Amber “Alchemy”: Recreating and Investigating Yellow Glass Formulations
Abstract
:1. Introduction
Contextualizing the Recipes: The Arcana
2. Materials and Methods
2.1. Reproduction Methodology
2.2. Characterisation of the Reproduced Samples
3. Results and Discussion
3.1. Recipe Identification
3.1.1. Marinha Grande Arcanum (MG)
3.1.2. Castro and Oliveira Guerra Arcanum (COG)
3.1.3. Gaivotas Factory Arcanum (GF)
3.1.4. Northern-Portuguese Glass Centre Arcanum (NPGC)
3.2. Recipe Reproduction
3.3. Chemical Characterization
3.4. Thermal Properties
3.5. Vickers Hardness
3.6. Colour Characterisation
3.6.1. Colorimetry
3.6.2. UV–Visible Absorbance Spectroscopy
4. Conclusions
- -
- Producing FeS amber glass proved far more complex than Fe-Mn amber. While Fe-Mn chromophores were easier to work with, they resulted in very dark colours, making it difficult to achieve softer, lighter amber colours.
- -
- The percentage of SO3 and its volatility or complexation is critical. WDXRF analysis showed that samples with higher SO3 content tended to yield colourless glass. The method of sulphur addition also proved significant, with sulphur acting as expected, and producing the amber colour only when combined with sodium.
- -
- Samples coloured with Fe-Mn (NP3 a and b) exhibited the lowest Tg, though all samples had high softening points.
- -
- Vickers hardness tests showed that the samples were quite hard, with values approaching those of borosilicate glass. However, samples with higher calcium oxide and lower alumina oxide content were slightly less hard.
- -
- Colorimetry results indicated that most amber samples skewed toward yellow and red, which is consistent with desired amber hues. While FeO3S is responsible for amber coloration, some UV–Vis spectra suggested the presence of Fe²⁺.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, M.; Barrulas, P.; Arruda, A.M.; Dias, L.; Barbosa, R.; Vandenabeele, P.; Mirão, J. An insight into the provenance of the Phoenician-Punic glass beads of the necropolis of Vinha das Caliças (Beja, Portugal). Archaeol. Anthr. Sci. 2021, 13, 149. [Google Scholar] [CrossRef]
- Navarro, J.M.F. El Vidrio, 3rd ed.; CSIC: Madrid, Spain, 2003. [Google Scholar]
- Paynter, S.; Jackson, C.M. Mellow yellow: An experiment in amber. J. Archaeol. Sci. Rep. 2017, 22, 568–576. [Google Scholar] [CrossRef]
- Ross, C.P.; Myers, D.D. Amber Glass—40 years of lessons learned. In 66th Conference on Glass Problems—Ceramic Engineering and Science Proceedings; Kriven, W.M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 129–137. [Google Scholar]
- Brown, D.; Douglas, R.W. Carbon-sulphur’ amber glass. Glass Technol. 1965, 6, 190–196. [Google Scholar]
- Weyl, W.A. Coloured Glasses; Dawson’s of Pall Mall: London, UK, 1959. [Google Scholar]
- Rakow Research Library CMOG. Batch Book (1964–1981) from Beaumont Glass Company. Available online: https://cmog.primo.exlibrisgroup.com/permalink/01CORNING_INST/1531shl/alma991452843504126 (accessed on 14 October 2024).
- Barosa, J.P. O ‘Arcanum’ de João Augusto de Castro e Augusto de Oliveira Guerra; Santos Barosa Museum: Marinha Grande, Portugal, 2000. [Google Scholar]
- Santos, C.R.; Vilarigues, M.; Dabas, P.; Coutinho, I.; Palomar, T. Reproducing crystal glass from three 18th-20th centuries Portuguese glass arcana. Int. J. Appl. Glas. Sci. 2020, 11, 743–755. [Google Scholar] [CrossRef]
- Lopes, F.; Lima, A.; de Matos, A.P.; Custódio, J.; Cagno, S.; Schalm, O.; Janssens, K. Characterization of 18th century Portuguese glass from Real Fábrica de Vidros de Coina. J. Archaeol. Sci. Rep. 2017, 14, 137–145. [Google Scholar] [CrossRef]
- De Matos, A.P.; Queiroz, C.; Lopes, F.; Ruivo, A.; Lima, A.; Vilarigues, M. Glass Colours at Marinha Grande by the Last Quarter of the 18th Century. In Proceedings of the Annual Meeting of the SGT, Washington, DC, USA, 4–8 October 2009; Available online: www.stainedglassconservation.co.uk (accessed on 14 October 2024).
