Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM
Abstract
:1. Introduction
2. Materials and Methods
2.1. First Principles Calculation
2.2. Experimental Material
2.3. Detection Method
3. Results
3.1. Density and Phase
3.2. Grain Orientation and Grain Boundary Characteristic
3.3. Tensile Strength
3.4. Microhardness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miyazaki, S. My Experience with Ti–Ni-Based and Ti-Based shape memory alloys. Shape Mem. Superelast. 2017, 3, 279–314. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Liu, Y.; An, J.; Chua, C.K.; Shen, Y.F.; Kuo, C.N. A Review of Selective Laser Melted NiTi Shape Memory Alloy. Materials 2018, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Elahinia, M.; Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Bimber, B.A.; Hamilton, R.F. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar] [CrossRef]
- Goryczka, T.; Salwa, P.; Zubko, M. High-Energy Ball Milling Conditions in Formation of NiTiCu Shape Memory Alloys NiTiCu. Microsc. Microanal. 2022, 28, 939–945. [Google Scholar] [CrossRef]
- Villa, F.; Villa, E.; Nespoli, A.; Passaretti, F. Internal Friction Parameter in Shape Memory Alloys: Correlation Between Thermomechanical Conditions and Damping Properties in NiTi and NiTiCu at Different Temperatures. J. Mater. Eng. Perform. 2021, 30, 2605–2616. [Google Scholar] [CrossRef]
- dos Reis Barros, C.D.; da Cunha Ponciano Gomes, J.A. Influence of Cu Addition and Autoclave Sterilization on Corrosion Resistance and Biocompatibility of NiTi for orthodontics Applications. Mater. Res.-Ibero-Am. J. Mater. 2021, 24, e20200369. [Google Scholar]
- Askari, N.F.G.; Taghizadeh, M.; Mohri, M.; Nili, A.M. On the microstructure and mechanical properties of a two-way shape memory NiTi/NiTiCu bi-layer diaphragm. Mater. Des. 2020, 188, 108464. [Google Scholar] [CrossRef]
- Singh, S.; Demidova, E.; Resnina, N.; Belyaev, S.; Iyamperumal, P.A.; Paul, C.P.; Prashanth, K.G. NiTi–Cu Bimetallic Structure Fabrication through Wire Arc Additive Manufacturing. Material 2024, 17, 1006. [Google Scholar] [CrossRef]
- Tatar, C.; Acar, R.; Qader, I.N. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. Eur. Phys. J. Plus 2020, 135, 311. [Google Scholar] [CrossRef]
- Velmurugan, C.; Kesavan, J.; Senthilkumar, V.; Ramya, K. Effects of sintering temperature on dihedral angle of NiTiCu SMA fabricated using spark plasma sintering. Mater. Today-Proc. 2021, 43, 520–523. [Google Scholar] [CrossRef]
- Rezgoun, S.; Sakher, E.; Chouf, S.; Bououdina, M.; Benchiheub, M.; Bellucci, S. Structural, Microstructural, and Magnetic Property Dependence of Nanostructured Ti50Ni43Cu7 Powder Prepared by High-Energy Mechanical Alloying. J. Supercond. Nov. Magn. 2020, 33, 2059–2071. [Google Scholar] [CrossRef]
- Zhang, W.; Ao, S.S.; Oliveira, J.P.; Li, C.J.; Zeng, Z.; Wang, A.Q.; Luo, Z. On the metallurgical joining mechanism during ultrasonic spot welding of NiTi using a Cu interlayer. Scr. Mater. 2020, 178, 414–417. [Google Scholar] [CrossRef]
- Cheng, J.X.; Yu, S.Y.; Wang, R.; Ge, Q. Digital light processing based multimaterial 3D printing: Challenges, solutions and perspectives. Int. J. Extrem. Manuf. 2024, 6, 042006. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.C.; Choi, J.W.; Lee, I.H. A Review on 3D Printed Smart Devices for 4D Printing. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 373–383. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Y.Q.; Jiang, S.Y.; Yu, J.B.; Yan, B.Y.; Zhao, C.Z.; Yan, B. Microstructural evolution and related mechanisms in NiTiCu shape memory alloy subjected local canning compression. Intermetallics 2020, 118, 106700. [Google Scholar] [CrossRef]
