A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation
Abstract
:1. Introduction
2. KQS and CAQS Mechanisms
3. MOFs
3.1. KQS for Hydrogen Isotopes by MOFs
3.2. CAQS for Hydrogen Isotopes by MOFs
3.3. The Synergistic Effect of KQS and CAQS for Hydrogen Isotopes by MOFs
3.4. Search for Comfortable MOFs by Machine Learning
4. Zeolites
4.1. KQS for Hydrogen Isotopes by Zeolites
4.2. CAQS for Hydrogen Isotopes by Zeolites
5. COFs and POCs
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glugla, M.; Lässer, R.; Dörr, L.; Murdoch, D.K.; Haange, R.; Yoshida, H. The inner deuterium/tritium fuel cycle of ITER. Fusion Eng. Des. 2003, 69, 39–43. [Google Scholar] [CrossRef]
- Ye, L.; Luo, D.; Tang, T.; Yang, W.; Zhao, P. Process simulation for hydrogen/deuterium exchange in a packed column. Int. J. Hydrogen Energy 2014, 39, 6604–6609. [Google Scholar] [CrossRef]
- Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 2000, 288, 1604–1607. [Google Scholar] [CrossRef]
- BÜLdt, G.; Gally, H.U.; Seelig, A.; Seelig, J.; Zaccai, G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 1978, 271, 182–184. [Google Scholar] [CrossRef]
- Machida, A.; Saitoh, H.; Sugimoto, H.; Hattori, T.; Sano-Furukawa, A.; Endo, N.; Katayama, Y.; Iizuka, R.; Sato, T.; Matsuo, M.; et al. Site occupancy of interstitial deuterium atoms in face-centred cubic iron. Nat. Commun. 2014, 5, 5063. [Google Scholar] [CrossRef]
- Li, W.; Rabeah, J.; Bourriquen, F.; Yang, D.; Kreyenschulte, C.; Rockstroh, N.; Lund, H.; Bartling, S.; Surkus, A.-E.; Junge, K.; et al. Scalable and selective deuteration of (hetero)arenes. Nat. Chem. 2022, 14, 334–341. [Google Scholar] [CrossRef]
- Povinec, P.P.; Bokuniewicz, H.; Burnett, W.C.; Cable, J.; Charette, M.; Comanducci, J.F.; Kontar, E.A.; Moore, W.S.; Oberdorfer, J.A.; de Oliveira, J.; et al. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA–UNESCO SGD project. J. Environ. Radioact. 2008, 99, 1596–1610. [Google Scholar] [CrossRef]
- Cai, J.; Xing, Y.; Zhao, X. Quantum sieving: Feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv. 2012, 2, 8579–8586. [Google Scholar] [CrossRef]
- Rae, H. Selecting Heavy Water Processes; ACS Publications: Washington, DC, USA, 1978. [Google Scholar]
- Andreev, B.M. Separation of hydrogen isotopes in H2O-H2S system. Sep. Sci. Technol. 2001, 36, 1949–1989. [Google Scholar]
- Shere, L.; Hill, A.K.; Mays, T.J.; Lawless, R.; Brown, R.; Perera, S.P. The next generation of low tritium hydrogen isotope separation technologies for future fusion power plants. Int. J. Hydrogen Energy 2024, 55, 319–338. [Google Scholar] [CrossRef]
- Beenakker, J.J.M.; Borman, V.D.; Krylov, S.Y. Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett. 1995, 232, 379–382. [Google Scholar] [CrossRef]
- Oh, H.; Hirscher, M. Quantum Sieving for Separation of Hydrogen Isotopes Using MOFs. Eur. J. Inorg. Chem. 2016, 2016, 4278–4289. [Google Scholar] [CrossRef]
- Kim, J.Y.; Zhang, L.; Balderas-Xicohténcatl, R.; Park, J.; Hirscher, M.; Moon, H.R.; Oh, H. Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53 (Al). J. Am. Chem. Soc. 2017, 139, 17743–17746. [Google Scholar] [CrossRef]
