Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
3. Results and Discussion
3.1. Effects of Reduction Temperature and Time on Properties of the Reduced Pellets and PCs
3.2. Effects of Pre-Reduction on Properties of the Reduced Pellets and PCs
3.3. Characterization of the Reduced Pellets and Porous Carbon Materials
3.3.1. Zn-Bearing Dust Pellets
3.3.2. Porous Carbon Materials
3.4. Mechanism of the Synergistic Reduction and Activation
4. Conclusions
- (1)
- The reduced zinc-bearing dust pellets with CCS of 905 Newtons per pellet, iron grade of 73.59%, iron metallization degree of 97.03%, and low content of hazardous metals (0.015% Zn, 0.017% K, and 0.039% Na) could be directly used as burden for improving blast furnace operations without further agglomeration.
- (2)
- Although the surface area of the porous carbon was not high, it possessed better SO2 and NO adsorption capacities compared with the commercial activated carbon due to abundant functional groups and considerable amounts of alkaline oxides (0.76% K2O and 0.47% Na2O) in the material.
- (3)
- In the synergistic reduction and activation process, the Fe2O3, Fe3O4, FeO, ZnFe2O4, MgFe2O4, CaFe2O4, KFeO2, and NaFeO2 in Zn-bearing pellets could be reduced by the CO, which was generated from the activation reaction of coal, while the coal was activated by the CO2 generated from the reduction reactions. The synchronous reduction and activation processes were promoted by the coupling reactions between the Zn-bearing dust pellets and coal.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Pinson, D.J.; Zulli, P.; Lu, L.; Longbottom, R.J.; Chew, S.J.; Monaghan, B.J.; Zhang, G. Zinc Removal from Basic Oxygen Steelmaking (BOS) Filter Cake by Sintering. J. Hazard. Mater. 2020, 385, 121592. [Google Scholar] [CrossRef] [PubMed]
- Chairaksa-Fujimoto, R.; Inoue, Y.; Umeda, N.; Itoh, S.; Nagasaka, T. New Pyrometallurgical Process of EAF Dust Treatment with CaO Addition. Int. J. Miner. Metall. Mater. 2015, 22, 788–797. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, X.; Li, S.; Zhu, D.; Pan, J.; Yang, C. Hydrogen Reduction Process for Zinc-Bearing Dust Treatment: Reduction Kinetic Mechanism and Microstructure Transformations in a Novel and Environmentally Friendly Metallurgical Technique. J. Environ. Chem. Eng. 2023, 11, 110836. [Google Scholar] [CrossRef]
- Fan, C.; Ding, C.; Wang, X.; Xue, S.; Chang, R.; Long, H. A Novel Resource Recovery Strategy: Substituting Carbon Powder with Organic Solid Waste in the Production of Zinc-Bearing Dust Sludge Metallization Pellets. Powder Technol. 2024, 448, 120328. [Google Scholar] [CrossRef]
- Qi, L.; Wei, R.; Wang, Y.; Long, H.; Charles Xu, C. A New Approach to Collaborative Resource Utilization of Biological Sludge and Zinc-Bearing Dust: Reduction Characteristics and Mechanisms. Sep. Purif. Technol. 2025, 357, 130102. [Google Scholar] [CrossRef]
- Xia, L.; Mao, R.; Zhang, J.; Xu, X.; Wei, M.; Yang, F. Reduction Process and Zinc Removal from Composite Briquettes Composed of Dust and Sludge from a Steel Enterprise. Int. J. Miner. Metall. Mater. 2015, 22, 122–131. [Google Scholar] [CrossRef]
