Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Arrhenius-Type Model
3.2. Johnson–Cook Model (J–C)
3.3. Modified Johnson–Cook Model (Modified J–C)
3.4. Trimble Model
4. Discussion
5. Conclusions
- (1)
- The flow stress values for AISI 8822H steel increased when the strain rate increased at a constant temperature and when the deformation temperature decreased at a constant strain rate.
- (2)
- Based on the results of (AARE) and (R) for the four constitutive models, the Trimble model was found to have the highest (R) value, which equals 0.99, and the lowest AARE value, which equals 1.7%. Consequently, the Trimble model is the most suitable for predicting the hot deformation behaviour of AISI 8822H steel over the processing range investigated in this study.
- (3)
- The Johnson–Cook model was found to have the lowest (R) value, 0.92, and the highest AARE value, 32.2%. Consequently, the Johnson–Cook model is the least suitable for predicting the hot deformation behaviour of AISI 8822H steel over the processing range investigated in this study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Bitar, T.; El-Meligy, M.; Borek, W.; Ebied, S. Characterization of Hot Deformation Behavior for Ultra-High Strength Steel Containing Tungsten. Acta Metall. Slovaca 2023, 29, 144–147. [Google Scholar] [CrossRef]
- Liu, X.; Bao, Y.; Zhao, L.; Gu, C. Establishment and Application of Steel Composition Prediction Model Based on t-Distributed Stochastic Neighbor Embedding (t-SNE) Dimensionality Reduction Algorithm. J. Sustain. Metall. 2024, 10, 509–524. [Google Scholar] [CrossRef]
- Wang, Y.; Oh, M.K.; Kim, T.S.; Karasev, A.; Mu, W.; Park, J.H.; Jönsson, P.G. Effect of LCFeCr alloy additions on the non-metallic inclusion characteristics in Ti-containing ferritic stainless steel. Metall. Mater. Trans. B 2021, 52, 3815–3832. [Google Scholar] [CrossRef]
- Tomiczek, B.; Snopiński, P.; Borek, W.; Król, M.; Gutiérrez, A.R.; Matula, G. Hot deformation behaviour of additively manufactured 18Ni-300 maraging steel. Materials 2023, 16, 2412. [Google Scholar] [CrossRef]
- Mohrbacher, H.; Kern, A. Nickel alloying in carbon steel: Fundamentals and applications. Alloys 2023, 2, 1–28. [Google Scholar] [CrossRef]
- Xia, T.; Ma, Y.; Zhang, Y.; Li, J.; Xu, H. Effect of Mo and Cr on the Microstructure and Properties of Low-Alloy Wear-Resistant Steels. Materials 2024, 17, 2408. [Google Scholar] [CrossRef]
- Backhouse, A.; Baddoo, N. Recent developments of stainless steels in structural applications. ce/papers 2021, 4, 2349–2355. [Google Scholar] [CrossRef]
- Reséndiz-Calderón, C.D.; Cao-Romero-Gallegos, J.A.; Farfan-Cabrera, L.I.; Campos-Silva, I.; Soriano-Vargas, O. Influence of boriding on the tribological behavior of AISI D2 tool steel for dry deep drawing of stainless steel and aluminum. Surf. Coat. Technol. 2024, 484, 130832. [Google Scholar] [CrossRef]
- dos Santos, F.A.M.; Martorano, M.A.; Padilha, A.F. Delta ferrite formation and evolution during slab processing from an 80-ton industrial heat of AISI 304 austenitic stainless steel. REM-Int. Eng. J. 2023, 76, 47–54. [Google Scholar] [CrossRef]
- Lopez-Hirata, V.M.; Saucedo-Muñoz, M.L.; Rodríguez-Rodríguez, K.; Dorantes-Rosales, H.J. Homogenizing Treatment of AISI 420 Stainless and AISI 8620 Steels. In Proceedings of the TMS Annual Meeting & Exhibition, Orlando, FL, USA, 3–7 March 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 497–505. [Google Scholar]
- Alshareef, A.J.; Marinescu, I.D.; Basudan, I.M.; Alqahtani, B.M.; Tharwan, M.Y. Ball-burnishing factors affecting residual stress of AISI 8620 steel. Int. J. Adv. Manuf. Technol. 2020, 107, 1387–1397. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, T.; Chen, Y.; Dong, Z. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion. Bioelectrochemistry 2023, 152, 108412. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ntovas, M.; Da Silva, L.; O’Neill, R.; Rahimi, S. Continuous drive friction welding of AISI 8630 low-alloy steel: Experimental investigations on microstructure evolution and mechanical properties. J. Manuf. Sci. Eng. 2022, 144, 71001. [Google Scholar] [CrossRef]