- FitzGerald, S.A.; Pierce, C.J.; Rowsell, J.L.; Bloch, E.D.; Mason, J.A. Highly selective quantum sieving of D2 from H2 by a metal–organic framework as determined by gas manometry and infrared spectroscopy. J. Am. Chem. Soc. 2013, 135, 9458–9464. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S.; Kim, H.; Le Tacon, M.; Daemen, L.L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu (I) sites. Nat. Commun. 2017, 8, 14496. [Google Scholar] [CrossRef]
- Kim, J.Y.; Balderas-Xicohténcatl, R.; Zhang, L.; Kang, S.G.; Hirscher, M.; Oh, H.; Moon, H.R. Exploiting Diffusion Barrier and Chemical Affinity of Metal–Organic Frameworks for Efficient Hydrogen Isotope Separation. J. Am. Chem. Soc. 2017, 139, 15135–15141. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Liu, H.; Wang, Z.; Gao, X.; Zhang, X.; Guo, Y.; Yan, M.; Zhang, S.; Sun, L. Palladium-assisted transfer of graphene for efficient hydrogen isotope separation. ACS Appl. Nano Mater. 2023, 6, 12322–12329. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Little, M.A.; Kapil, V.; Ceriotti, M.; Yang, S.; Ding, L.; Holden, D.L.; Balderas-Xicohténcatl, R.; He, D. Barely porous organic cages for hydrogen isotope separation. Science 2019, 366, 613–620. [Google Scholar] [CrossRef]
- Contescu, C.I.; Zhang, H.; Olsen, R.J.; Mamontov, E.; Morris, J.R.; Gallego, N.C. Isotope Effect on Adsorbed Quantum Phases: Diffusion of H2 and D2 in Nanoporous Carbon. Phys. Rev. Lett. 2013, 110, 236102. [Google Scholar] [CrossRef]
- Kumar, N.; Mukherjee, S.; Harvey-Reid, N.C.; Bezrukov, A.A.; Tan, K.; Martins, V.; Vandichel, M.; Pham, T.; van Wyk, L.M.; Oyekan, K.; et al. Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem 2021, 7, 3085–3098. [Google Scholar] [CrossRef]
- Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous Metal-Organic Framework Materials for Gas Separation. Chem 2020, 6, 337–363. [Google Scholar] [CrossRef]
- Hu, X.; Ding, F.; Xiong, R.; An, Y.; Feng, X.; Song, J.; Zhou, L.; Li, P.; Chen, C. Highly effective H2/D2 separation within the stable Cu (I) Cu (II)-BTC: The effect of Cu (I) structure on quantum sieving. ACS Appl. Mater. Interfaces 2023, 15, 3941–3952. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhao, X.; Putkham, A.; Hong, K.; Lobkovsky, E.B.; Hurtado, E.J.; Fletcher, A.J.; Thomas, K.M. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal−Organic Framework Material. J. Am. Chem. Soc. 2008, 130, 6411–6423. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Park, K.S.; Kalidindi, S.B.; Fischer, R.A.; Hirscher, M. Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: An experimental study on the correlation between effective quantum sieving and pore size. J. Mater. Chem. A 2013, 1, 3244–3248. [Google Scholar] [CrossRef]
- Mondal, S.S.; Kreuzer, A.; Behrens, K.; Schütz, G.; Holdt, H.-J.; Hirscher, M. Systematic Experimental Study on Quantum Sieving of Hydrogen Isotopes in Metal-Amide-Imidazolate Frameworks with narrow 1-D Channels. ChemPhysChem 2019, 20, 1311–1315. [Google Scholar] [CrossRef]
- Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704. [Google Scholar] [CrossRef]
- Tanaka, D.; Nakagawa, K.; Higuchi, M.; Horike, S.; Kubota, Y.; Kobayashi, T.C.; Takata, M.; Kitagawa, S. Kinetic Gate-Opening Process in a Flexible Porous Coordination Polymer. Angew. Chem. Int. Ed. 2008, 47, 3914–3918. [Google Scholar] [CrossRef]