- She, X.; Wang, J.; Wang, G.; Xue, Q.; Zhang, X. Removal Mechanism of Zn, Pb and Alkalis from Metallurgical Dusts in Direct Reduction Process. J. Iron Steel Res. Int. 2014, 21, 488–495. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, D.; Pan, J.; Guo, Z.; Yang, C.; Wang, X.; Dong, T. An Investigation into the Alkali Metals Removal from Zn-Bearing Dust Pellets in Direct Reduction. JOM 2022, 74, 634–643. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, T.; Zhu, D.; Jiang, Y.; Pan, J.; Guo, Z.; Li, S.; Ma, W. Improving Zinc Reduction and Removal from Pellets of Zinc-Bearing Dusts via Vacuum Microwave-Assisted Carbothermal Reduction Process. Process Saf. Environ. Prot. 2024, 192, 896–906. [Google Scholar] [CrossRef]
- Wu, L.; Mei, H.; Liu, K.; Lv, N.; Wang, H.; Dong, Y. The Behavior of Separation and Enrichment of Valuable Metals during the Synergistic Processing of Metallurgical Dust and Sludge via Roasting in Rotary Kiln. J. Environ. Chem. Eng. 2023, 11, 109473. [Google Scholar] [CrossRef]
- Reddy, A.L.S.B.; Sahoo, S.K.; Kumar, M. Studies on Characterization of Properties of Low-Grade Hematite Iron Ores and Their Fired Pellets. Ironmak. Steelmak. 2023, 50, 1215–1223. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Ji, P.; Bing, P.; Di, Y.; Mo-tang, T.A. Kinetics of Isothermal Reduction of Stainless Steelmaking Dust Pellets①. Trans. Nonferrous Met. Soc. China 2004, 14, 593–598. [Google Scholar]
- Zabaniotou, A.; Madau, P.; Oudenne, P.D.; Jung, C.G.; Delplancke, M.-P.; Fontana, A. Active Carbon Production from Used Tire in Two-Stage Procedure: Industrial Pyrolysis and Bench Scale Activation with H2O–CO2 Mixture. J. Anal. Appl. Pyrolysis 2004, 72, 289–297. [Google Scholar] [CrossRef]
- Alam, S.; Khan, M.S.; Bibi, W.; Zekker, I.; Burlakovs, J.; Ghangrekar, M.M.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Preparation of Activated Carbon from the Wood of Paulownia Tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water 2021, 13, 1453. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Santos Júnior, O.O.; Visentainer, J.V.; Almeida, V.C. NaOH-Activated Carbon of High Surface Area Produced from Guava Seeds as a High-Efficiency Adsorbent for Amoxicillin Removal: Kinetic, Isotherm and Thermodynamic Studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Basta, A.H.; Fierro, V.; El-Saied, H.; Celzard, A. 2-Steps KOH Activation of Rice Straw: An Efficient Method for Preparing High-Performance Activated Carbons. Bioresour. Technol. 2009, 100, 3941–3947. [Google Scholar] [CrossRef]
- Huo, Q.; Li, J.; Qi, X.; Liu, G.; Zhang, X.; Zhang, B.; Ning, Y.; Fu, Y.; Liu, J.; Liu, S. Cu, Zn-Embedded MOF-Derived Bimetallic Porous Carbon for Adsorption Desulfurization. Chem. Eng. J. 2019, 378, 122106. [Google Scholar] [CrossRef]
- Damdin, B.; Barnasan, P.; Lin, C.-J.; Sanjaa, B.; Alyeksandr, A. Preparation and Characterization of Activated Carbons from Different Kinds of Coal. Proc. Mong. Acad. Sci. 2020, 60, 25–31. [Google Scholar] [CrossRef]
- Gornostayev, S.S.; Heikkinen, E.; Heino, J.J.; Huttunen, S.M.M.; Fabritius, T.M.J. Behavior of Alkali-Bearing Minerals in Coking and Blast Furnace Processes. Steel Res. Int. 2016, 87, 1144–1153. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, D.; Pan, J.; Guo, Z.; Yang, C. Utilization of Hydrated Lime as Binder and Fluxing Agent for the Production of High Basicity Magnesium Fluxed Pellets. ISIJ Int. 2022, 62, 632–641. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density Functional Theory Methods for Characterization of Porous Materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Influence of Mesopore Volume and Adsorbate Size on Adsorption Capacities of Activated Carbons in Aqueous Solutions. Carbon 2000, 38, 863–869. [Google Scholar] [CrossRef]
