, 49, 688–692. [Google Scholar]
- Fanchon, S.; Bourd, K.; Septier, D.; Everts, V.; Beertsen, W.; Menashi, S.; Goldberg, M. Involvement of matrix metalloproteinases in the onset of dentin mineralization. Eur. J. Oral Sci. 2004, 112, 171–176. [Google Scholar] [CrossRef]
- Satoyoshi, M.; Kawata, A.; Koizumi, T.; Inoue, K.; Itohara, S.; Teranaka, T.; Mikuni-Takagaki, Y. Matrix metalloproteinase-2 in dentin matrix mineralization. J. Endod. 2001, 27, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Tjaderhane, L.; Larjava, H.; Sorsa, T.; Uitto, V.J.; Larmas, M.; Salo, T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 1998, 77, 1622–1629. [Google Scholar] [CrossRef]
- Chaussain-Miller, C.; Fioretti, F.; Goldberg, M.; Menashi, S. The role of matrix metalloproteinases (MMPs) in human caries. J. Dent. Res. 2006, 85, 22–32. [Google Scholar] [CrossRef]
- Jamal, H.; Yaghmoor, R.; Abed, H.; Young, A.; Ashley, P. Impact of Dentine Pretreatment with Matrix Metalloproteinase Inhibitors on Bond Strength of Coronal Composite Restorations: A Systematic Review and Meta-analysis of In Vitro Studies. Eur. J. Dent. 2022, 17, 974–999. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Manso, A.P.; Geraldeli, S.; Tay, F.R.; Pashley, D.H. Durability of bonds and clinical success of adhesive restorations. Dent. Mater. 2012, 28, 72–86. [Google Scholar] [CrossRef]
- Retana-Lobo, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Mendes de Souza, B.D.; Reyes-Carmona, J. Sodium Hypochlorite and Chlorhexidine Downregulate MMP Expression on Radicular Dentin. Med. Princ. Pract. 2021, 30, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Liu, J.; Liao, Z.X.; Yu, F.; Qiu, B.Y.; Zhou, M.D.; Li, F.; Chen, J.H.; Zhou, W.; Zhang, L. Location of MMPs in human radicular dentin and the effects of MMPs inhibitor on the bonding stability of fiber posts to radicular dentin. J. Mech. Behav. Biomed. Mater. 2022, 129, 105144. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Nieto-Aguilar, R.; Osorio, R.; Campos, A.; Osorio, E.; Tay, F.R.; Alaminos, M. Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. J. Dent. 2010, 38, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.T.; Hannas, A.R.; Leite, A.L.; Bolanho, A.; Zarella, B.L.; Santos, J.; Carrilho, M.; Tjäderhane, L.; Buzalaf, M.A. Activity of matrix metalloproteinases in bovine versus human dentine. Caries Res. 2011, 45, 429–434. [Google Scholar] [CrossRef]
- Amaral, S.F.D.; Scaffa, P.M.C.; Rodrigues, R.D.S.; Nesadal, D.; Marques, M.M.; Nogueira, F.N.; Sobral, M.A.P. Dynamic Influence of pH on Metalloproteinase Activity in Human Coronal and Radicular Dentin. Caries Res. 2018, 52, 113–118. [Google Scholar] [CrossRef]
- Gu, L.S.; Shan, T.T.; Ma, Y.X.; Tay, F.R.; Niu, L.N. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. [Google Scholar] [CrossRef]
- Gendron, R.; Grenier, D.; Sorsa, T.; Mayrand, D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin. Diagn. Lab Immun. 1999, 6, 437–439. [Google Scholar] [CrossRef]
- Sung, H.W.; Chang, Y.; Chiu, C.T.; Chen, C.N.; Liang, H.C. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 1999, 47, 116–126. [Google Scholar] [CrossRef]
- Hardan, L.; Daood, U.; Bourgi, R.; Cuevas-Suarez, C.E.; Devoto, W.; Zarow, M.; Jakubowicz, N.; Zamarripa-Calderon, J.E.; Radwanski, M.; Orsini, G.; et al. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022, 11, 2417. [Google Scholar] [CrossRef]