- Teufel, J.; Oh, H.; Hirscher, M.; Wahiduzzaman, M.; Zhechkov, L.; Kuc, A.; Heine, T.; Denysenko, D.; Volkmer, D. MFU-4—A Metal-Organic Framework for Highly Effective H2/D2 Separation. Adv. Mater. 2013, 25, 635–639. [Google Scholar] [CrossRef]
- Bondorf, L.; Fiorio, J.L.; Bon, V.; Zhang, L.; Maliuta, M.; Ehrling, S.; Senkovska, I.; Evans, J.D.; Joswig, J.-O.; Kaskel, S.; et al. Isotope-selective pore opening in a flexible metal-organic framework. Sci. Adv. 2022, 8, eabn7035. [Google Scholar] [CrossRef]
- Zhang, L.; Jee, S.; Park, J.; Jung, M.; Wallacher, D.; Franz, A.; Lee, W.; Yoon, M.; Choi, K.; Hirscher, M.; et al. Exploiting Dynamic Opening of Apertures in a Partially Fluorinated MOF for Enhancing H2 Desorption Temperature and Isotope Separation. J. Am. Chem. Soc. 2019, 141, 19850–19858. [Google Scholar] [CrossRef]
- Hulvey, Z.; Falcao, E.H.L.; Eckert, J.; Cheetham, A.K. Enhanced H2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn5(triazole)6(tetrafluoroterephthalate)2(H2O)2·4H2O. J. Mater. Chem. 2009, 19, 4307–4309. [Google Scholar] [CrossRef]
- Muhammad, R.; Jee, S.; Jung, M.; Park, J.; Kang, S.G.; Choi, K.M.; Oh, H. Exploiting the Specific Isotope-Selective Adsorption of Metal–Organic Framework for Hydrogen Isotope Separation. J. Am. Chem. Soc. 2021, 143, 8232–8236. [Google Scholar] [CrossRef] [PubMed]
- Kubas, G.J. Breaking the H2 marriage and reuniting the couple. Science 2006, 314, 1096–1097. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Savchenko, I.; Mavrandonakis, A.; Heine, T.; Hirscher, M. Highly Effective Hydrogen Isotope Separation in Nanoporous Metal–Organic Frameworks with Open Metal Sites: Direct Measurement and Theoretical Analysis. ACS Nano 2014, 8, 761–770. [Google Scholar] [CrossRef]
- Oh, H.; Kalidindi, S.B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R.A.; Hirscher, M. A Cryogenically Flexible Covalent Organic Framework for Efficient Hydrogen Isotope Separation by Quantum Sieving. Angew. Chem. Int. Ed. 2013, 52, 13219–13222. [Google Scholar] [CrossRef]
- Si, Y.; He, X.; Jiang, J.; Duan, Z.; Wang, W.; Yuan, D. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 2021, 14, 518–525. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, L.; Li, P.; Luo, W.; Tang, T.; Ao, B.; Sang, G.; Chen, C.; Yan, X.; Chen, J.; et al. Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature. Chem. Eng. J. 2020, 391, 123485. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X.; Liu, D.; Fu, X.; Yang, Q. High-Throughput Computational Exploration of MOFs with Open Cu Sites for Adsorptive Separation of Hydrogen Isotopes. ACS Appl. Mater. Interfaces 2022, 14, 24980–24991. [Google Scholar] [CrossRef]
- Zhou, M.; Vassallo, A.; Wu, J. Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling. J. Membr. Sci. 2020, 598, 117675. [Google Scholar] [CrossRef]
- Gao, L.G.; Zhang, R.M.; Xu, X.; Truhlar, D.G. Quantum Effects on H2 Diffusion in Zeolite RHO: Inverse Kinetic Isotope Effect for Sieving. J. Am. Chem. Soc. 2019, 141, 13635–13642. [Google Scholar] [CrossRef]
