Characterization of Particle Size Effects on Sintering Shrinkage and Porosity in Stainless Steel Metal Injection Molding Using Multi-Physics Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder and Feedstock
2.2. Metal Injection Molding (MIM)
2.3. FEA Simulation
2.4. Size Variation Mechanisms in MIM
2.5. Characterization Methods
3. Results and Discussion
3.1. FEA Results
3.2. Sintering Behavior and Particle Size Effects
3.3. Shrinkage Behavior Analysis
3.4. Mechanical Properties
3.5. Comparative Analysis of Shrinkage, Porosity, and Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, E.; Li, F.; Zhang, D.; Xu, D.; Li, Z.; Jia, R.; Jin, Y.; Song, H.; Li, H.; Wang, Q.; et al. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Res. 2022, 219, 118553. [Google Scholar] [CrossRef] [PubMed]
- Melyanenko, K.A.; Emelyanenko, A.M.; Boinovich, L.B. Laser obtained superhydrophobic state for stainless steel corrosion protection, a review. Coatings 2023, 13, 194. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, L.; Wang, D. Defect analysis of 316 L stainless steel prepared by LPBF additive manufacturing processes. Coatings 2021, 11, 1562. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S. Investigating the causes and remedies for porosity defects in the casting process: A review. BOHR Int. J. Eng. 2023, 2, 15–29. [Google Scholar] [CrossRef]
- Wolff, M.; Schaper, J.G.; Suckert, M.R.; Dahms, M.; Feyerabend, F.; Ebel, T.; Willumeit-Römer, R.; Klassen, T. Metal injection molding (MIM) of magnesium and its alloys. Metals 2016, 6, 118. [Google Scholar] [CrossRef]
- Hartwig, T.; Veltl, G.; Petzoldt, F.; Kunze, H.; Scholl, R.; Kieback, B. Powders for metal injection molding. J. Eur. Ceram. Soc. 1998, 18, 1211–1216. [Google Scholar] [CrossRef]
- Heaney, D.F. Handbook of Metal Injection Molding; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Ye, H.; Liu, X.Y.; Hong, H. Fabrication of metal matrix composites by metal injection molding—A review. J. Mater. Process. Technol. 2008, 200, 12–24. [Google Scholar] [CrossRef]
- Guo, W.; Yu, Z.; Wei, W.; Meng, Z.; Mao, H.; Hua, L. Effect of film types on thermal response, cellular structure, forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts. J. Mater. Sci. Technol. 2021, 92, 98–108. [Google Scholar] [CrossRef]
- Sanetrnik, D.; Hausnerova, B.; Ponizil, P.; Novak, M.; Monkova, K. Flow-induced defects during metal injection molding: Role of powder morphology. Phys. Fluids 2024, 36, 083334. [Google Scholar] [CrossRef]
- Huang, B.; Liang, S.; Qu, X. The rheology of metal injection molding. J. Mater. Process. Technol. 2003, 137, 132–137. [Google Scholar] [CrossRef]
- Limberg, W.; Ebel, T.; Pyczak, F.; Oehring, M.; Schimansky, F.P. Influence of the sintering atmosphere on the tensile properties of MIM-processed Ti 45Al 5Nb 0.2 B 0.2 C. Mater. Sci. Eng. A 2012, 552, 323–329. [Google Scholar] [CrossRef]
- Ahn, S.; Park, S.J.; Lee, S.; Atre, S.V.; German, R.M. Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol. 2009, 193, 162–169. [Google Scholar] [CrossRef]
- Berginc, B.; Kampus, Z.; Sustarsic, B. The influence of MIM and sintering-process parameters on the mechanical properties of 316L SS. Mater. Tehnol. 2006, 40, 193. [Google Scholar]
- Olevsky, E.A. Theory of sintering: From discrete to continuum. Mater. Sci. Eng. R Rep. 1998, 23, 41–100. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Wu, Y.; Suri, P.; German, R.M. Simulation of the sintering densification and shrinkage behavior of powder-injection-molded 17-4 PH stainless steel. Metall. Mater. Trans. A 2004, 35, 257–263. [Google Scholar] [CrossRef]