- Sellars, C.M.; Tegart, W.J.M. Hot workability. Int. Metall. Rev. 1972, 17, 1–24. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, G.; He, X.; Zhou, L.; Zhai, Y. Constitutive Model of TNM Alloy Using Arrhenius-Type Model and Artificial Neural Network Model. J. Phys. Conf. Ser. 2023, 2437, 12062. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, M.-S.; Zhong, J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput. Mater. Sci. 2008, 42, 470–477. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, C.; Wei, B.; Wang, Y. Analysis of the High Temperature Plastic Deformation Characteristics of 18CrNi4A Steel and Establishment of a Modified Johnson–Cook Constitutive Model. Coatings 2023, 13, 1697. [Google Scholar] [CrossRef]
- Adibi-Sedeh, A.H.; Madhavan, V.; Bahr, B. Extension of Oxley’s analysis of machining to use different material models. J. Manuf. Sci. Eng. 2003, 125, 656–666. [Google Scholar] [CrossRef]
- Maheshwari, A.K.; Pathak, K.K.; Ramakrishnan, N.; Narayan, S.P. Modified Johnson-Cook material flow model for hot deformation processing. J. Mater. Sci. 2010, 45, 859–864. [Google Scholar] [CrossRef]
- Maheshwari, A.K. Prediction of flow stress for hot deformation processing. Comput. Mater. Sci. 2013, 69, 350–358. [Google Scholar] [CrossRef]
- Khan, A.S.; Liu, H. Variable strain rate sensitivity in an aluminum alloy: Response and constitutive modeling. Int. J. Plast. 2012, 36, 1–14. [Google Scholar] [CrossRef]
- Lin, Y.C.; Ding, Y.; Chen, M.-S.; Deng, J. A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al–Cu–Mg alloy. Mater. Des. 2013, 52, 118–127. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, L.-T.; Jiang, Y.-Q. A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition. Exp. Mech. 2012, 52, 993–1002. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, L.-T.; Fu, Y.-X.; Jiang, Y.-Q. Hot compressive deformation behavior of 7075 Al alloy under elevated temperature. J. Mater. Sci. 2012, 47, 1306–1318. [Google Scholar] [CrossRef]
- Trimble, D.; O’Donnell, G.E. Constitutive modelling for elevated temperature flow behaviour of AA7075. Mater. Des. 2015, 76, 150–168. [Google Scholar] [CrossRef]
- Ghosh, S.; Hamada, A.; Patnamsetty, M.; Borek, W.; Gouda, M.; Chiba, A.; Ebied, S. Constitutive modeling and hot deformation processing map of a new biomaterial Ti–14Cr alloy. J. Mater. Res. Technol. 2022, 20, 4097–4113. [Google Scholar] [CrossRef]
- Żukowska, L.W.; Śliwa, A.; Mikuła, J.; Bonek, M.; Kwaśny, W.; Sroka, M.; Pakuła, D. Finite element prediction for the internal stresses of (Ti,Al)N coatings. Arch. Metall. Mater. 2016, 61, 149–152. [Google Scholar] [CrossRef]
C | Mn | Si | Cr | Ni | Mo | Cu | Co | Fe |
---|---|---|---|---|---|---|---|---|
0.27 | 0.94 | 0.25 | 0.44 | 0.63 | 0.36 | 0.17 | 0.01 | Bal. |
6.2 | 0.05 | 0.008 | 4.6 | 316.5 | 2 × 1012 |
60 | 0.117 | 168.188 | 0.107 | 1.935 |
60 | 0.12 | 168.19 | 0.13 | 1.36 | −1.23 |
(s−1) | Constants | |||
---|---|---|---|---|
0.01 | 0.0013 | −0.0049 | −0.0633 | 118.96 |
0.1 | −0.0009 | −0.0043 | −0.0127 | 193.46 |
1 | −0.001 | −0.00311 | 0.0947 | 271.8 |
10 | −0.0006 | −0.0031 | 0.0739 | 320.91 |
Constitutive Models | ||||
---|---|---|---|---|
Arrhenius-Type | Johnson–Cook | Modified Johnson–Cook | Trimble | |
ARRE % | 2.6 | 32.2 | 9.2 | 1.7 |
R | 0.99 | 0.92 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elanany, K.; Borek, W.; Ebied, S. Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel. Materials 2024, 17, 5713. https://doi.org/10.3390/ma17235713
Elanany K, Borek W, Ebied S. Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel. Materials. 2024; 17(23):5713. https://doi.org/10.3390/ma17235713
Chicago/Turabian StyleElanany, Khaled, Wojciech Borek, and Saad Ebied. 2024. "Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel" Materials 17, no. 23: 5713. https://doi.org/10.3390/ma17235713
APA StyleElanany, K., Borek, W., & Ebied, S. (2024). Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel. Materials, 17(23), 5713. https://doi.org/10.3390/ma17235713