- Chu, X.-Z.; Cheng, Z.-P.; Xiang, X.-X.; Xu, J.-M.; Zhao, Y.-J.; Zhang, W.-G.; Lv, J.-S.; Zhou, Y.-P.; Zhou, L.; Moon, D.-K.; et al. Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X. Int. J. Hydrogen Energy 2014, 39, 4437–4446. [Google Scholar] [CrossRef]
- Kotoh, K.; Takashima, S.; Sakamoto, T.; Tsuge, T. Multi-component behaviors of hydrogen isotopes adsorbed on synthetic zeolites 4A and 5A at 77.4K and 87.3K. Fusion Eng. Des. 2010, 85, 1928–1934. [Google Scholar] [CrossRef]
- Kotoh, K.; Kimura, K.; Nakamura, Y.; Kudo, K. Hydrogen Isotope Separation Using Molecular Sieve of Synthetic Zeolite 3A. Fusion Sci. Technol. 2008, 54, 419–422. [Google Scholar] [CrossRef]
- Niimura, S.; Fujimori, T.; Minami, D.; Hattori, Y.; Abrams, L.; Corbin, D.; Hata, K.; Kaneko, K. Dynamic Quantum Molecular Sieving Separation of D2 from H2–D2 Mixture with Nanoporous Materials. J. Am. Chem. Soc. 2012, 134, 18483–18486. [Google Scholar] [CrossRef]
- Xiong, R.; Balderas Xicohténcatl, R.; Zhang, L.; Li, P.; Yao, Y.; Sang, G.; Chen, C.; Tang, T.; Luo, D.; Hirscher, M. Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K. Microporous Mesoporous Mater. 2018, 264, 22–27. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Pujol, Q.; Dirand, C.; Herbst, F.; Macaud, M.; Bellat, J.-P. D2 and H2 adsorption capacity and selectivity in CHA zeolites: Effect of Si/Al ratio, cationic composition and temperature. Microporous Mesoporous Mater. 2020, 302, 110217. [Google Scholar] [CrossRef]
- Kawamura, Y.; Iwai, Y.; Munakata, K.; Yamanishi, T. Effect of cation exchange on hydrogen adsorption property of mordenite for isotope separation. J. Nucl. Mater. 2013, 442, S455–S460. [Google Scholar] [CrossRef]
- Giraudet, M.; Bezverkhyy, I.; Weber, G.; Dirand, C.; Macaud, M.; Bellat, J.-P. D2/H2 adsorption selectivity on FAU zeolites at 77.4 K: Influence of Si/Al ratio and cationic composition. Microporous Mesoporous Mater. 2018, 270, 211–219. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Boyer, V.; Cabaud, C.; Bellat, J.-P. High Efficiency of Na- and Ca-Exchanged Chabazites in D2/H2 Separation by Quantum Sieving. ACS Appl. Mater. Interfaces 2022, 14, 52738–52744. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Giraudet, M.; Dirand, C.; Macaud, M.; Bellat, J.-P. Enhancement of D2/H2 Selectivity in Zeolite A through Partial Na–K Exchange: Single-Gas and Coadsorption Studies at 45–77 K. J. Phys. Chem. C 2020, 124, 24756–24764. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.; Gai, D.; Shi, Y.; Feng, X.; Li, P.; An, Y.; Zou, X. Oxygenic iron clusters in ZSM-5 zeolite promote quantum sieving of gaseous hydrogen isotopes. Sci. China Chem. 2024, 67, 1242–1249. [Google Scholar] [CrossRef]
- Zhang, L.; Wulf, T.; Baum, F.; Schmidt, W.; Heine, T.; Hirscher, M. Chemical Affinity of Ag-Exchanged Zeolites for Efficient Hydrogen Isotope Separation. Inorg. Chem. 2022, 61, 9413–9420. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Chen, J.; Zhang, L.; Li, P.; Yan, X.; Song, Y.; Luo, W.; Tang, T.; Sang, G.; Hirscher, M. Hydrogen isotopes separation in Ag(I) exchanged ZSM-5 zeolite through strong chemical affinity quantum sieving. Microporous Mesoporous Mater. 2021, 313, 110820. [Google Scholar] [CrossRef]
