Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Production of Concrete
2.3. Fresh State and Hardened State Measurements
2.4. Microstructural Characterizations
3. Results and Discussion
3.1. Fresh State Properties
3.2. Hardened State Properties
3.3. SEM Micrographs of the Examined SCC
4. Conclusions
- Distinct portions of the hooked-end steel fibers, rubber residues, and marble and granite residues are successfully added to the constituted reinforced concretes in order to attain substantial improvements in the damping results.
- It is found that marble and granite residue additions provide a high-density microstructural array. The observed particles are much thinner than the aggregates, and the voids are filled. Consequently, an increase in the paste density and the packaging of the particles associated with increasing the mechanical properties is achieved.
- It is corroborated that the marble and granite portions are used to minimize the loss of mechanical properties due to the incorporation of the rubber particles. The concrete with rubber residues showed a higher level of porosity than other ones. This affected the transition zone, and the mechanical behavior decreased. On the other hand, a higher capacity to absorb energy and, consequently, a higher damping factor than other examined samples is obtained. Additionally, it is also remarkable that the rubber content addition relatively worsens the compressive strength of concrete.
- When designing an SCC mixture intending to improve the resulting damping ratio, associated with a compressive strength range between 70 and 75 MPa, the steel fiber addition has no demonstrated negative effects on the slump flow results. Although the rubber content decreased the mechanical behavior and slump flow, the concatenated utilization of the MGR and hooked-end steel fiber can be considered in designing an SCC. This is mainly in order to reach slight improvements in the damping results under certain acceptable compressive strength conditions. With this, the SCC/20SF/30MGR/5R sample seems to be a potential mixture, which also reveals a potential environmentally friendly aspect due to the decreasing trend of cement consumption when incorporating marble.
- It is worth noting that in a construction project (e.g., flooring, underground, or precast), there are a great variety of distinctive other fiber types, e.g., flat end, undulated, hooked flat-end fiber, and hooked glued fiber (ArcelorMittal®). The differences among these are geometry, dimensions, and corresponding tensile strengths, i.e., 1100, 1500, 1200, and 2400 MPa, respectively. Based on this, it is clearly perceived that flat fibers (quasi-conventional straight) have lower tensile strength than hooked (~1350 MPa). This considerably affects the resulting mechanical properties, depending on the desired construction type. Thus, the decision to adopt a conventional fiber or a hook or other type depends strongly on the desired requirements, as well as the other additives utilized and demonstrated in the present investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABNT NBR | Associação Brasileira de Normas Técnicas | |
NBR | Norma Brasileira Registrada | |
Al2O3 | Aluminum oxide | |
ASTM | American Society for Testing and Materials | |
ATCP | Enterprise Physical Engineering | |
CH | Calcium hydroxide | |
C-S-H | Calcium silicate hydrate | |
CaO | Calcium oxide | |
CO2 | Carbon dioxide | |
CS | Compressive strength—(MPa) | |
E | Young’s modulus–(GPa) | |
Ed | Dynamic Young’s modulus—(GPa) | |
Es | Elastic Young’s modulus—(GPa) | |
Fe2O3 | Iron oxide or iron trioxide (or hematite) | |
HES | High early strength—Portland cement | |
HESF | Hooked-end steel fibers | |
IET | Impulse Excitation Technique—non-destructive method | |
J-ring | J-ring method—Determination of passing ability—(mm) | |
K2O | Potassium oxide | |
MG | Marble/granite | |
MgO | Magnesium oxide | |
MGR | Marble and granite residues | |
Na2O | Sodium oxide | |
PJ | Passing ability | |
ISO | International Organization for Standardization | |
