Effect of Hydrophobic Fumed Silica on Bending Strength of Sodium Silicate-Bonded Sand Cores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Characterizations
2.3. Experimental Produce
3. Result and Discussion
3.1. Morphological and Structural Characterizations
3.2. Bending Strength of Sand Core
3.3. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stauder, B.J.; Kerber, H.; Schumacher, P. Foundry sand core property assessment by 3-point bending test evaluation. J. Mater. Process. Technol. 2016, 237, 188–196. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Jiang, W.; Zhan, J.; Yu, Y.; Fan, Z. Investigation on characteristic and formation mechanism of porosity defects of Al-Li alloys prepared by sand casting. J. Mater. Res. Technol. 2022, 19, 4063–4075. [Google Scholar] [CrossRef]
- Tiedje, N.; Crepaz, R.; Eggert, T.; Bey, N. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds. J. Environ. Sci. Health Part A 2010, 45, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, M.; Danko, R.; Kmita, A. Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment, water, air. Soil Pollut. 2016, 227, 16. [Google Scholar] [CrossRef]
- Kmita, A.; Fischer, C.; Hodor, K.; Holtzer, M.; Roczniak, A. Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS). Arab. J. Chem. 2018, 11, 380–387. [Google Scholar] [CrossRef]
- Krishnaraj, R. Control of pollution emitted by foundries. Environ. Chem. Lett. 2015, 13, 149–156. [Google Scholar] [CrossRef]
- Zaretskiy, L. Modified silicate binders new developments and applications. Int. J. Metalcast. 2015, 10, 88–99. [Google Scholar] [CrossRef]
- Holtzer, M.; Kmita, A. Mold and Core Sands in Metalcasting: Chemistry and Ecology: Sustainable Development; Springer: Cham, Switzerland, 2020; pp. 219–241. [Google Scholar] [CrossRef]
- Kim, E.-H.; Lee, W.-R.; Jung, Y.-G.; Lee, C.-S. A new binder system for preparing high strength inorganic molds in precision casting. Mater. Chem. Phys. 2011, 126, 344–351. [Google Scholar] [CrossRef]
- Zaretskiy, L. Amorphous silica in sodium silicate bonded sands. Int. J. Metalcast. 2018, 13, 58–73. [Google Scholar] [CrossRef]
- Ettemeyer, F.; Schweinefuß, M.; Lechner, P.; Stahl, J.; Greß, T.; Kaindl, J.; Durach, L.; Volk, W.; Günther, D. Characterisation of the decoring behaviour of inorganically bound cast-in sand cores for light metal casting. J. Mater. Process. Technol. 2021, 296, 117201. [Google Scholar] [CrossRef]
- Choi, H.-H.; Kim, E.-H.; Park, H.-Y.; Cho, G.-H.; Jung, Y.-G.; Zhang, J. Application of dual coating process and 3D printing technology in sand mold fabrication. Surf. Coat. Technol. 2017, 332, 522–526. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Z.; Liu, X.; Wang, H.; He, J. Research on humidity resistance of sodium silicate sand hardened by twice microwave heating process. Mater. Manuf. Process. 2014, 29, 184–187. [Google Scholar] [CrossRef]
- Lai, S.; Liu, W.; Li, Y.; Xin, F. Humidity resistant inorganic binder for sand core-making in foundry practice. China Found. 2018, 16, 267–271. [Google Scholar] [CrossRef]
- Song, G.; Du, X.; Zhang, M.; Sun, Y.; Cheng, N. Parametric optimization of modifiers for ester-hardened sodium silicate bonded sand. Mater. Manuf. Process. 2020, 35, 531–536. [Google Scholar] [CrossRef]
- Jung, Y.; Tumenbayar, E.; Choi, H.; Park, H.; Kim, E.; Zhang, J. Effect of alumina precursor species in a ternary-phase binder system on the strength of sand mold. Ceram. Int. 2018, 44, 2223–2230. [Google Scholar] [CrossRef]
- Song, L.; Liu, W.; Xin, F.; Li, Y. Effect of silica fume on humidity resistance of sodium silicate binder for core-making process. Int. J. Metalcast. 2020, 14, 977–986. [Google Scholar] [CrossRef]