- Heaney, D.F.; Spina, R. Numerical analysis of debinding and sintering of MIM parts. J. Mater. Process. Technol. 2007, 191, 385–389. [Google Scholar] [CrossRef]
- Ferri, O.M.; Ebel, T.; Bormann, R. Influence of surface quality and porosity on fatigue behaviour of Ti–6Al–4V components processed by MIM. Mater. Sci. Eng. A 2010, 527, 1800–1805. [Google Scholar] [CrossRef]
- German, R.M. Sintering trajectories: Description on how density, surface area, and grain size change. JOM 2016, 68, 878–884. [Google Scholar] [CrossRef]
- Barrière, T.; Gelin, J.C.; Liu, B. Improving mould design and injection parameters in metal injection moulding by accurate 3D finite element simulation. J. Mater. Process. Technol. 2002, 125, 518–524. [Google Scholar] [CrossRef]
- Herranz, G.; Berges, C.; Naranjo, J.A.; Garcia, C.; Garrido, I. Mechanical performance, corrosion and tribological evaluation of a Co–Cr–Mo alloy processed by MIM for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 105, 103706. [Google Scholar] [CrossRef]
- Ilinca, F.; Hétu, J.F.; Derdouri, A.; Stevenson, J. Metal injection molding: 3D modeling of nonisothermal filling. Polym. Eng. Sci. 2002, 42, 760–770. [Google Scholar] [CrossRef]
- Tuncer, N.; Bram, M.; Laptev, A.; Beck, T.; Moser, A.; Buchkremer, H.P. Study of metal injection molding of highly porous titanium by physical modeling and direct experiments. J. Mater. Process. Technol. 2014, 214, 1352–1360. [Google Scholar] [CrossRef]
- Berladir, K.; Zhyhylii, D.; Brejcha, J.; Pozovnyi, O.; Krmela, J.; Krmelová, V.; Artyukhov, A. Computer Simulation of Composite Materials Behavior under Pressing. Polymers 2022, 14, 5288. [Google Scholar] [CrossRef] [PubMed]
- Trad, M.A.; Demers, V.; Côté, R.; Sardarian, M.; Dufresne, L. Numerical simulation and experimental investigation of mold filling and segregation in low-pressure powder injection molding of metallic feedstock. Adv. Powder Technol. 2020, 31, 1349–1358. [Google Scholar] [CrossRef]
- Mukund, B.N.; Hausnerova, B. Variation in particle size fraction to optimize metal injection molding of water atomized 17–4PH stainless steel feedstocks. Powder Technol. 2020, 368, 130–136. [Google Scholar] [CrossRef]
- Ji, C.H.; Loh, N.H.; Khor, K.A.; Tor, S.B. Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: Final density. Mater. Sci. Eng. A 2001, 311, 74–82. [Google Scholar] [CrossRef]
- Atre, S.V.; Park, S.J.; Zauner, R.; German, R.M. Process simulation of powder injection moulding: Identification of significant parameters during mould filling phase. Powder Metall. 2007, 50, 76–85. [Google Scholar] [CrossRef]
- Verma, S.; Yang, C.K.; Lin, C.H.; Jeng, J.Y. Additive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection molding. Addit. Manuf. 2022, 49, 102463. [Google Scholar] [CrossRef]
- Kellett, B.J.; Lange, F.F. Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 1989, 72, 725–734. [Google Scholar] [CrossRef]
- Park, D.Y.; Lee, S.W.; Park, S.J.; Kwon, Y.S.; Otsuka, I. Effects of particle sizes on sintering behavior of 316L stainless steel powder. Metall. Mater. Trans. A 2013, 44, 1508–1518. [Google Scholar] [CrossRef]
- Wei, F.A.; He, X.B.; Zhang, R.J.; Yang, S.D.; Qu, X.H. Evolution of stresses in metal injection molding parts during sintering. Trans. Nonferrous Met. Soc. China 2015, 25, 552–558. [Google Scholar]
- Wakai, F.; Bordia, R.K. Microstructural evolution and anisotropic shrinkage in constrained sintering and sinter forging. J. Am. Ceram. Soc. 2012, 95, 2389–2397. [Google Scholar] [CrossRef]
- ASTM B962-17; Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. ASTM International: West Conshohocken, PA, USA, 2017.