ITZ | Interfacial Transition Zone | |
R | Rubber—(kg/m3) | |
SE | Secondary electron | |
SEM | Secondary electron microscope | |
SCC | Self-compacting concrete | |
SF | Steel fiber—(kg/m3) | |
SiO2 | Silicon dioxide | |
SP | Superplasticizer | |
TiO2 | Titanium dioxide | |
TS | Tensile strength—(MPa) | |
TZ | Transition zone | |
T500 | Flow time in (s) for the concrete to achieve spreading within a 500 mm circle—(s) | |
VF (V Funnel) | Funnel for determining the viscosity of self-compacting concrete | |
VS1 and VS2 | Apparent Plastic Viscosity Classifications |
List of Symbols
A | Amplitude corresponds to the first peak point (μm) |
An | Amplitude corresponds to the nth peak-point (n cycles later in the time) |
δ | Logarithmic decrement |
n | Corresponds to the nth peak (n cycles later in time history) |
Z | Logarithmic decrement at time t = 0 |
z(t) | Response in logarithmic decrement time (s) |
ζ | Damping ratio (dimensionless) |
ρ | Specific mass of the concrete (kg/m3) |
ω 0 | Natural frequency (Hz) |
ωd | Damped natural frequency (Hz) |
References
- Okamura, H.; Ouchi, M. Self-Compacting Concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- EFNARC. The European Guidelines for Self-Compacting Concrete—Specification, Production and Use; The European Federation of Specialist Construction Chemicals and Concrete Systems: Flums, Switzerland, 2005; 63p. [Google Scholar]
- Topçu, I.B.; Bilir, T.; Uygunoğlu, T. Effect of waste marble dust contente as filler on properties of sel-compacting concrete. Constr. Build. Mater. 2009, 23, 1947–1953. [Google Scholar] [CrossRef]
- Manikandan, M.; Felixkala, T. Experimental study on properties of granite waste in self compacting concrete. Indian J. Appl. Res. 2015, 5, 128–130. [Google Scholar]
- Boukhelkhal, A.; Azzouz, L.; Belaïdi, A.S.E.; Benabed, B. Effects of marble powder as a partial replacement of cement on some engineering properties of self-compacting concrete. J. Adhes. Sci. Technol. 2016, 30, 2405–2419. [Google Scholar] [CrossRef]
- Sadek, D.M.; El-Attar, M.M.; Ali, H.A. Reusing of marble and granite powders in self-compacting concrete for sustainable development. J. Clean. Prod. 2016, 121, 19–32. [Google Scholar] [CrossRef]
- Hameed, A.; Qazi, A.U.; Abbas, S.; Rehman, A. Self compacting concrete: Use of waste marble powder as filler material. Pak. J. Eng. Appl. Sci. 2016, 18, 1–10. [Google Scholar]
- Alyamac, K.E.; Ghafari, E.; Ince, R. Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. J. Clean. Prod. 2017, 144, 192–202. [Google Scholar] [CrossRef]
- Tennich, M.; Ouezdou, M.B.; Kallel, A. Thermal effect of marble and tile fillers on self-compacting concrete behavior in the fresh state and at early age. J. Build. Eng. 2018, 20, 1–7. [Google Scholar] [CrossRef]
- Choudhary, R.; Gupta, R.; Nagar, R. Impact on fresh, mechanical, and microstructural properties of high strength self-compacting concrete by marble cutting slurry waste, fly ash, and silica fume. Constr. Build. Mater. 2020, 239, 117888. [Google Scholar] [CrossRef]
- Alyousef, R.; Benjeddou, O.; Khadimallah, M.A.; Mohamed, A.M.; Soussi, C. Study of the effects of marble powder amount on the self-compacting concretes properties by microstructure analysis on cement-marble powder pastes. Adv. Civ. Eng. 2018, 2018, 6018613. [Google Scholar] [CrossRef]
- Li, N.; Long, G.; Ma, C.; Fu, Q.; Zeng, X.; Ma, K.; Xie, Y.; Luo, B. Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study. J. Clean. Prod. 2019, 236, 117707. [Google Scholar] [CrossRef]
- Si, R.; Wang, J.; Guo, S.; Dai, Q.; Han, S. Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber. J. Clean. Prod. 2018, 180, 823–831. [Google Scholar] [CrossRef]
- Aslani, F.; Ma, G.; Wan, D.L.Y.; Le, V.X.T. Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete. J. Clean. Prod. 2018, 172, 1835–1847. [Google Scholar] [CrossRef]
- Sugapriya, P.; Ramkrishnan, R. Crumb rubber recycling in enhancing damping properties of concrete. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012013. [Google Scholar] [CrossRef]
