Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Studies
2.2. Surface Properties Studies
2.3. Mechanical Studies
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Ning, C.; Zhou, T.; Liu, X.; Yeung, K.W.K.; Zhang, T.; Xu, Z.; Wang, X.; Wu, S.; Chu, P.K. Polymeric Nanoarchitectures on Ti-Based Implants for Antibacterial Applications. ACS Appl. Mater. Interfaces 2014, 6, 17323–17345. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, M.; Li, X.; Liu, X.; Ma, F.; Wu, S.; Yeung, K.W.K.; Han, Y.; Chu, P.K. Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants. ACS Appl. Mater. Interfaces 2016, 8, 16584–16594. [Google Scholar] [CrossRef] [PubMed]
- Nilawar, S.; Uddin, M.; Chatterjee, K. Surface Engineering of Biodegradable Implants: Emerging Trends in Bioactive Ceramic Coatings and Mechanical Treatments. Mater. Adv. 2021, 2, 7820–7841. [Google Scholar] [CrossRef]
- Annur, D.; Kartika, I.; Supriadi, S.; Suharno, B. Titanium and Titanium Based Alloy Prepared by Spark Plasma Sintering Method for Biomedical Implant Applications—A Review. Mater. Res. Express 2021, 8, 190–210. [Google Scholar] [CrossRef]
- Harrysson, O.L.A.; Marcellin-Little, D.J.; Horn, T.J. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery. JOM 2015, 67, 647–654. [Google Scholar] [CrossRef]
- Kazek-Kęsik, A.; Maciak, W.; Kosczielny, J.; Krok-Borkowicz, M.; Reczyńska-Kolman, K.; Student, S.; Śmiga-Matuszowicz, M.; Pamuła, E.; Simka, W. Bacteriostatic Coatings Formed on Titanium Dental Implants for Veterinary Applications. Surf. Coat. Technol. 2023, 464, 129511. [Google Scholar] [CrossRef]
- Boudrieau, R.J.; Mccarthy, R.J.; Sprecher, C.M.; Künzler, T.P.; Keating, J.H.; Milz, S. Material Properties of and Tissue Reaction to the Slocum TPLO Plate; American Journal of Veterinary Research: Schaumburg, IL, USA, 2006; Volume 67. [Google Scholar]
- Verma, R.P. Titanium Based Biomaterial for Bone Implants: A Mini Review. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 26, pp. 3148–3151. [Google Scholar]
- Grigoriev, S.; Sotova, C.; Vereschaka, A.; Uglov, V.; Cherenda, N. Modifying Coatings for Medical Implants Made of Titanium Alloys. Metals 2023, 13, 718. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Review Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 470–480. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive Manufacturing of Ti6Al4V Alloy: A Review. Mater. Des. 2019, 164, 8–12. [Google Scholar] [CrossRef]
- Cui, C.; Hu, B.M.; Zhao, L.; Liu, S. Titanium Alloy Production Technology, Market Prospects and Industry Development. Mater. Des. 2011, 32, 1684–1691. [Google Scholar] [CrossRef]
- Azmat, A.; Asrar, S.; Channa, I.A.; Ashfaq, J.; Ali Chandio, I.; Chandio, A.D.; Ali Shar, M.; AlSalhi, M.S.; Devanesan, S. Comparative Study of Biocompatible Titanium Alloys Containing Non-Toxic Elements for Orthopedic Implants. Crystals 2023, 13, 467. [Google Scholar] [CrossRef]
- Processing, M.; Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Badiceanu, M.; Anghel, S.; Mihailescu, N.; Visan, A.I.; Mihailescu, C.N.; Mihailescu, I.N. Coatings Functionalization via Laser versus Other Deposition Techniques for Medical Applications: A Comparative Review. Coatings 2022, 12, 71. [Google Scholar] [CrossRef]