- Tersariol, I.L.; Geraldeli, S.; Minciotti, C.L.; Nascimento, F.D.; Paakkonen, V.; Martins, M.T.; Carrilho, M.R.; Pashley, D.H.; Tay, F.R.; Salo, T.; et al. Cysteine Cathepsins in Human Dentin-Pulp Complex. J. Endodont. 2010, 36, 475–481. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Mutluay, M.M.; Agee, K.A.; Seseogullari-Dirihan, R.; Hoshika, T.; Cadenaro, M.; Breschi, L.; Vallittu, P.; Tay, F.R.; Pashley, D.H. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J. Dent. Res. 2012, 91, 192–196. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.R.; Covington, A.D.; Hancock, R.A. Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers 2003, 70, 403–413. [Google Scholar] [CrossRef]
- Goo, H.C.; Hwang, Y.S.; Choi, Y.R.; Cho, H.N.; Suh, H. Development of collagenase-resistant collagen and its interaction with adult human dermal fibroblasts. Biomaterials 2003, 24, 5099–5113. [Google Scholar] [CrossRef]
- Chang, W.T.; Shao, Z.H.; Yin, J.J.; Mehendale, S.; Wang, C.Z.; Qin, Y.M.; Li, J.; Chen, W.J.; Chien, C.T.; Becker, L.B.; et al. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. Eur. J. Pharmacol. 2007, 566, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M.; Bandy, B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2009, 46, 309–317. [Google Scholar] [CrossRef]
- Mladenka, P.; Macakova, K.; Filipsky, T.; Zatloukalova, L.; Jahodar, L.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011, 105, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, B.; Hong, N.; Wu, S.; Li, Y. Effect of Baicalein on Matrix Metalloproteinases and Durability of Resin-Dentin Bonding. Oper. Dent. 2018, 43, 426–436. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H.; Loushine, R.J.; Weller, R.N.; Monticelli, F.; Osorio, R. Self-etching adhesives increase collagenolytic activity in radicular dentin. J. Endodont. 2006, 32, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, Y.; Yoshiyama, M.; Wadgaonkar, B.; Breschi, L.; Mannello, F.; Mazzoni, A.; Carvalho, R.M.; Tjaderhane, L.; Tay, F.R.; Pashley, D.H. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. Eur. J. Oral Sci. 2006, 114, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Pashley, D.H.; Nishitani, Y.; Breschi, L.; Marinello, F.; Tjäderhane, L.; Toledano, M.; Pashley, E.L.; Tay, F.R. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials 2006, 27, 4470–4476. [Google Scholar] [CrossRef]
- Carvalho, C.; Fernandes, F.P.; Freitas Vda, P.; França, F.M.; Basting, R.T.; Turssi, C.P.; Amaral, F.L. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin. J. Appl. Oral Sci. 2016, 24, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.F.; Yang, X.; Chen, L.; Liu, X.Q.; Ma, L.; Tan, J.G. Pre-treatment of radicular dentin by self-etch primer containing chlorhexidine can improve fiber post bond durability. Dent. Mater. J. 2013, 32, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, M.R.O.; Carvalho, R.M.; de Goes, M.F.; di Hipolito, V.; Geraldeli, S.; Tay, F.R.; Pashley, D.H.; Tjaderhane, L. Chlorhexidine preserves dentin bond in vitro. J. Dent. Res. 2007, 86, 90–94. [Google Scholar] [CrossRef]
- Dayan, D.; Binderman, I.; Mechanic, G.L. A preliminary study of activation of collagenase in carious human dentine matrix. Arch. Oral Biol. 1983, 28, 185–187. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Fawzy, A.S.; Nitisusanta, L.I.; Iqbal, K.; Daood, U.; Beng, L.T.; Neo, J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. J. Mech. Behav. Biomed. Mater. 2013, 17, 278–289. [Google Scholar] [CrossRef]
- Takahashi, N.; Nyvad, B. The role of bacteria in the caries process: Ecological perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar] [CrossRef]