- Hilal, N.N. Hardened properties of self-compacting concrete with different crumb rubber size and contente. Int. J. Sustain. Built Environ. 2017, 6, 191–206. [Google Scholar] [CrossRef]
- Meesit, R.; Kaewunruen, S. Vibration characteristics of micro-engineered crumb rubber concrete for railway sleeper applications. J. Adv. Concr. Technol. 2017, 15, 55–66. [Google Scholar] [CrossRef]
- Moustafa, A.; Elgawady, M.A. Mechanical properties of high strength concrete with scrap tire rubber. Constr. Build. Mater. 2015, 93, 249–256. [Google Scholar] [CrossRef]
- Yung, W.H.; Yung, L.C.; Hua, L.H. A study of the durability properties of waste tire rubber applied to self-compacting concrete. Constr. Build. Mater. 2013, 41, 665–672. [Google Scholar] [CrossRef]
- Zheng, L.; Huo, X.S.; Yuan, Y. Experimental investigation on dynamic properties of rubberized concrete. Constr. Build. Mater. 2008, 22, 939–947. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A.A. Impact Resistance and Mechanical Properties of Self-Consolidating Rubberized Concrete Reinforced with Steel Fibers. J. Mater. Civ. Eng. 2017, 29, 04016193. [Google Scholar] [CrossRef]
- Poveda, E.; Ruiz, G.; Cifuentes, H.; Rena, C.Y.; Zhang, X. Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. Int. J. Fatigue 2017, 101, 9–17. [Google Scholar] [CrossRef]
- Aslani, F.; Kelin, J. Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures. J. Clean. Prod. 2018, 200, 1009–1025. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ghasemi, M.R.; Mousavi, S.R. Studying the fracture parameters and size effect of steel fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2019, 201, 447–460. [Google Scholar] [CrossRef]
- Gokulnath, V.; Ramesh, B.; Sivashankar, S. Influence of M sand in self compacting concrete with addition of steel fiber. Mater. Today Proc. 2020, 22, 1026–1030. [Google Scholar] [CrossRef]
- Eisa, A.S.; Elshazli, M.T.; Nawar, M.T. Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Constr. Build. Mater. 2020, 252, 119078. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; Ghalehnovi, M.; Brito, J.; Shamsabadi, E.A. Durability performance of structural concrete containing silica fume and marble industry waste powder. J. Clean. Prod. 2018, 170, 42–60. [Google Scholar] [CrossRef]
- Mashaly, A.O.; El-Kaliouby, B.A.; Shalaby, B.N.; El-Gohary, A.M.; Rashwan, M.A. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J. Clean. Prod. 2016, 112, 731–741. [Google Scholar] [CrossRef]
- Rana, A.; Kalla, P.; Csetenyi, L.J. Sustainable use of marble slurry in concrete. J. Clean. Prod. 2015, 94, 304–311. [Google Scholar] [CrossRef]
- Xavier, B.C.; Verzegnassi, E.; Bortolozo, A.D.; Alves, S.M.; Lintz, R.C.C.; Gachet, L.A.; Osório, W.R. Fresh and Hardened States of Distinctive Self-Compacting Concrete with Marble- and Phyllite-Powder Aggregate Contents. J. Mater. Civ. Eng. 2020, 32, 04020065. [Google Scholar] [CrossRef]
- Tomar, A.K.; Gupta, S.K.; Kumar, A.; Singh, A. Review on Utilization of Waste Marble Powder in Self-Compacting Concrete. Int. J. Eng. Trends Technol. 2016, 37, 122–124. [Google Scholar] [CrossRef]
- Tayeb, B.; Abdelbaki, B.; Madani Mohamed, L. Effect of Marble Powder on the Properties of Self-Compacting Sand Concrete. Open Constr. Build. Technol. J. 2011, 5, 25–29. [Google Scholar] [CrossRef]
- Singh, M.; Choudhary, K.; Srivastava, A.; Singh Sangwan, K.; Bhunia, D. A study on environmental and economic impacts of using waste marble powder in concrete. J. Build. Eng. 2017, 13, 87–95. [Google Scholar] [CrossRef]
- Allam, M.E.; Bakhoum, E.S.; Garas, G.L. Re-use of granite sludge in producing green concrete. ARPN J. Eng. Appl. Sci. 2014, 9, 2731–2737. [Google Scholar]
- Bušic, R.; Milicevic, I.; Šipoš, T.K.; Strukar, K. Recycled Rubber as an Aggregate Replacement in Self-Compacting Concrete. Literature Overview. Materials 2018, 11, 1729. [Google Scholar] [CrossRef]