- De Matos, A.P.; Lopes, F.; Vilarigues, M.; Lima, A.; Coutinho, I. A journey of the glass colours through three portuguese arcana. In Proceedings of the SGT Centenary Conference & ESG2016, Sheffield, UK, 4–8 September 2016. [Google Scholar]
- Valente, V. O Vidro em Portugal; Editora Portucalense: Porto, Portugal, 1950. [Google Scholar]
- Dussubieux, L.; Fenn, T.R.; Abraham, S.A.; Kanungo, A.K. Tracking ancient glass production in India: Elemental and isotopic analysis of raw materials. Archaeol. Anthr. Sci. 2022, 14, 226. [Google Scholar] [CrossRef]
- Govantes-Edwards, D.J.; Duckworth, C.N.; Córdoba, R. Recipes and experimentation? The transmission of glassmaking techniques in Medieval Iberia. J. Medieval Iber. Stud. 2016, 8, 176–195. [Google Scholar] [CrossRef]
- Santos, C.R. A Indústria dos Segredos: Os Arcanos de Vidro Portugueses dos Séculos XVIII-XX. Master’s Thesis, FCT NOVA, Caparica, Portugal, 2018. [Google Scholar]
- da, S. Barros, C.V. Real Fábrica de Vidros da Marinha Grande: II Centenário 1769–1969; Edições Magno: Leiria, Portugal, 1969. [Google Scholar]
- Vilarigues, M.; Ruivo, A.; Hagendijk, T.; Bandiera, M.; Coutinho, M.; Alves, L.; Dupré, S. Red glass in Kunckels’ Ars Vitraria Experimentalis: The importance of temperature. Int. J. Appl. Glas. Sci. 2023, 14, 201–215. [Google Scholar] [CrossRef]
- Gherardi, F.; Hole, C.; Campbell, E.; Cotte, M.; Tyson, R.; Paynter, S. Unravelling the role of iron and manganese oxides in colouring Late Antique glass by micro-XANES and micro-XRF spectroscopies. J. Phys. Photonics 2024, 6, 025001. [Google Scholar] [CrossRef]
- Bandiera, M. Technological Study and Chemical-Archaeometric Characterization of Roman Opaque Red Glass from Opus Sectile Decoration in the Lucius Verus Villa, 2nd Century AD. Ph.D. Thesis, NOVA School of Science and Technology, Caparica, Portugal, 2021. [Google Scholar]
- Coutinho, I.; Medici, T.; Gratuze, B.; Ruivo, A.; Dinis, P.; Lima, A.; Vilarigues, M. Sand and Pebbles: The Study of Portuguese Raw Materials for Provenance Archaeological Glass. Minerals 2022, 12, 193. [Google Scholar] [CrossRef]
- Jackson, C.M.; Paynter, S.; Nenna, M.-D.; Degryse, P. Glassmaking using natron from el-Barnugi (Egypt); Pliny and the Roman glass industry. Archaeol. Anthr. Sci. 2018, 10, 1179–1191. [Google Scholar] [CrossRef]
- Dungworth, D. Glass-ceramic reactions in some post-medieval crucibles: An instrumental analysis study of archaeological samples. Glass Technol. Eur. J. Glass Sci. Technol. Part A 2008, 49, 157–167. [Google Scholar]
- Shelby, J.E. Introduction to Glass Science and Technology, 2nd ed.; The Royal Society of Chemistry: London, UK, 2005. [Google Scholar]