- Cirstea, C.D.; Lucaci, M.; Valeanu, M.; Sofronie, M.; Bujoreanu, L.G.; Lungu, M.V.; Tsakiris, V.; Cucos, A.; Talpeanu, D.; Enescu, E. Studies about Structural and Thermal Investigations on Ti50Ni30Cu20 Alloys Obtanined by Different Technological Processes. Rom. J. Phys. 2021, 66, 601. [Google Scholar]
- Kireeva, I.V.; Pobedennaya, Z.V.; Chumlyakov, Y.I.; Marchenko, E.S. Effect of stress-induced martensite ageing on the one-way and two-way shape memory effect of [011]-oriented TiNiCu crystals under tension. Mater. Lett. 2021, 305, 130773. [Google Scholar] [CrossRef]
- Kaur, N.; Choudhary, N.; Goyal, R.N.; Viladkar, S.; Matai, I.; Gopinath, P.; Chockalingam, S.; Kaur, D. Magnetron sputtered Cu3N/NiTiCu shape memory thin film heterostructures for MEMS applications. J. Nanoparticle Res. 2013, 15, 1468. [Google Scholar] [CrossRef]
- Sun, D.; Jiang, S.Y.; Lin, P.; Yan, B.Y.; Feng, H.; Tang, M.; Zhang, Y.Q. High yield stress and narrow phase transformation hysteresis of thermomechanical-processing NiTiCu shape memory alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2024, 897, 146340. [Google Scholar] [CrossRef]
- Keskin, B.; Bassani, P.; Bakan, F.; Sezen, M.; Derin, B. Synthesis and Microstructure Investigation of Ni40Ti50Cu10 Intermetallic Shape Memory Alloys by Self-Propagating Combustion Method. Trans. Indian Inst. Met. 2022, 75, 2749–2758. [Google Scholar] [CrossRef]
- Villa, F.; Nespoli, A.; Passaretti, F.; Villa, E. Microstructural and Thermo-Mechanical Characterization of Cast NiTiCu20 Shape Memory Alloy. Materials 2021, 14, 3770. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.S.; Hur, J.; Hwang, J.Y.; Chun, Y.B. Atomistic investigation of phase transformations in NiTiCu shape memory alloys. Int. J. Mech. Sci. 2024, 274, 109256. [Google Scholar] [CrossRef]
- Long, C.; João, P.O.; Xi, Y.; Bowen, P.; Wenchao, K.; Jiajia, S.; Fissha, B.T.; Norbert, S.; Naixun, Z.; Bei, P.; et al. Microstructure and Phase Transformation Behavior of NiTiCu Shape Memory Alloys Produced Using Twin-Wire Arc Additive Manufacturing. Addit. Manuf. Front. 2024, 3, 200132. [Google Scholar]
- Xue, J.T.; Huang, J.T.; Liu, G.T.; Li, M.W.; Wei, Z.F.; Lai, Z.H.; Qu, N.; Liu, Y.; Fu, Y.; Zhu, J. Efficient design of lightweight AlCrFeNiTi-based high-entropy alloys via computational thermodynamics and interpretable machine learning. Vacuum 2024, 225, 113290. [Google Scholar] [CrossRef]
- Song, W.W.; Feng, S.D.; Du, Q.Q.; Yang, L.; Wang, L.M. Tailoring thermodynamic stability, mechanical properties, and anisotropies in TiX (X=Nb, Zr) disordered alloys: A first-principles study. J. Non-Cryst. Solids 2024, 631, 122934. [Google Scholar] [CrossRef]
- Wang, J.W.; He, D.Y.; Wu, X.; Shao, W.; Guo, X.Y.; Zhou, Z.; Tan, Z. Heat transfer mode shift for regulating microstructure of NiTi alloys in laser powder bed fusion. Mater. Lett. 2024, 362, 136182. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, D.; Yang, Y.; Manladan, S.M.; Luo, Z. Microstructure and mechanical properties of high strength AlCoCrFeNi2.1 eutectic high entropy alloy prepared by selective laser melting (SLM). Mater. Lett. 2022, 310, 131511. [Google Scholar] [CrossRef]
- Huang, X.H.; Nan, K.; Pierre, C.; Mohamed, E.M. Analyses of the sliding wear behavior of NiTi shape memory alloys fabricated by laser powder bed fusion based on orthogonal experiments. Wear 2023, 534, 205130. [Google Scholar] [CrossRef]
- Ataollahi, S.; Mahtabi, M.J. Effects of precipitate on the phase transformation of single-crystal NiTi alloy under thermal and mechanical loads: A molecular dynamics study. Mater. Today Commun. 2021, 29, 102859. [Google Scholar] [CrossRef]
- Guo, Y.N.; Su, H.J.; Zhou, H.T.; Shen, Z.L.; Liu, Y.; Zhang, J.; Liu, L.; Fu, H.Z. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting. J. Mater. Sci. Technol. 2022, 111, 298–306. [Google Scholar] [CrossRef]