- Lin, B.A.; Jaffer, F.; Duff, M.D.; Tang, Y.W.; Santerre, J.P. Identifying enzyme activities within human saliva which are relevant to dental resin composite biodegradation. Biomaterials 2005, 26, 4259–4264. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Osorio, R.; Osorio, E.; Aguilera, F.S.; Yamauti, M.; Pashley, D.H.; Tay, F. Effect of bacterial collagenase on resin-dentin bonds degradation. J. Mater. Sci. Mater. Med. 2007, 18, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, M.R.O.; Geraldeli, S.; Tay, F.; de Goes, M.F.; Carvalho, R.M.; Tjäderhane, L.; Reis, A.F.; Hebling, J.; Mazzoni, A.; Breschi, L.; et al. Preservation of the hybrid layer by chlorhexidine. J. Dent. Res. 2007, 86, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Sela-Passwell, N.; Rosenblum, G.; Shoham, T.; Sagi, I. Structural and functional bases for allosteric control of MMP activities: Can it pave the path for selective inhibition? Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2010, 1803, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Malemud, C.J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J. Dent. Res. 2011, 90, 953–968. [Google Scholar] [CrossRef]
- Scheffel, D.L.; Bianchi, L.; Soares, D.G.; Basso, F.G.; Sabatini, C.; de Souza Costa, C.A.; Pashley, D.H.; Hebling, J. Transdentinal cytotoxicity of carbodiimide (EDC) and glutaraldehyde on odontoblast-like cells. Oper. Dent. 2015, 40, 44–54. [Google Scholar] [CrossRef]
- Ghazvehi, K.; Saffarpour, A.; Habibzadeh, S. Effect of pretreatment with matrix metalloproteinase inhibitors on the durability of bond strength of fiber posts to radicular dentin. Clin. Exp. Dent. Res. 2022, 8, 893–899. [Google Scholar] [CrossRef]
- ULTRADENT Peak™ Universal Bond. Available online: https://www.ultradent.lat/products/categories/bond-etch/adhesives/peak-universal-bond (accessed on 8 November 2024).
Reference | N | H = Human, B = Bovine | Age Ranges (y = years, M = months) | Technique | Results |
---|---|---|---|---|---|
[52] | 40 | H | 20–30 y | Zymography | Gelatinolytic activity via MMP-2 and MMP-9 was found in coronal and radicular dentin. Specifically, in radicular dentin, MMP-2 was more notorious in demineralized dentin and MMP-9 in mineralized dentin and presented lower levels in general. MMP-8 was found equally distributed in coronal and root dentin. |
[85] | 10 | H | 18–30 y | IF | Caries stimulates the expression of MMP-2 in healthy, caries-affected, and caries-infected dentin, both coronal and radicular. Caries-affected dentin showed a lower intensity of MMP-2 expression than infected dentin, but greater immunoreactivity than healthy dentin. Similar features were observed in coronal and radicular dentin. |
[86] | 30, 40 | H, B | 18–25 y, 24–36 M | Zymography | MMP-2 and -9 were observed in coronary and radicular dentin of bovine and human teeth. Bovine dentin was found to be a reliable substrate for studies that involve MMP-2 and -9 activity. |
[75] | 7 | H | N/D | Western blot | MMP-13 was found in radicular dentin with different expression as caries progressed; however, in the coronal dentin group, it was not expressed. |
[87] | 20 | H | 18–31 y | Zymography | The MMP-2 enzyme from human coronal and radicular dentin is influenced by pH: at a low pH, the enzyme is in a latent form; however, when the pH is close to neutral, collagen degradation by the matrix-bound enzyme is found. |
[84] | 106 | H | 20–30 y | IHC and IF | MMP-2 and MMP-8 are distributed in the radicular dentin, while MMP-3 exhibits a higher concentration in the middle and apical third of the root. |