- Moore, B.; Asadi, E.; Lewis, G. Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review. Adv. Mater. Sci. Eng. 2017, 2017, 5812907. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; Riba, C.R.; Athanasopoulou, C. A Decision Support System for Coating Selection Based on Fuzzy Logic and Multi-Criteria Decision Making. Expert Syst. Appl. 2009, 36, 10848–10853. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic Deposition of Biomaterials. J. R. Soc. Interface 2010, 7, S581–S613. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Ab, S.A.B.; Amirnordin, S.H.; Rahman, H.; Abdullah, H.Z.; Taib, H. Short Review: Electrophoretic Deposition (EPD) on Non-Conductive Substrate. Adv. Mater. Res. 2012, 488–489, 1358–1362. [Google Scholar] [CrossRef]
- Zhitomirsky, D.; Roether, J.A.; Boccaccini, A.R.; Zhitomirsky, I. Electrophoretic Deposition of Bioactive Glass/Polymer Composite Coatings with and without HA Nanoparticle Inclusions for Biomedical Applications. J. Mater. Process. Technol. 2009, 209, 1853–1860. [Google Scholar] [CrossRef]
- Zarbov, M.; Brandon, D.; Cohen, N.; Shemesh, L. Engineering Performance in Applied EPD: Problems and Solutions. J. Mater. Sci. 2006, 41, 8115–8122. [Google Scholar] [CrossRef]
- Moskalewicz, T. Wprowadzenie Do Osadzania Elektroforetycznego Powłok Polimerowych i Kompozytowych o Osnowie Polimerowej Na Podłożach Tytanowych; Wydawnictwo AGH: Kraków, Poland, 2022; ISBN 978-83-66723-59-5. [Google Scholar]
- Gotman, I.; Gutmanas, E.Y.; Hunter, G. Wear-Resistant Ceramic Films and Coatings; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; Volume 1, ISBN 9780080552941. [Google Scholar]
- Nirwan, V.P.; Filova, E.; Al-Kattan, A.; Kabashin, A.V.; Fahmi, A. Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (Tin) Nanoparticles for Tissue Engineering. Nanomaterials 2021, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, R.P.; Sierevelt, I.N.; Van Royen, B.J.; Nolte, P.A. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed Res. Int. 2015, 2015, 485975. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Quinn, J.; Hussain, I.; Carson, L.; Smith, G.C.; Lee, S. A Promising Laser Nitriding Method for the Design of next Generation Orthopaedic Implants: Cytotoxicity and Antibacterial Performance of Titanium Nitride (TiN) Wear Nano-Particles, and Enhanced Wear Properties of Laser-Nitrided Ti6Al4V Surfaces. Surf. Coat. Technol. 2021, 405, 126714. [Google Scholar] [CrossRef]
- Zelepukin, I.V.; Popov, A.A.; Shipunova, V.O.; Tikhonowski, G.V.; Mirkasymov, A.B.; Popova-Kuznetsova, E.A.; Klimentov, S.M.; Kabashin, A.V.; Deyev, S.M. Laser-Synthesized TiN Nanoparticles for Biomedical Applications: Evaluation of Safety, Biodistribution and Pharmacokinetics. Mater. Sci. Eng. C 2021, 120, 111717. [Google Scholar] [CrossRef]
- Popov, A.A.; Tselikov, G.; Dumas, N.; Berard, C.; Metwally, K.; Jones, N.; Al-kattan, A.; Larrat, B.; Braguer, D.; Mensah, S.; et al. Laser-Synthesized TiN Nanoparticles as Promising Plasmonic Alternative for Biomedical Applications. Sci. Rep. 2019, 9, 1194. [Google Scholar] [CrossRef]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current-Time Relationship in Electroosmotic Flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- PN-EN ISO 4624:2023-11; Paints and Varnishes—Pull-Off Test for Adhesion. Polish Committee for Standarization: Warsaw, Poland, 2023.