- Wang, D.; Pan, J.; Zhu, D.; Guo, Z.; Yang, C.; Yuan, Z. An Efficient Process to Upgrade Siderite Ore by Pre Oxidation-Magnetization Roasting-Magnetic Separation-Acid Leaching. J. Mater. Res. Technol. 2022, 19, 4296–4307. [Google Scholar] [CrossRef]
- Konikkara, N.; Kennedy, L.J.; Vijaya, J.J. Preparation and Characterization of Hierarchical Porous Carbons Derived from Solid Leather Waste for Supercapacitor Applications. J. Hazard. Mater. 2016, 318, 173–185. [Google Scholar] [CrossRef]
- Sudaryanto, Y.; Hartono, S.B.; Irawaty, W.; Hindarso, H.; Ismadji, S. High Surface Area Activated Carbon Prepared from Cassava Peel by Chemical Activation. Bioresour. Technol. 2006, 97, 734–739. [Google Scholar] [CrossRef]
- Balbuena, P.B.; Gubbins, K.E. Theoretical Interpretation of Adsorption Behavior of Simple Fluids in Slit Pores. Langmuir 1993, 9, 1801–1814. [Google Scholar] [CrossRef]
- Bashkova, S.; Bandosz, T.J. The Effects of Urea Modification and Heat Treatment on the Process of NO2 Removal by Wood-Based Activated Carbon. J. Colloid. Interface Sci. 2009, 333, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Veksha, A.; Sasaoka, E.; Uddin, M.D.A. The Influence of Porosity and Surface Oxygen Groups of Peat-Based Activated Carbons on Benzene Adsorption from Dry and Humid Air. Carbon 2009, 47, 2371–2378. [Google Scholar] [CrossRef]
- Chen, C.; Kim, J.; Ahn, W.-S. Efficient Carbon Dioxide Capture over a Nitrogen-Rich Carbon Having a Hierarchical Micro-Mesopore Structure. Fuel 2012, 95, 360–364. [Google Scholar] [CrossRef]
- Alabadi, A.; Abbood, H.A.; Li, Q.; Jing, N.; Tan, B. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture. Sci. Rep. 2016, 6, 38614. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.; Ullah, A.; Alam, S.; Muhammad, M.; Hendroko Setyobudi, R.; Zekker, I.; Sohail, A. Novel Magnetite Nanocomposites (Fe3O4/C) for Efficient Immobilization of Ciprofloxacin from Aqueous Solutions through Adsorption Pretreatment and Membrane Processes. Water 2022, 14, 724. [Google Scholar] [CrossRef]
- Deng, H.; Li, G.; Yang, H.; Tang, J.; Tang, J. Preparation of Activated Carbons from Cotton Stalk by Microwave Assisted KOH and K2CO3 Activation. Chem. Eng. J. 2010, 163, 373–381. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Textural Porosity, Surface Chemistry and Adsorptive Properties of Durian Shell Derived Activated Carbon Prepared by Microwave Assisted NaOH Activation. Chem. Eng. J. 2012, 187, 53–62. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, W.; Ju, J.; Wang, T.; Liu, F. Experiment on Simultaneous Absorption of NO and SO2 from Sintering Flue Gas by Oxidizing Agents of KMnO4/NaClO. Int. J. Chem. React. Eng. 2014, 12, 539–547. [Google Scholar] [CrossRef]
- Wang, D.; Pan, J.; Zhu, D.; Guo, Z.; Yang, C.; Duan, X. Enhanced Adsorption of NO onto Activated Carbon by Gas Pre-Magnetization. Sci. Total Environ. 2022, 830, 154712. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, C. Desulfurization and Denitrification Technologiesof Coal-Fired Flue Gas. Pol. J. Environ. Stud. 2018, 27, 481–489. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xiong, J.; Zhu, T. Coupling Mechanism of Activated Carbon Mixed with Dust for Flue Gas Desulfurization and Denitrification. J. Environ. Sci. 2020, 98, 205–214. [Google Scholar] [CrossRef]