- Sadaf, M.; Bragaglia, M.; Nanni, F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021, 67, 141–150. [Google Scholar] [CrossRef]
- ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Xie, P.; Guo, F.; Jiao, Z.; Ding, Y.; Yang, W. Effect of gate size on the melt filling behavior and residual stress of injection molded parts. Mater. Des. 2014, 53, 366–372. [Google Scholar] [CrossRef]
- Xu, Z.W.; Jia, C.C.; Kuang, C.J.; Qu, X.H. Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding. Int. J. Miner. Metall. Mater. 2010, 17, 423–428. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Zhao, Z.; Wu, Z. Driving force evolution in solid-state sintering with coupling multiphysical fields. Ceram. Int. 2020, 46, 11584–11592. [Google Scholar]
- Sung, H.J.; Ha, T.K.; Ahn, S.; Chang, Y.W. Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties. J. Mater. Process. Technol. 2002, 130, 321–327. [Google Scholar] [CrossRef]
- Zou, Y.; Malzbender, J. Development and optimization of porosity measurement techniques. Ceram. Int. 2016, 42, 2861–2870. [Google Scholar] [CrossRef]
- Wu, M.W.; Huang, Z.K.; Tseng, C.F.; Hwang, K.S. Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17-4PH stainless steel. Met. Mater. Int. 2015, 21, 531–537. [Google Scholar] [CrossRef]
- de Freitas Daudt, N.; Bram, M.; Barbosa, A.P.; Laptev, A.M.; Alves, C., Jr. Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment. J. Mater. Process. Technol. 2017, 239, 202–209. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Huang, C.; Ngai, T.; Hu, L. Effect of Sintering Temperature and Solution Treatment on Phase Changes and Mechanical Properties of High-Nitrogen Stainless Steel Prepared by MIM. Materials 2023, 16, 2135. [Google Scholar] [CrossRef] [PubMed]
- Molinari, A.; Torresani, E.; Menapace, C.; Larsson, M. The anisotropy of dimensional change on sintering of iron. J. Am. Ceram. Soc. 2015, 98, 3431–3437. [Google Scholar] [CrossRef]
- Krauss, G. Steels: Processing, Structure, and Performance; ASM International: Materials Park, OH, USA, 2015. [Google Scholar]
- Upadhyaya, G.S. Some issues in sintering science and technology. Mater. Chem. Phys. 2001, 67, 1–5. [Google Scholar] [CrossRef]
- Widiantara, I.P.; Putri, R.A.; Han, D.I.; Bahanan, W.; Lee, E.H.; Woo, C.H.; Kang, J.H.; Ryu, J.; Ko, Y.G. Characterization of Green Part of Steel from Metal Injection Molding: An Analysis Using Moldflow. Materials 2023, 16, 2516. [Google Scholar] [CrossRef] [PubMed]
Powder | D10 (µm) | D50 (µm) | D90 (µm) | Mean Particle Size |
---|---|---|---|---|
17-4PH | 2.47 | 6.03 | 10.12 | 6.87 |
316L | 3.12 | 7.54 | 12.08 | 8.91 |
304 | 4.11 | 8.48 | 14.37 | 9.65 |
Property | 17-4PH | 316L | 316L |
---|---|---|---|
Density (g/cm3) | 7.75 | 7.99 | 7.93 |
Elastic Modulus (GPa) | 200 | 193 | 193 |
Poisson’s Ratio | 0.27 | 0.30 | 0.29 |
Thermal Expansion Coefficient (×10−6/°C) | 10.8 | 16.5 | 17.2 |
Specific Heat Capacity (J/kg·K) | 460 | 500 | 500 |
Thermal Conductivity (W/m·K) | 15.0 | 16.3 | 16.2 |
Property | 17-4PH | 316L | 316L |
---|---|---|---|
Dimensional Shrinkage (X) | 0.161 | 0.087 | 0.044 |
Dimensional Shrinkage (Y) | 0.149 | 0.081 | 0.024 |
Dimensional Shrinkage (Z) | 0.182 | 0.122 | 0.058 |
Porosity (%) | 0.65–1.29 | 0.50–2.13 | 0.50–2.40 |
Average Vickers Hardness (HV) | 392.28 | 219.16 | 338.15 |
Hardness Standard Deviation (HV) | 4.36 | 5.22 | 9.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Guo, K.; Ni, J. Characterization of Particle Size Effects on Sintering Shrinkage and Porosity in Stainless Steel Metal Injection Molding Using Multi-Physics Simulation. Materials 2024, 17, 5691. https://doi.org/10.3390/ma17235691
Wu Y, Guo K, Ni J. Characterization of Particle Size Effects on Sintering Shrinkage and Porosity in Stainless Steel Metal Injection Molding Using Multi-Physics Simulation. Materials. 2024; 17(23):5691. https://doi.org/10.3390/ma17235691
Chicago/Turabian StyleWu, Ying, Kaibo Guo, and Junfang Ni. 2024. "Characterization of Particle Size Effects on Sintering Shrinkage and Porosity in Stainless Steel Metal Injection Molding Using Multi-Physics Simulation" Materials 17, no. 23: 5691. https://doi.org/10.3390/ma17235691
APA StyleWu, Y., Guo, K., & Ni, J. (2024). Characterization of Particle Size Effects on Sintering Shrinkage and Porosity in Stainless Steel Metal Injection Molding Using Multi-Physics Simulation. Materials, 17(23), 5691. https://doi.org/10.3390/ma17235691