- Chang, Y.I.; Chang, P.K. The Role of Hydration Force on the Stability of the Suspension of Saccharomyces Cerevisiae—Application of the Extended DLVO Theory. Colloids Surfaces A Physicochem. Eng. Asp. 2002, 211, 67–77. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Wang, S.; Jiang, C.; Zhang, J. Relationship between the Zeta Potential and the Chemical Agglomeration Efficiency of Fine Particles in Flue Gas during Coal Combustion. Fuel 2018, 215, 756–765. [Google Scholar] [CrossRef]
- Conway, B.E. Modern Aspects of Electrochemistry No. 38; Kluwer Academic Publishers: New York, NY, USA, 2005; Volume 38, ISBN 0-306-48704-7. [Google Scholar]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Effects of Surface Treatment on Titanium Alloys Substrate by Acid Etching for Dental Implant. Mater. Sci. Forum 2015, 819, 347–352. [Google Scholar] [CrossRef]
- Korotin, D.M.; Bartkowski, S.; Kurmaev, E.Z.; Meumann, M.; Yakushina, E.B.; Valiev, R.Z.; Cholakh, S.O. Surface Characterization of Titanium Implants Treated in Hydrofluoric Acid. J. Biomater. Nanobiotechnol. 2012, 03, 87–91. [Google Scholar] [CrossRef]
- Supriadi, S.; Saputro, R.R.; Putri, S.L.; Suharno, B. The Role of Etching Surface Treatment of Ti6Al4V Alloys on Hydroxyapatite Coating on Substrate Surfaces by Electrophoretic Coating Method. Mater. Sci. Forum 2020, 988, 200–205. [Google Scholar] [CrossRef]
- Vlcak, P.; Fojt, J.; Drahokoupil, J.; Brezina, V.; Sepitka, J.; Horazdovsky, T.; Miksovsky, J.; Cerny, F.; Lebeda, M.; Haubner, M. Influence of Surface Pre-Treatment with Mechanical Polishing, Chemical, Electrochemical and Ion Sputter Etching on the Surface Properties, Corrosion Resistance and MG-63 Cell Colonization of Commercially Pure Titanium. Mater. Sci. Eng. C 2020, 115, 111065. [Google Scholar] [CrossRef] [PubMed]
- Pawłowski, Ł.; Bartmański, M.; Mielewczyk-Gryń, A.; Zieliński, A. Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit e 100 Coatings. Coatings 2021, 11, 1120. [Google Scholar] [CrossRef]
- Melentiev, R.; Fang, F.; Narala, S.K.R. Influence of Different Pretreatments on Ti-6Al-4V Surface Integrity and Scratch-Resistance of Epoxy Coating: Analysis of Topography, Microstructure, Chemistry and Wettability. Surf. Coat. Technol. 2020, 404, 126436. [Google Scholar] [CrossRef]
- Zahran, R.; Rosales Leal, J.I.; Rodríguez Valverde, M.A.; Cabrerizo Vílchez, M.A. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion. PLoS ONE 2016, 11, e0165296. [Google Scholar] [CrossRef]
- Avcu, E.; Yıldıran Avcu, Y.; Baştan, F.E.; Rehman, M.A.U.; Üstel, F.; Boccaccini, A.R. Tailoring the Surface Characteristics of Electrophoretically Deposited Chitosan-Based Bioactive Glass Composite Coatings on Titanium Implants via Grit Blasting. Prog. Org. Coat. 2018, 123, 362–373. [Google Scholar] [CrossRef]
- Pan, M.; Weng, Z.; Liu, J. Effect of Positive Bias on Properties of Chitosan Coating Prepared on Micro-Arc Oxidation Surface of Ti–6Al–4V Alloy by Electrophoretic Deposition. Mater. Chem. Phys. 2022, 275, 125257. [Google Scholar] [CrossRef]
- Lakstein, D.; Kopelovitch, W.; Barkay, Z.; Bahaa, M.; Hendel, D.; Eliaz, N. Enhanced Osseointegration of Grit-Blasted, NaOH-Treated and Electrochemically Hydroxyapatite-Coated Ti-6Al-4V Implants in Rabbits. Acta Biomater. 2009, 5, 2258–2269. [Google Scholar] [CrossRef]
- Rosales-Leal, J.I.; Rodríguez-Valverde, M.A.; Mazzaglia, G.; Ramón-Torregrosa, P.J.; Díaz-Rodríguez, L.; García-Martínez, O.; Vallecillo-Capilla, M.; Ruiz, C.; Cabrerizo-Vílchez, M.A. Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-like Cell Adhesion. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 365, 222–229. [Google Scholar] [CrossRef]
- Gebhardt, F.; Seuss, S.; Turhan, M.C.; Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Characterization of Electrophoretic Chitosan Coatings on Stainless Steel. Mater. Lett. 2012, 66, 302–304. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Scheideler, L.; Reichl, R.; Geis-Gerstorfer, J. Effects of Topography and Composition of Titanium Surface Oxides on Osteoblast Responses. Biomaterials 2004, 25, 4087–4103. [Google Scholar] [CrossRef] [PubMed]
- Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C. Relationship between Surface Properties (Roughness, Wettability) of Titanium and Titanium Alloys and Cell Behaviour. Mater. Sci. Eng. C 2003, 23, 551–560. [Google Scholar] [CrossRef]