Reference | N | Bond Technique | No. Steps | Adhesive System | Substratum | Groups/MMPs Inhibitor | Inhibitor Action Time (m = Minutes, M = Months) | Technique | Results |
---|---|---|---|---|---|---|---|---|---|
[101] | 50 | N/A | N/A | N/A | RD | Group 1: Control + | N/A | EnzCheck | Instrumented intraradicular dentin showed latent collagenolytic activity that was activated by mild self-etching adhesives, with CHX being the treatment with the most favorable results in all the groups. |
N/A | N/A | N/A | Group 2: Control −/CHX 2% | 1 m | |||||
N/A | N/A | N/A | Group 3: Control −/EDTA 17% | 1 m | |||||
HE | 2 | Clearfil Liner Bond 2V | Group 4: Primer + CLB2 | 1 m | |||||
HE | 1 | Clearfil Tri-S Bond | Group 5: CTriS | 1 m | |||||
HE | 2 | Clearfil Liner Bond 2V | Group 6: CHX 2% + CLB2 | 10 m | |||||
HE | 1 | Clearfil Tri-S Bond | Group 7: CHX 2% + CTriS | 10 m | |||||
HE | 2 | Clearfil Liner Bond 2V | Group 8: CLB2+CHX 2% | 10 m | |||||
HE | 1 | Clearfil Tri-S Bond | Group 9: CTriS+CHX 2% | 10 m | |||||
[35] | 20 | E&R | 3 | All Bond 3 | RD | Group 1: AB3 | N/A | Zymography | Application of XPB adhesive (2sE&R) resulted in significantly higher gelatinolytic activity compared to AB3 (3sE&R). No significant influence was identified. The use of EDC notably improved the fiber post bond strength at one year. Also, application of 0.3 M EDC before bonding significantly reduced gelatinolytic activities inside root hybrid layers, and EDC was effective in preserving fiber post FU over time by reducing the activities of endogenous intraradicular proteases. |
E&R | 3 | All Bond 3 | Group 2: 0.3M EDC + AB3 | 1 m | |||||
E&R | 2 | Prime and Bond XP | Group 3: XPB | N/A | |||||
E&R | 2 | Prime and Bond XP | Group 4: 0.3M EDC + XPB | 1 m | |||||
[84] | 80 | N/A | N/A | N/A | RD | Group 1: Control (Deionized Water) | 1 m | EnzCheck | MMP-2 and MMP-8 are commonly distributed in root dentin, whereas MMP-3 present higher fluorescence intensity in the middle and apical third of the root. Moreover, MMP-2 is more present in each third of the tooth root compared with the content of MMP-3 and MMP-8. The MMP inhibitory activity of EGCG-3ME was stronger than EGCG at the same concentration. The inhibitory effect stabilizes by the first 8 h, and after 48 h, the inhibitory activity decreased in a concentration dependent manner. |
Group 2: Control + (1,10-phenanthroline) | 1 m | ||||||||
Group 3: 200 μg/mL EGCG (E200) | 1 m | ||||||||
Group 4: 400 μg/mL EGCG (E400) | 1 m | ||||||||
Group 5: 600 μg/mL EGCG (E600) | 1 m | ||||||||
Group 6: 200 μg/mL EGCG-3Me (E− 3Me200) | 1 m | ||||||||
Group 7: 400 μg/mL EGCG-3Me (E− 3Me400) | 1 m | ||||||||
Group 8: 600 μg/mL EGCG-3Me (E− 3Me600) | 1 m | ||||||||
[105] | 30 | HE | 1 | ED Primer | RD | Group 1: ED control first Without CHX | N/A | N/A | At 18 months, a significant reduction in bond strength of all groups remains. The CHX at 1.0% group exhibited the significantly less reduction in comparison to the groups of CHX 0.5% and the control, concluding that incorporating CHX 1.0% in the ED primer can prolong the longevity of the bond in root dentin. |
HE | 1 | Group 2: ED primer + 0.5% CHX | 1 m | ||||||
HE | 1 | Group 3: ED primer + 1.0% CHX | 1 m | ||||||
[104] | 30 | E&R | 2 | Adapter Single Bond 2 | R.D., C.D. | Group 1: TV 2% | 1 m | N/A | In the μTBS test, for all groups, there was no significant difference after 24 h. After 6 months, the TV group had higher microtensile values. Applying 2% green tea extract increased the durability of the bond in the E&R system. CHX and the control had no effect on bond strength after water storage. |