- Zhang, W.J.; Rabiei, S.; Bagreev, A.; Zhuang, M.S.; Rasouli, F. Study of NO Adsorption on Activated Carbons. Appl. Catal. B Environ. 2008, 83, 63–71. [Google Scholar] [CrossRef]
- Kante, K.; Deliyanni, E.; Bandosz, T.J. Interactions of NO2 with Activated Carbons Modified with Cerium, Lanthanum and Sodium Chlorides. J. Hazard. Mater. 2009, 165, 704–713. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, D.; Pan, J.; Tian, H.; Xue, Y. A Study on the Zinc Removal Kinetics and Mechanism of Zinc-Bearing Dust Pellets in Direct Reduction. Powder Technol. 2021, 380, 273–281. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, D.; Pan, J.; Guo, Z.; Tian, H.; Xue, Y. A High-Efficiency Separation Process of Fe and Zn from Zinc-Bearing Dust by Direct Reduction. J. Iron Steel Res. Int. 2022, 29, 1559–1572. [Google Scholar] [CrossRef]
Item | Fetotal | FeO | MFe | Zn | K | Na |
---|---|---|---|---|---|---|
DAC | 56.09 | 26.55 | 1.72 | 3.15 | 0.25 | 0.18 |
DAB | 24.07 | 13.30 | 0.69 | 7.82 | 3.13 | 0.96 |
DEC | 19.81 | 14.87 | 0.09 | 1.38 | 1.29 | 1.56 |
Blend | 44.07 | 21.71 | 1.2 | 4.63 | 1.25 | 0.50 |
C | SiO2 | Al2O3 | CaO | MgO | LOIa | Adding ratio |
- | 1.55 | 0.25 | 6.24 | 1.87 | 3.05 | 63 |
20.43 | 10.00 | 1.10 | 4.83 | 1.48 | 24.44 | 33 |
- | 6.17 | 3.58 | 23.82 | 5.55 | 16.60 | 4 |
6.74 | 4.53 | 0.67 | 6.47 | 1.90 | 10.65 | 100 |
Coal Types | Proximate Analysis | Main Chemical Compositions of Ash | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | FCad | Vad | Aad | Fetotal | CaO | Al2O3 | SiO2 | MgO | |
YC | 5.6 | 31.4 | 58.2 | 4.7 | 4.5 | 28.2 | 20.7 | 19.5 | 21.9 |
SC | 0.1 | 51.4 | 29.4 | 6.1 | 11.8 | 25.0 | 8.0 | 27.6 | 16.3 |
Reduced Pellets | C/O | CCS/N per Pellet | Metallization Degree/% | Fetotal /% | Zn (%) | K (%) | Na (%) |
---|---|---|---|---|---|---|---|
Pellet (i) | 1.0 | 856 | 97.83 | 74.27 | 0.010 | 0.007 | 0.023 |
Pellet (ii) | 1.0 | 24 | 97.52 | 73.93 | 0.008 | 0.006 | 0.021 |
Pellet (iii) | 0.5 | 905 | 97.03 | 73.59 | 0.015 | 0.017 | 0.039 |
PCs | C/O | Surface Area/m2·g−1 | Iodine Number/mg·g−1 | Burn-Off/% |
---|---|---|---|---|
PC (i) | 1.0 | 118.20 | 299.76 | 49.84 |
PC (ii) | 1.0 | 134.42 | 601.35 | 55.31 |
PC (iii) | 0.5 | 300.65 | 655.23 | 53.24 |
Reduced Pellets | CCS/N per Pellet | Metallization Degree/% | Fetotal /% | Zn (%) | K (%) | Na (%) |
---|---|---|---|---|---|---|
P0 | 156 | 2.72 | 35.83 | 3.76 | 1.01 | 0.41 |
P1 | 45 | 44.31 | 56.55 | 4.23 | 0.57 | 0.32 |
P2 | 68 | 91.13 | 72.18 | 0.16 | 0.13 | 0.11 |
P3 | 223 | 94.55 | 73.22 | 0.039 | 0.023 | 0.042 |
P4 | 905 | 97.03 | 73.59 | 0.015 | 0.017 | 0.039 |
Point No. | Elements | Possible Phases | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | O | Si | Ca | Mg | Al | Zn | K | Na | C | ||
1 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Fe |
2 | 41.3 | 58.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Fe3O4 |
3 | 40.5 | 59.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Fe2O3 |
4 | 29.3 | 56.9 | 0 | 13.8 | 0 | 0 | 0 | 0 | 0 | 0 | CaFe2O4 |
5 | 29.7 | 57.7 | 0 | 0 | 12.6 | 0 | 0 | 0 | 0 | 0 | MgFe2O4 |