- Elias, C.N.; Oshida, Y.; Lima, J.H.C.; Muller, C.A. Relationship between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque. J. Mech. Behav. Biomed. Mater. 2008, 1, 234–242. [Google Scholar] [CrossRef]
- Ordikhani, F.; Simchi, A. Long-Term Antibiotic Delivery by Chitosan-Based Composite Coatings with Bone Regenerative Potential. Appl. Surf. Sci. 2014, 317, 56–66. [Google Scholar] [CrossRef]
- Rupp, F.; Scheideler, L.; Rehbein, D.; Axmann, D.; Geis-Gerstorfer, J. Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications. Biomaterials 2004, 25, 1429–1438. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability Versus Roughness of Engineering Surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef]
- Ali, L.A.; Dikici, B.; Aslan, N.; Yilmazer, Y.; Sen, A.; Yilmazer, H.; Niinomi, M. In-Vitro Corrosion and Surface Properties of PVD-Coated β-Type TNTZ Alloys for Potential Usage as Biomaterials: Investigating the Hardness, Adhesion, and Antibacterial Properties of TiN, ZrN, and CrN Film. Surf. Coat. Technol. 2023, 466, 129624. [Google Scholar] [CrossRef]
- Ziąbka, M.; Kiszka, J.; Trenczek-Zając, A.; Radecka, M.; Cholewa-Kowalska, K.; Bissenik, I.; Kyzioł, A.; Dziadek, M.; Niemiec, W.; Królicka, A. Antibacterial Composite Hybrid Coatings of Veterinary Medical Implants. Mater. Sci. Eng. C 2020, 112, 110968. [Google Scholar] [CrossRef]
- Sotgiu, G.; Orsini, M.; Porcelli, F.; de Santis, S.; Petrucci, E. Wettability of Micro and Nanostructured Surface of Titanium Based Electrodes: Influence of Chemical and Electrochemical Etching. Chem. Eng. Trans. 2021, 86, 1417–1422. [Google Scholar] [CrossRef]
- Bartmanski, M.; Pawłowski, Ł.; Zielinski, A.; Mielewczyk-Gryn, A.; Strugała, G.; Ciselik, B. Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer. Coatings 2020, 10, 245, Erratum to Coatings 2021, 11, 590. [Google Scholar]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Yildirim Erbil, H.; Elif Cansoy, C. Range of Applicability of the Wenzel and Cassie-Baxter Equations for Superhydrophobic Surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef] [PubMed]
- Kaps, S.; Adelung, R.; Scharnberg, M.; Faupel, F.; Milenkovic, S.; Hassel, A.W. Determining Superhydrophobic Surfaces from an Expanded Cassie Baxter Equation Describing Simple Wettability Experiments. arXiv 2014, arXiv:1408.5273. [Google Scholar]
- Belan, J.; Uhricik, M.; Hanusova, P.; Vasko, A. The Ti6Al4V Alloy Microstructure Modification Via Various Cooling Rates, Its Influence on Hardness and Microhardness. Manuf. Technol. 2020, 20, 560–565. [Google Scholar] [CrossRef]
- Dareh Baghi, A.; Ghomashchi, R.; Oskouei, R.H.; Ebendorff-Heidepriem, H. Nano-Mechanical Characterization of SLM-Fabricated Ti6Al4V Alloy: Etching and Precision. Metallogr. Microstruct. Anal. 2019, 8, 749–756. [Google Scholar] [CrossRef]
- Pawłowski, Ł.; Bartmański, M.; Strugała, G.; Mielewczyk-Gryń, A.; Jazdzewska, M.; Zieliński, A. Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate. Coatings 2020, 10, 607. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kannan, S. Development, Mechanical Evaluation and Surface Characteristics of Chitosan/Polyvinyl Alcohol Based Polymer Composite Coatings on Titanium Metal. J. Mech. Behav. Biomed. Mater. 2014, 40, 314–324. [Google Scholar] [CrossRef]
- Othman, M.F.; Bushroa, A.R.; Abdullah, W.N.R. Evaluation Techniques and Improvements of Adhesion Strength for TiN Coating in Tool Applications: A Review. J. Adhes. Sci. Technol. 2015, 29, 569–591. [Google Scholar] [CrossRef]
- Mohseni, E.; Zalnezhad, E.; Bushroa, A.R. Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti-6Al-4V Implant: A Review Paper. Int. J. Adhes. Adhes. 2014, 48, 238–257. [Google Scholar] [CrossRef]
- Sopcak, T.; Medvecky, L.; Zagyva, T.; Dzupon, M.; Balko, J.; Balázsi, K.; Balázsi, C. Characterization and Adhesion Strength of Porous Electrosprayed Polymer–Hydroxyapatite Composite Coatings. Resolut. Discov. 2018, 3, 17–23. [Google Scholar] [CrossRef]
- ISO 13779-4:2018; Implants for Surgery—Hydroxyapatite—Part 4: Determination of Coating Adhesion Strength. International Organization for Standardization: Geneva, Switzerland, 2018.