- Tarokha, A.; Fakhimi, A. Discrete element simulation of the effect of particle size on the size of fracture process zone in quasi-brittle materials. Ceram. Int. 2014, 62, 51–60. [Google Scholar] [CrossRef]
- Wolffa, M.F.H.; Salikova, V.; Antonyuk, S.; Heinricha, S.; Schneider, G.A. Three-dimensional discrete element modeling of micromechanical bending tests of ceramic–polymer composite materials. Powder Technol. 2013, 248, 77–83. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Li, Z.; Du, M.; Chen, J.; Xiong, Y.; Zhang, H.; Cheng, Y. Wetting characteristic and flow behavior of silicate binder at various sand particle-particle interfaces: Fine or coarse, circular or angular particles. J. Mater. Res. Technol. 2023, 26, 7166–7181. [Google Scholar] [CrossRef]
- Pizettea, P.; Martina, C.L.; Deletteb, G.; Sansc, F.; Geneves, T. Green strength of binder-free ceramics. J. Eur. Ceram. Soc. 2013, 33, 975–984. [Google Scholar] [CrossRef]
- Baltazar, L.G.; Henriques, F.M.A.; Rocha, D.; Cidade, M.T. Experimental Characterization of injection grouts incorporating hydrophobic silica fume. J. Mater. Civil. Eng. 2017, 29, 04017167. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, L.; Shen, W.; Gu, G. Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings. J. Mater. Sci. 2004, 39, 1593–1600. [Google Scholar] [CrossRef]
- Li, J.; Du, M.; Cheng, Y.; Wang, S.; Chen, J.; Hu, S.; Zhang, H.; Zhang, H. Condensation and hydrophobicity of the surface hydroxyl groups between organosilane modified water glass and microsilica. Ceram. Int. 2023, 49, 21278–21286. [Google Scholar] [CrossRef]
- Song, L.; Liu, W.; Xin, F.; Li, Y. Study of adhesion properties and mechanism of sodium silicate binder reinforced with silicate fume. Int. J. Adhes. Adhes. 2012, 106, 102820. [Google Scholar] [CrossRef]
- Haa, N.T.T.; Trang, N.T.; Hung, H.V.; Duong, T.T.; Hung, P.K. Diffusion mechanism and dependence of diffusion on sodium silicate compositions. Eur. Phys. J. B 2020, 93, 141. [Google Scholar] [CrossRef]
- Lucas, S.; Tognonvi, M.T.; Gelet, J.-L.; Soro, J.; Rossignol, S. Interactions between silica sand and sodium silicate solution during consolidation process. J. Non-Cryst. Solids 2011, 357, 1310–1318. [Google Scholar] [CrossRef]
- Song, L.; Du, X.; Cao, W.; Zhao, J.; Song, G.; Sun, Y.; Ma, X.; Tao, R. Composition and process optimization of modified heat-hardened sodium silicate bonded-ceramic sand. Silicon 2024, 16, 73–81. [Google Scholar] [CrossRef]
- Xin, F.; Liu, W.; Song, Y. Research of compound additives on moisture resistance of sand cores bonded by sodium silicate. Int. J. Metalcast. 2023, 17, 753–760. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Du, M.; Chen, J.; Xiang, T.; Zhang, H.; Cheng, Y. Wettability, adhesive performance and structural evolution of an environment-friendly modified silicate binder for foundry moulding and coremaking. Ceram. Int. 2024, 50, 3461–3470. [Google Scholar] [CrossRef]
- Sarkar, D.K.; Dhara, S.; Nair, K.G.M.; Chowdhury, S. Studies of phase formation and chemical states of the ion beam mixed Ag/Si(111) system. Nucl. Instrum. Methods Phys. Res. B 2000, 168, 215–220. [Google Scholar] [CrossRef]
- Yang, F.; Bao, X.; Li, P.; Wang, X.; Cheng, G.; Chen, S.; Luo, W. Boosting hydrogen oxidation activity of Ni in alkaline media oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Edit. 2019, 58, 14179–14183. [Google Scholar] [CrossRef] [PubMed]
- Arkles, B. Tailoring surfaces with silanes. Chemtech 1977, 7, 766–778. [Google Scholar]
- Sohn, Y. SiO2 nanospheres modified by Ag nanoparticles: Surface charging and CO oxidation activity. J. Mol. Catal. Chem. 2013, 379, 59–67. [Google Scholar] [CrossRef]
- Hammer, P.; Santos, F.C.; Cerrutti, B.M.; Pulcinelli, S.H.; Santilli, C.V. Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings. J. Sol. Gel Sci. Technol. 2012, 63, 266–274. [Google Scholar] [CrossRef]