- Barlet, M.; Delaye, J.-M.; Charpentier, T.; Gennisson, M.; Bonamy, D.; Rouxel, T.; Rountree, C.L. Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. J. Non-Cryst. Solids 2015, 417–418, 66–79. [Google Scholar] [CrossRef]
- Hand, R.J.; Tadjiev, D.R. Mechanical properties of silicate glasses as a function of composition. J. Non-Cryst. Solids 2010, 356, 2417–2423. [Google Scholar] [CrossRef]
- ABabini, A.; Green, P.; George, S.; Hardeberg, J.Y. Comparison of Hyperspectral Imaging and Fiber-Optic Reflectance Spectroscopy for Reflectance and Transmittance Measurements of Colored Glass. Heritage 2022, 5, 1401–1418. [Google Scholar] [CrossRef]
NP3 | C98 | G92 | |||
---|---|---|---|---|---|
Pebbles | 100 | SiO3 S | 200–100 | Sand | 30 |
Sand | - | NaOCO2 | 100–44 | Lime | 3.60 |
Feldspar | 60 | CaOCO2 | 72–30 | Soda | 15 |
Borax | 26 | Sulphur | 2.8–1.4 | Flour | 1.5 |
Soda | 12 | Sulphur | 0.200 | ||
Lime | 2 | ||||
Dolomite | 8 | G192 | |||
Boric acid | 6 | Sand | 287.500 | ||
Barite | - | Soda | 113.410 | G130 | |
Zinc oxide | 4 | Lime | 34.000 | Sand | 150 |
Nitrate | 4 | Borax | 1.138 | Soda | 66 |
Manganese | 11 | Sulphur | 0.275 | Lime | 18 |
Iron oxide | 13 | Flour | 1.900 | Sulphur | 0.200 |
Fluor-spar | 1 | Boric acid | 3.980 | Charcoal | 0.950 |
Arsenic | 0.300 | NaCl | 3.300 | Boric acid | 2 |
ID Recipe | Version | Main Recipe | Fe/Mn and Reducing Compounds (wt.%) | Reference |
---|---|---|---|---|
NP3 | a | Original recipe | Original amount Fe-Mn | - |
b | Original recipe | Half amount of Fe-Mn | - | |
G92 | Original recipe | 0.057% Fe | Historical objects | |
G130 | Original recipe | 0.057% Fe | Historical objects | |
G192 | Original recipe | 0.057% Fe | Historical objects | |
C98 | a | Original recipe | 0.008% Fe | [17] |
b | Original recipe | 0.2% Fe | [3] | |
c | Original recipe | 0.2% Fe + 10% charcoal | [3] | |
d1 | Natron as sulphur source | 0.1% Fe + 20% charcoal | [3] | |
d2 | = | = | [3] | |
d3 | = | = | [3] | |
e1 | Natron as sulphur source | 0.2% Fe + 20% charcoal | [3] | |
e2 | = | = | [3] | |
e3 | = | = | [3] | |
f | = | 0.2% Fe + 30% charcoal | [3] | |
g | Double amount of e1 | 0.2% Fe + 20% charcoal | [3] | |
h | Natron as sulphur source | 0.2% Fe + 10% charcoal | [3] | |
i | Natron as sulphur source | 0.1% Fe + 10% charcoal | [3] | |
j | Natron as sulphur source | 0.05% Fe + 20% charcoal | [3] | |
k | Original recipe | Fe-Mn from NP3a | - | |
l | Natron as sulphur source | 0.15% Fe + 20% charcoal | [3] |