- Zamharir, M.J.; Aghajani, H.; Tabrizi, A.T. Evaluation of Adhesion Strength of TiN Layer Applied on 316L Substrate by Electrophoretic Deposition. J. Aust. Ceram. Soc. 2021, 57, 1219–1230. [Google Scholar] [CrossRef]
- Lucas, M.; Machado, P. Hydroxyapatite-Titanium Oxide Ceramic Coating Applied to Ti-6Al-4V Alloys by Plasma Thermal Spraying. Mater. Res. 2018, 21, 11–14. [Google Scholar]
- Khlifi, K.; Dhiflaoui, H.; Rhouma, A.B.; Faure, J.; Benhayoune, H.; Laarbi, A.B.C. Nanomechanical Behavior, Adhesion and Corrosion Resistance of Hydroxyapatite Coatings for Orthopedic Implant Applications. Coatings 2021, 11, 477. [Google Scholar] [CrossRef]
- Moskalewicz, T.; Warcaba, M.; Zimowski, S.; Łukaszczyk, A. Improvement of the Ti-6Al-4V Alloy’s Tribological Properties and Electrochemical Corrosion Resistance by Nanocomposite TiN/PEEK708 Coatings. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2019, 50, 5914–5924. [Google Scholar] [CrossRef]
- Kusano, E.; Kitagawa, M.; Kuroda, Y.; Nanto, H.; Kinbara, A. Adhesion and Hardness of Compositionally Gradient TiO2/Ti/TiN, ZrO2/Zr/ZrN, and TiO2/Ti/Zr/ZrN Coatings. Thin Solid Films 1998, 334, 151–155. [Google Scholar] [CrossRef]
- Albayrak, O.; El-Atwani, O.; Altintas, S. Hydroxyapatite Coating on Titanium Substrate by Electrophoretic Deposition Method: Effects of Titanium Dioxide Inner Layer on Adhesion Strength and Hydroxyapatite Decomposition. Surf. Coat. Technol. 2008, 202, 2482–2487. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Recent Advances of Superhard Nanocomposite Coatings: A Review. Surf. Coat. Technol. 2003, 167, 113–119. [Google Scholar] [CrossRef]
- Biegun-Żurowska, M.; Goryczka, T.; Menaszek, E.; Klesiewicz, K.; Ziąbka, M. Evaluation of Antibacterial Ti6-Al4-V/Chitosan/TiN Layer Systems Obtained via the EPD Technique: Structural, Mechanical, and Biological Properties. In Proceedings of the European School for Young Material Scientists, Dresden, Germany, 4–7 November 2024; pp. 15–18. [Google Scholar]
Sample Characteristic | Sample Nomenclature |
---|---|
Titanium alloy Ti-Al-V | Ti-Al-V |
Titanium alloy Ti-Al-V etched with 5%HF | Ti-Al-V/HF |
Titanium alloy Ti-Al-V with coating containing pure chitosan | Ti-Al-V/ch |
Titanium alloy Ti-Al-V with coating containing chitosan and 0.5 wt.% TiN | Ti-Al-V/ch/0.5TiN |
Titanium alloy Ti-Al-V with coating containing chitosan and 1.0 wt.% TiN | Ti-Al-V/ch/1TiN |
Titanium alloy Ti-Al-V with coating containing chitosan and 1.5 wt.% TiN | Ti-Al-V/ch/1.5TiN |
Titanium alloy Ti-Al-V with coating containing chitosan and 2.0 wt.% TiN | Ti-Al-V/ch/2TiN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegun-Żurowska, M.; Berezicka, A.; Gajek, M.; Goryczka, T.; Ziąbka, M. Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Properties. Materials 2024, 17, 5710. https://doi.org/10.3390/ma17235710
Biegun-Żurowska M, Berezicka A, Gajek M, Goryczka T, Ziąbka M. Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Properties. Materials. 2024; 17(23):5710. https://doi.org/10.3390/ma17235710
Chicago/Turabian StyleBiegun-Żurowska, Maria, Anna Berezicka, Marcin Gajek, Tomasz Goryczka, and Magdalena Ziąbka. 2024. "Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Properties" Materials 17, no. 23: 5710. https://doi.org/10.3390/ma17235710
APA StyleBiegun-Żurowska, M., Berezicka, A., Gajek, M., Goryczka, T., & Ziąbka, M. (2024). Modification of Ti-Al-V Alloys with Layers Containing TiN Particles Obtained via the Electrophoretic Deposition Process: Surface and Structural Properties. Materials, 17(23), 5710. https://doi.org/10.3390/ma17235710