6 | 0 | 67.9 | 32.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SiO2 |
7 | 0 | 61.6 | 0 | 0 | 0 | 38.4 | 0 | 0 | 0 | 0 | Al2O3 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | C |
9 | 29.8 | 58.1 | 0 | 0 | 0 | 0 | 12.1 | 0 | 0 | 0 | ZnFe2O4 |
10 | 40.2 | 59.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Fe2O3 |
11 | 36.7 | 57.7 | 0 | 0 | 0 | 0 | 0 | 0 | 5.6 | 0 | NaFeO2, Fe2O3 |
12 | 37.1 | 56.5 | 0 | 0 | 0 | 0 | 0 | 6.4 | 0 | 0 | KFeO2, Fe2O3 |
Point No. | Elements | Possible Phases | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | O | Si | Ca | Mg | Al | Zn | K | Na | ||
1 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Fe |
2 | 51.2 | 48.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | FeO |
3 | 45.8 | 43.9 | 0 | 0 | 0 | 0 | 10.3 | 0 | 0 | ZnFe2O4, Fe |
4 | 85.4 | 11.1 | 0 | 0 | 0 | 0 | 0 | 0 | 3.5 | NaFeO2, Fe |
5 | 88.9 | 8.8 | 0 | 0 | 0 | 0 | 0 | 2.3 | 0 | KFeO2, Fe |
6 | 0 | 60.4 | 24.3 | 8.7 | 6.6 | 0 | 0 | 0 | 0 | CaMgSi2O6 |
7 | 91.3 | 7.3 | 0 | 0 | 0 | 0 | 1.4 | 0 | 0 | ZnFe2O4, Fe |
8 | 93.6 | 4.8 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 | NaFeO2, Fe |
9 | 96.3 | 3.1 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | KFeO2, Fe |
10 | 0 | 62.0 | 8.4 | 15.9 | 0 | 13.7 | 0 | 0 | 0 | Ca2Al2SiO7 |
11 | 0 | 60.5 | 21.1 | 10.5 | 7.9 | 0 | 0 | 0 | 0 | CaMgSi2O6 |
12 | 35.2 | 52.2 | 0 | 0 | 12.6 | 0 | 0 | 0 | 0 | MgFe2O4 |
13 | 0 | 57.8 | 17.3 | 16.3 | 0 | 8.6 | 0 | 0 | 0 | Ca3Al2Si3O12 |
Samples | Surface Area (m2/g) | Total Pore Volume (mL/g) | Micropore (<2 nm) | Mesopore | ||
---|---|---|---|---|---|---|
Volume (mL/g) | Percentage (%) | Volume (mL/g) | Percentage | |||
(%) | ||||||
PC1 | 218.9 | 0.191 | 0.100 | 52.37 | 0.091 | 47.63 |
PC2 | 314.8 | 0.273 | 0.135 | 49.63 | 0.138 | 50.37 |
PC3 | 300.65 | 0.264 | 0.127 | 48.21 | 0.137 | 51.79 |
NO. | Reaction Types | Reactions |
---|---|---|
(1) | Activation reaction, Boudouard reaction | C + CO2 → 2CO |
(2) | Reduction reactions of iron-bearing phases | 3Fe2O3 + CO → 2Fe3O4 + CO2 |
(3) | Fe3O4 + CO → 3FeO + CO2 | |
(4) | FeO + CO → Fe + CO2 | |
(5) | CaFe2O4 + 3CO → CaO + 2Fe + 3CO2 | |
(6) | MgFe2O4 + 3CO → MgO + 2Fe + 3CO2 | |
(7) | Reduction reactions of harmful metal oxides | ZnFe2O4 + 4CO → Zn + 2Fe + 4CO2 |
(8) | KFeO2 + 2CO → Fe + 2CO2 + K | |
(9) | NaFeO2 + 2CO → Fe + 2CO2 + Na | |
(10) | Reactions of gangue phases | 2CaO + SiO2 + Al2O3 → Ca2Al2SiO7 |
(11) | CaO + 2SiO2 + MgO → CaMgSi2O6 | |
(12) | 3CaO + 3SiO2 + Al2O3 → Ca3Al2Si3O12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhu, D.; Yang, J.; Ma, S. Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process. Materials 2024, 17, 5679. https://doi.org/10.3390/ma17235679
Wang D, Zhu D, Yang J, Ma S. Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process. Materials. 2024; 17(23):5679. https://doi.org/10.3390/ma17235679
Chicago/Turabian StyleWang, Dingzheng, Deqing Zhu, Jinlin Yang, and Shaojian Ma. 2024. "Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process" Materials 17, no. 23: 5679. https://doi.org/10.3390/ma17235679
APA StyleWang, D., Zhu, D., Yang, J., & Ma, S. (2024). Utilization of Low-Rank Coal and Zn-Bearing Dusts for Preparation of K, Na-Embedded Porous Carbon Material and Metallized Pellets by Synergistic Activation and Reduction Process. Materials, 17(23), 5679. https://doi.org/10.3390/ma17235679