CaCO3 | CaMg(CO3)2 | Charcoal | Fe2O3 | Flour | H3BO3 | MnO2 | Na2[B4O5(OH)4]·8H2O | Na2CO3 | Na2SO4 | NaAlSi3O8 | NaCl | NaHCO3 | NaNO3 | SiO2 | S | ZnO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP3 a | 0.403 | 1.623 | 2.641 | 1.218 | 2.237 | 5.284 | 2.436 | 12.197 | 0.816 | 20.327 | 0.811 | ||||||
NP3 b | 0.41 | 1.625 | 1.1329 | 1.225 | 1.112 | 5.287 | 2.443 | 12.193 | 0.816 | 20.329 | 0.815 | ||||||
G92 | 3.578 | 0.022 | 1.495 | 14.909 | 29.834 | 0.199 | |||||||||||
G130 | 3.794 | 0.202 | 0.017 | 0.421 | 13.935 | 31.604 | 0.043 | ||||||||||
G192 | 3.815 | 0.023 | 0.213 | 0.449 | 0.132 | 12.726 | 0.374 | 32.252 | 0.033 | ||||||||
C98 a | 9.615 | 0.002 | 13.348 | 26.678 | 0.374 | ||||||||||||
C98 b | 9.603 | 0.101 | 13.343 | 26.679 | 0.374 | ||||||||||||
C98 c | 9.605 | 5.014 | 0.1 | 13.344 | 26.684 | 0.376 | |||||||||||
C98 d1 | 10.348 | 10 | 0.05 | 4.765 | 4.765 | 6.354 | 23.767 | ||||||||||
C98 d2 | 8.874 | 10.002 | 0.052 | 4.943 | 4.942 | 6.59 | 24.654 | ||||||||||
C98d3 | 8.878 | 10.026 | 0.051 | 4.938 | 4.939 | 6.587 | 24.65 | ||||||||||
C98 e1 | 10.348 | 10 | 0.1 | 4.765 | 4.765 | 6.354 | 23.767 | ||||||||||
C98 e2 | 8.875 | 10.005 | 0.102 | 4.941 | 4.941 | 6.592 | 24.651 | ||||||||||
C98 e3 | 8.876 | 10.008 | 0.1 | 4.943 | 4.941 | 6.59 | 24.663 | ||||||||||
C98 f | 10.348 | 15 | 0.1 | 4.765 | 4.765 | 6.354 | 23.767 | ||||||||||
C98 g | 20.696 | 20 | 0.2 | 9.53 | 9.53 | 12.708 | 47.534 | ||||||||||
C98 h1 | |||||||||||||||||
C98 h2 | 8.875 | 5.003 | 0.105 | 4.943 | 4.945 | 6.593 | 24.657 | ||||||||||
C98 i | 8.874 | 5.001 | 0.049 | 4.941 | 4.943 | 6.592 | 24.653 | ||||||||||
C98 j | 8.873 | 10.006 | 0.027 | 4.945 | 4.945 | 6.593 | 24.656 | ||||||||||
C98 k | 9.605 | 3.468 | 2.934 | 13.339 | 26.673 | ||||||||||||
C98 l | 8.877 | 10.004 | 0.076 | 4.944 | 4.943 | 6.591 | 24.653 |
SAMPLE | Sum Before Normalization | Na2O | MgO | Al2O3 | SiO2 | SO3 | Cl | K2O | CaO | MnO | Fe2O3 | ZnO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NP3 a | 80.1 | 8.07 | 0.95 | 11.0 | 64.5 | - | - | 0.20 | 2.11 | 4.27 | 6.85 | 1.89 |
NP3 b | 74.3 | 8.24 | 0.89 | 13.0 | 67 | - | - | 0.21 | 2.34 | 2.25 | 3.92 | 2 |
G92 | 73.5 | 18.4 | - | 0.8 | 73.9 | 0.91 | - | 0.05 | 5.83 | - | 0.07 | 0.01 |
G130 | 69.7 | 16.5 | - | 0.2 | 76.5 | 0.18 | - | 0.06 | 6.44 | - | 0.06 | 0.01 |
G192 | 74.4 | 16.3 | - | 0.9 | 76.1 | 0.1 | 0.48 | 0.05 | 6.05 | - | 0.06 | - |
C98 a | 81.2 | 16.8 | - | 0.6 | 66.4 | 0.85 | - | 0.03 | 15.2 | - | - | - |
C98 b | 81.1 | 16.9 | 0.27 | 1.27 | 65.3 | 0.50 | - | 0.02 | 15.4 | - | 0.32 | - |
C98 c | 78.2 | 15.3 | - | 1.4 | 66.1 | 0.76 | - | 0.13 | 16 | - | 0.27 | - |
C98 d1 | 84.4 | 11.1 | 0.19 | 2.24 | 66.6 | 0.08 | 0.29 | 0.12 | 19.1 | - | 0.18 | 0.01 |
C98 d2 | 80.9 | 9.96 | 0.14 | 6.45 | 66.4 | 0.08 | 0.18 | 0.09 | 16.5 | - | 0.18 | 0.01 |