E&R | 2 | Adapter Single Bond 2 | Group 2: CHX 2% | 1 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 3: Control | N/A | |||||
[100] | N/E | E&R | 2 | Adapter Single Bond 2 | R.D., C.D. | Group 1: ASB2 + BAI 0.1 ug/mL | 2 m | EnzCheck | BAI at a concentration of 0 to 5.0 µg/mL did not affect the adhesive conversion. Although, it did inhibit gelatinase and collagenase activities at a dose of 2.5 µg/mL, increasing microtensile bonding force and decreasing nanoleakage in vitro. BAI used as a preconditioner in a Syst. E&R adhesive has an anti-MMP function and effectively improves the durability of resin–dentin bonding in vitro, which has potential value in clinical bonding procedures. |
E&R | 2 | Adapter Single Bond 2 | Group 2: ASB2 + BAI 0.5 ug/mL | 2 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 3: ASB2 + BAI 2.5 ug/mL | 2 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 4: ASB2 + BAI 5.0 ug/mL | 2 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 5: ASB2 + CHX 2% | 2 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 6: ASB2 + DMSO 1% | 2 m | |||||
E&R | 2 | Adapter Single Bond 2 | Group 7: ASB2 control + distilled water | 2 m | |||||
[106] | 14 | E&R | 2 | Single Bond | R.D., C.D. | Group 1: CHX 2% | 6 M | N/A | CHX pretreatment did not affect in vitro bond strength at the immediate testing period. Storage of 6 months resulted in a significant reduction in the bond strength of the CHX and control groups. Storage in artificial saliva without protease inhibitors minimized the binding strength in the control group. In the CHX group, the decrease was 23.4%. The remaining adhesive strength was elevated in the CHX group. In vitro preservation in artificial saliva with protease inhibitors did not affect binding strength compared with the storage in artificial saliva without protease inhibitors. |
E&R | 2 | Single Bond | Group 2: Control | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdez-Montoya, M.; Avendaño-Félix, M.M.; Basurto-Flores, J.C.; Ramírez-Álvarez, M.; Cázarez-Camacho, M.d.R.; Casillas-Santana, M.Á.; Zavala-Alonso, N.V.; Sarmiento-Hernández, S.N.; Silva-Benítez, E.d.L.; Soto-Sainz, J.E. Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review. Materials 2024, 17, 5674. https://doi.org/10.3390/ma17225674
Valdez-Montoya M, Avendaño-Félix MM, Basurto-Flores JC, Ramírez-Álvarez M, Cázarez-Camacho MdR, Casillas-Santana MÁ, Zavala-Alonso NV, Sarmiento-Hernández SN, Silva-Benítez EdL, Soto-Sainz JE. Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review. Materials. 2024; 17(22):5674. https://doi.org/10.3390/ma17225674
Chicago/Turabian StyleValdez-Montoya, Marihana, Mariana Melisa Avendaño-Félix, Julio César Basurto-Flores, Maricela Ramírez-Álvarez, María del Rosario Cázarez-Camacho, Miguel Ángel Casillas-Santana, Norma Verónica Zavala-Alonso, Seyla Nayjaá Sarmiento-Hernández, Erika de Lourdes Silva-Benítez, and Jesús Eduardo Soto-Sainz. 2024. "Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review" Materials 17, no. 22: 5674. https://doi.org/10.3390/ma17225674
APA StyleValdez-Montoya, M., Avendaño-Félix, M. M., Basurto-Flores, J. C., Ramírez-Álvarez, M., Cázarez-Camacho, M. d. R., Casillas-Santana, M. Á., Zavala-Alonso, N. V., Sarmiento-Hernández, S. N., Silva-Benítez, E. d. L., & Soto-Sainz, J. E. (2024). Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review. Materials, 17(22), 5674. https://doi.org/10.3390/ma17225674