- Wu, D.S.; Sun, J.H.; Li, Z.G.; Tashiro, S.; Murphy, A.B.; Ma, N.S.; Tanaka, M.; Huamg, J.; Feng, K.; Liu, C.; et al. Dynamic vapor and keyhole behavior, and equiaxed dendrite formation in blue laser processing of copper. Int. J. Heat Mass Tran. 2023, 209, 124102. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Vrancken, B.; Kruth, J.P.; Luyten, J.; Van, H.J. Texture and anisotropy in selective laser melting of NiTi alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. A 2016, 650, 225–232. [Google Scholar] [CrossRef]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scr. Mater. 2017, 129, 30–34. [Google Scholar] [CrossRef]
- Li, J.; Cheng, X.; Li, Z.; Zong, X.; Zhang, S.Q.; Wang, H.M. Improving the mechanical properties of Al-5Si-1Cu-Mg aluminum alloy produced by laser additive manufacturing with post-process heat treatments. Mater. Sci. Eng. A 2018, 735, 408–417. [Google Scholar] [CrossRef]
- Bo, Y.; Ge, J.G.; Zhang, L.; Chen, H.J.; Wei, L.S.; Zhou, D.Y.; Song, R.H. Laser powder bed fusion of NiTiFe shape memory alloy via premixed powder: Microstructural evolution, mechanical and functional properties. Rare Met. 2024, 43, 2300–2316. [Google Scholar]
- Gao, S.B.; Hu, Z.H.; Duchamp, M.; Krishnan, P.; Tekumalla, S.; Song, X.; Seita, M. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting. Acta Mater. 2020, 200, 366. [Google Scholar] [CrossRef]
- Saedi, S.; Moghaddam, N.S.; Amerinatanzi, A.; Elahinia, M.; Karaca, H.E. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018, 144, 552–560. [Google Scholar] [CrossRef]
- Ma, L.; Li, W.; Yang, Y.; Ma, Y.; Luo, K.; Jia, B.; Xu, Z.; Yu, Z. Corrosion behavior of NiTi alloys fabricate by selective laser melting subjected to femtosecond laser shock peening. Coatings 2021, 11, 1078. [Google Scholar] [CrossRef]
- Saedi, S.; Turabi, A.S.; Andani, M.T.; Moghaddam, N.S.; Elahinia, M.; Karaca, H.E. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater. Sci. Eng. 2017, 686, 1–10. [Google Scholar] [CrossRef]
- Ren, D.C.; Zhang, H.B.; Liu, Y.J.; Li, S.J.; Jin, W.; Yang, R.; Zhang, L.C. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater. Sci. Eng 2020, 771, 138586. [Google Scholar] [CrossRef]
- Liu, J.Y.; Deng, Y.L.; Guo, X.B. Study the correlation of B19’ phase transformation and grain orientation evolution on shape recovery of NiTi alloys fabricated by powder bed fusion. Mater. Charact. 2023, 205, 113297. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
Sample | Ti (at.%) | Ni (at.%) | Cu (at.%) | Poisson’s Ratio |
---|---|---|---|---|
1 | 50.00 | 50.00 | 0.00 | 0.222 |
2 | 50.00 | 45.00 | 5.00 | 0.226 |
3 | 50.00 | 40.00 | 10.00 | 0.215 |
Sample | Scanning Speed (mm/s) | Laser Power (w) | Energy Density (J/mm3) |
---|---|---|---|
1 | 700 | 100 | 59.52 |
2 | 700 | 120 | 71.42 |
3 | 700 | 140 | 83.33 |
4 | 800 | 100 | 52.08 |
5 | 800 | 120 | 62.5 |
6 | 800 | 140 | 73 |
7 | 900 | 100 | 40.3 |
8 | 900 | 120 | 55.56 |
9 | 900 | 140 | 64.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba, Y.; Lv, Y.; Yan, M.; Jin, H.; Guo, L.; Zhang, Q. Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM. Materials 2024, 17, 5693. https://doi.org/10.3390/ma17235693
Ba Y, Lv Y, Yan M, Jin H, Guo L, Zhang Q. Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM. Materials. 2024; 17(23):5693. https://doi.org/10.3390/ma17235693
Chicago/Turabian StyleBa, Yi, Yan Lv, Miaoning Yan, Hongxu Jin, Liang Guo, and Qingmao Zhang. 2024. "Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM" Materials 17, no. 23: 5693. https://doi.org/10.3390/ma17235693
APA StyleBa, Y., Lv, Y., Yan, M., Jin, H., Guo, L., & Zhang, Q. (2024). Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM. Materials, 17(23), 5693. https://doi.org/10.3390/ma17235693