C98 d3 | 80.4 | 8.54 | 0.22 | 0.84 | 70 | 0.23 | 0.51 | 0.11 | 19.3 | - | 0.19 | - |
C98 e1 | 58.4 | 9.91 | 0.2 | 1.88 | 66.3 | 0.05 | 0.32 | 0.13 | 20.8 | - | 0.41 | 0.01 |
C98 e2 | 76.3 | 11.4 | 0.18 | 2.16 | 68.2 | - | 0.22 | 0.13 | 17.3 | - | 0.36 | 0.01 |
C98 e3 | 74.3 | 9.99 | - | 0.63 | 69.9 | 0.24 | 0.56 | 0.12 | 18.1 | - | 0.37 | - |
C98 f | 68.2 | 10.1 | 0.18 | 2.75 | 64.6 | 1.07 | 0.63 | 0.19 | 20.1 | - | 0.37 | 0.01 |
C98 g | 82.5 | 8.62 | 0.19 | 5.17 | 67.5 | 0.37 | 0.94 | 0.44 | 16 | - | 0.64 | 0.01 |
C98 h | 86 | 11.8 | - | 1.28 | 69.9 | 0.31 | 0.57 | 0.05 | 15.7 | - | 0.34 | - |
C98 i | 71.5 | 9.81 | - | 3.24 | 67.6 | 0.17 | 0.4 | 0.09 | 18.5 | - | 0.19 | 0.01 |
C98 j | 82.7 | 10.4 | 0.14 | 4.55 | 67.8 | - | 0.18 | 0.12 | 16.6 | - | 0.11 | 0.01 |
C98 k | 81.1 | 13.1 | - | 3.57 | 54.4 | - | - | 0.08 | 13.5 | 5.8 | 9.47 | 0.02 |
C98 l | 83.3 | 10 | - | 1.71 | 69.1 | 0.3 | 0.36 | 0.12 | 18.1 | - | 0.22 | 0.01 |
C98 d1 | C98 d2 | C98 e1 | C98 f | C98 k | NP3 a | NP3 b | |
---|---|---|---|---|---|---|---|
Tg (onset) DSC (°C) | 608.9 | 617.4 | 607.3 | - | - | 582.9 | 583.0 |
Tg (onset) DIL (°C) | 608.7 | 623.3 | 611.7 | 605.1 | 545.9 | 580.7 | 593.4 |
Td (°C) | 642.9 | 663.6 | 649.3 | 650 | 583.6 | 643.9 | 659 |
αL (50–500 °C) × 10−6 (°C−1) | 9.7 | 9.6 | 9.5 | 10.6 | 12.2 | 7.1 | 7.0 |
C98 d1 | C98 d2 | C98 e1 | C98 e2 | C98 j | C98 j | C98 k | NP3 a | NP3 b | |
---|---|---|---|---|---|---|---|---|---|
HV 0.5 | 565 | 574 | 590 | 574 | 627 | 567 | 605 | 568 | 655 |
STDEV | 19.8 | 8.8 | 15.2 | 4.4 | 15.4 | 8.1 | 22.7 | 14.5 | 16.2 |
Mean percentage | 3.51% | 1.53% | 2.63% | 0.77% | 2.46% | 1.41% | 3.75% | 2.55% | 2.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis Santos, C.; Ruivo, A.; Carneiro, A.; Veiga, J.P.; Palomar, T.; Coutinho, I. Amber “Alchemy”: Recreating and Investigating Yellow Glass Formulations. Materials 2024, 17, 5699. https://doi.org/10.3390/ma17235699
Reis Santos C, Ruivo A, Carneiro A, Veiga JP, Palomar T, Coutinho I. Amber “Alchemy”: Recreating and Investigating Yellow Glass Formulations. Materials. 2024; 17(23):5699. https://doi.org/10.3390/ma17235699
Chicago/Turabian StyleReis Santos, Catarina, Andreia Ruivo, Ana Carneiro, João Pedro Veiga, Teresa Palomar, and Inês Coutinho. 2024. "Amber “Alchemy”: Recreating and Investigating Yellow Glass Formulations" Materials 17, no. 23: 5699. https://doi.org/10.3390/ma17235699
APA StyleReis Santos, C., Ruivo, A., Carneiro, A., Veiga, J. P., Palomar, T., & Coutinho, I. (2024). Amber “Alchemy”: Recreating and Investigating Yellow Glass Formulations. Materials, 17(23), 5699. https://doi.org/10.3390/ma17235699