- Kubas, G.J.; Ryan, R.R.; Swanson, B.I.; Vergamini, P.J.; Wasserman, H.J. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J. Am. Chem. Soc. 1984, 106, 451–452. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.; Das, S.; Zhang, S.; Zhang, X.; Xiao, H.; Li, J.; Ben, T.; Jiang, L. Ultra-efficient deuterium separation under ambient conditions by a crystalline porous organic framework-Pd nanoparticle hybrid. Matter 2024, 7, 2460–2472. [Google Scholar] [CrossRef]
Materials | Diameter of Hole/Å | Pressure/Bar | Temperature/K | Selectivity |
---|---|---|---|---|
(Zn3(BDC)3 [Cu(Pyen)]) | 5.6 × 12.0 | 1 | 77.3 | 1.38 |
CuBOTf | 2.0, 8.7 | 0.01 | 40/77 | 5.8/1.2 |
USTC-700 | 3.7 × 7.2 | 0.01 | 30 | 7.3 |
MFU-4 | 3.88/2.52 | 0.01 | 40/50 | 6.9/5.8 |
MIL-53(Al) | 8.5 × 8.5 | 0.01 | 40 | 10.5 |
CoFa | 4.0 × 5.0 | 1 | 25 | 44 |
Cu(I)-MFU-4/ | 9.1 | 0.01 | 90 | 7.1 |
CPO-27-Co | 10 | 0.03 | 60 | 11.8 |
Cu(I)Cu(II)-BTC | 6.2 | 1 | 25 | 37.9 |
MOF-74-IM | N.A. | 0.01 | 77 | 26 |
UiO-67_Be | N.A. | N.A. | 77 | 49.4 |
FMOFCu | 3.6 | 0.01 | 25/70 | 14/4 |
Co2(m-dobdc) | 9.8 | 0.01 | 77 | 4.3 |
Co(pyz) [Pd (CN)4] | 4.0 × 3.9 | N.A. | 25 | 21.7 |
MOF-303 | N.A. | 1 | 25 | 21.6 |
DUT-8(Ni) | N.A. | 0.8 | 23.3 | 11.6 |
Co-MOF-74 | 11 | 0.01 | 77 | 2 |
FJI-Y11 | 8.4 | 1 | 77 | 1.2 |
Ni2(olz) | 22 | 1 × 10−5 | 77 | 5.6 |
Ni2Cl2BBTA | N.A. | 0.01 | 77 | 4.5 |
Compound | Pore Size (Å) | Uptake Amount (mmol/g) | Conditions | Selectivity (D2/H2) |
---|---|---|---|---|
Na-CHA | 3.8 | 10.2 | 38 K/550 mbar | 25.8 |
Ca-CHA | 3.8 | 12.2 | 38 K/550 mbar | 18.3 |
10X | 9 | N.A. | 77 K/314 mbar | 1.33 |
Y | 6–7 | N.A. | 77 K/314 mbar | 1.52 |
RHO | 3.6 | 0.43 | 77 K/5 mbar | 2.4 |
MS5A | 5 | 0.78 | 77 K/5 mbar | 2.6 |
MS13X | 10 | 0.61 | 77 K/5 mbar | 3.1 |
H-ZSM-11 | 5.5 | N.A. | 77 K/5 mbar | 1.8 |
AVL | 3.55 | N.A. | 25 K/1 mbar | 190 |
BCT | 2.55 | N.A. | 25 K/1 mbar | 50,000 |
MVY | 2.94 | N.A. | 25 K/1 mbar | 26.9 |
Compound | H2 Adsorption Enthalpy (ΔH) kJ/mol | D2 Adsorption Enthalpy (ΔH) kJ/mol | Uptake Amount (mmol/g) | Conditions | Selectivity (D2/H2) |
---|---|---|---|---|---|
Cu(I)-ZSM-5 | N.A. | N.A. | N.A. | 100 K/10 mbar | 24.9 |
Cu(I)-MOR | N.A. | N.A. | N.A. | 120 K/10 mbar | 18.5 |
AgY | −14.5 | −12.7 | 1.3 | 77 K/10 mbar | 9.12 |
Ag(I)-ZSM-5 | −25.0 | −22.5 | 0.09 | 70 K/10 mbar | 9.1 |
MgX | −6 | −3 | N.A. | 77 K/3.5 mbar | 5.6 |
5A | −3.29 | −2.30 | 8 | 30 K/50 mbar | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xu, L.; Li, J.; He, D.; Wang, J. A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation. Materials 2024, 17, 5708. https://doi.org/10.3390/ma17235708
Zhu H, Xu L, Li J, He D, Wang J. A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation. Materials. 2024; 17(23):5708. https://doi.org/10.3390/ma17235708
Chicago/Turabian StyleZhu, Huafeng, Liangbo Xu, Jia Li, Duanwei He, and Jingchuan Wang. 2024. "A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation" Materials 17, no. 23: 5708. https://doi.org/10.3390/ma17235708
APA StyleZhu, H., Xu, L., Li, J., He, D., & Wang, J. (2024). A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation. Materials, 17(23), 5708. https://doi.org/10.3390/ma17235708