- Xu, X.; Liang, H.; Ming, F.; Qi, Z.; Xie, Y.; Wang, Z. Prussian blue analogues derived penroseite (Ni, Co) Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal. 2017, 7, 6394–6399. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, M.; Yan, D.; Mao, J.; Liu, H.; Hu, W.; Du, X.; Ling, T.; Qiao, S. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103–109. [Google Scholar] [CrossRef]
- Fuss, T.; Moguš-Milanković, A.; Ray, C.S.; Lesher, C.E.; Youngman, R.; Day, D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. J. Non-Cryst. Solids 2006, 352, 4101–4111. [Google Scholar] [CrossRef]
- Matson, D.W.; Sharma, S.K.; Philpotts, J.A. The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. J. Non-Cryst. Solids 1983, 58, 323–352. [Google Scholar] [CrossRef]
- Couty, R.; Fernandez, L. Use of 29Si NMR and infrared spectroscopies to study the sodiac silica transformation from ionic to colloidal state. J. Chim. Phys 1998, 95, 384–387. [Google Scholar] [CrossRef]
- Tognonvi, M.T.; Massiot, D.; Lecomte, A.; Rossignol, S.; Bonnet, J.P. Identification of solvated species present in concentrated and dilute sodium silicate solutions by combined 29Si NMR and SAXS studies. J. Colloid Interface Sci. 2010, 352, 309–315. [Google Scholar] [CrossRef]
- Bass, J.L.; Turner, G.L. Anion Distributions in Sodium Silicate Solutions. Characterization by 29Si NMR and infrared spectroscopies, and vapor phase osmometry. J. Phys. Chem. B 1997, 101, 10638–10644. [Google Scholar] [CrossRef]
SiO2 (wt.%) | CaO (wt.%) | Al2O3 (wt.%) | MgO (wt.%) | K2O (wt.%) | Others (wt.%) 1 |
---|---|---|---|---|---|
98.97 | 0.273 | 0.220 | 0.220 | 0.225 | 0.092 |
No | Sample | Addition (wt.%) | <1 min (MPa) | 1 h (MPa) | 24 h (MPa) |
---|---|---|---|---|---|
1 | commercial | / | 1.810 ± 0.05197 | 2.991 ± 0.1319 | 2.794 ± 0.1013 |
2 | microsilica | / | 1.938 ± 0.08590 | 3.865 ± 0.09865 | 4.016 ± 0.02540 |
3 | fumed silica | 0.025 | 2.081 ± 0.1247 | 4.202 ± 0.3207 | 4.077 ± 0.1184 |
4 | fumed silica | 0.050 | 2.153 ± 0.1580 | 4.314 ± 0.2364 | 4.289 ± 0.1830 |
5 | fumed silica | 0.075 | 2.060 ± 0.1547 | 4.030 ± 0.2071 | 3.900 ± 0.2609 |
6 | fumed silica | 0.100 | 1.958 ± 0.1563 | 3.728 ± 0.3420 | 3.636 ± 0.2371 |
Sample | C (wt.%) | O (wt.%) | Na (wt.%) | Al (wt.%) | Si (wt.%) | K (wt.%) |
---|---|---|---|---|---|---|
0.050 wt.% fumed silica | 29.9 | 32.82 | 2.09 | 1.92 | 32.14 | 1.14 |
microsilica | / | 61.19 | 10.93 | 0.18 | 27.49 | 0.21 |
Sample | C (wt.%) | O (wt.%) | Na (wt.%) | Al (wt.%) | Si (wt.%) | K (wt.%) | Ca (wt.%) |
---|---|---|---|---|---|---|---|
0.050 wt.% fumed silica | 4.72 | 59.96 | 9.36 | 0.45 | 25.23 | 0.27 | / |
microsilica | / | 59.61 | 9.85 | 0.16 | 29.88 | 0.36 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, H.; Chen, J.; Xiang, T.; Cheng, Y.; Zhang, H. Effect of Hydrophobic Fumed Silica on Bending Strength of Sodium Silicate-Bonded Sand Cores. Materials 2024, 17, 5714. https://doi.org/10.3390/ma17235714
Li Y, Zhang H, Chen J, Xiang T, Cheng Y, Zhang H. Effect of Hydrophobic Fumed Silica on Bending Strength of Sodium Silicate-Bonded Sand Cores. Materials. 2024; 17(23):5714. https://doi.org/10.3390/ma17235714
Chicago/Turabian StyleLi, Yunbo, Huarui Zhang, Jiulong Chen, Ting Xiang, Ying Cheng, and Hu Zhang. 2024. "Effect of Hydrophobic Fumed Silica on Bending Strength of Sodium Silicate-Bonded Sand Cores" Materials 17, no. 23: 5714. https://doi.org/10.3390/ma17235714
APA StyleLi, Y., Zhang, H., Chen, J., Xiang, T., Cheng, Y., & Zhang, H. (2024). Effect of Hydrophobic Fumed Silica on Bending Strength of Sodium Silicate-Bonded Sand Cores. Materials, 17(23), 5714. https://doi.org/10.3390/ma17235714