- Aslani, F.; Ma, G.W.; Wan, D.L.Y.; Muselin, G. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. J. Clean. Prod. 2018, 182, 553–566. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Najim, K.B.; Hall, M.R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 2012, 27, 521–530. [Google Scholar] [CrossRef]
- Athiyamaan, V.; Ganesh, M.G. Experimental, statistical and simulation analysis on impact of micro steel—Fibres in reinforced SCC containing admixtures. Constr. Build. Mater. 2020, 246, 118450. [Google Scholar] [CrossRef]
- Suuronen, J.; Kallonen, A.; Eik, M.; Puttonen, J.; Serimaa, R.; Herrmann, H. Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography. J. Mater. Sci. 2013, 48, 1358–1367. [Google Scholar] [CrossRef]
- Herrmann, H.; Pastorelli, E.; Kallonen, A.; Suuronen, J. Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci. 2016, 51, 3772–3783. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, L.; Song, S.; Zhang, C. Experimental and analytical study of the fibre distribution in SFRC: A comparison between image processing and the inductive test. Compos. Struct. 2018, 188, 78–88. [Google Scholar] [CrossRef]
- Lee, S.-J.; Hong, Y.; Eom, A.-H.; Won, J.-P. Effect of steel fibres on fracture parameters of cementitious composites. Compos. Struct. 2018, 204, 658–663. [Google Scholar] [CrossRef]
- Heek, P.; Ahrens, M.A.; Mark, P. Incremental-iterative model for time-variant analysis of SFRC subjected to flexural fatigue. Mater. Struct. 2017, 50, 62. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef]
- Cuenca, E.; Echegaray-Oviedo, J.; Serna, P. Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Compos. B Eng. 2015, 75, 135–147. [Google Scholar] [CrossRef]
- Trindade, Y.T.; Bitencourt, L.A.G., Jr.; Monte, R.; Figueiredo, A.D.; Manzoli, O.L. Design of SFRC members aided by a multiscale model: Part I—Predicting the post-cracking parameters. Compos. Struct. 2020, 241, 112078. [Google Scholar] [CrossRef]
- Gomes, P.C.C.; Barros, A.R. Métodos de dosagem de Concreto Autoadensável, 1st ed.; Pini: São Paulo, Brazil, 2009. [Google Scholar]
- Tutikian, B.F.; Dal Molin, D. Concreto Autoadensável, 2nd ed.; Pini: São Paulo, Brazil, 2015. [Google Scholar]
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C. The effect of fibres in the rheology of self-compacting concrete. Constr. Buil. Mater. 2019, 219, 144–153. [Google Scholar] [CrossRef]
- Ananda, F.; Febriani, O.; Pribadi, J.A.; Junaidi, G. Effect the used of steel fibers (Dramix) on reinforced concrete slab. J. Infr. Develop. 2019, 2, 183–191. [Google Scholar]
- Clarence, W.S. Vibration Damping, Control, and Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Mehta, K.; Monteiro, P. Concrete: Microstructure, Properties and Materials, 4th ed.; IBRACON: São Paulo, Brazil, 2014. [Google Scholar]
- Neville, A.M. Propriedades do Concreto, 5th ed.; Bookman: Porto Alegre, Brazil, 2016. [Google Scholar]
- BS 8110-2:1985; Structural Use of Concrete—Part 2: Code of Practice for Special Circumstances. BSI—British Standards Institution: London, UK, 2001.
- Lyndon, F.D.; Baladran, R.V. Some observations on elastic properties of plain concrete. Cem. Concr. Res 1986, 16, 314–324. [Google Scholar] [CrossRef]
- Popovics, S. Verification of relationships between mechanical properties of concrete-like materials. Mat. Constr. 1975, 8, 183–191. [Google Scholar] [CrossRef]
- Haach, V.G.; Carrazedo, R.; Oliveira, L.M.F.; Corrêa, M.R.S. Application of acoustic tests to mechanical characterization of masonry mortars. NDT&E Int. 2013, 59, 18–24. [Google Scholar]
- Rao, N.S.V.K. Foundation Design: Theory and Practice, 1st ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Angelin, A.F.; Andrade, M.F.F.; Bonatti, R.S.; Cecche Lintz, R.C.; Gachet-Barbosa, L.A.; Osório, W.R. Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Constr. Build. Mater. 2015, 95, 525–536. [Google Scholar] [CrossRef]
- Angelin, A.F.; Cecche Lintz, R.C.; Osório, W.R.; Gachet, L.A. Evaluation of efficiency factor of a selfcompacting lightweight concrete with rubber and expanded clay contents. Constr. Build. Mater. 2020, 257, 119573. [Google Scholar] [CrossRef]
- Aïtcin, P.C. Concreto de Alto Desempenho, 1st ed.; Pini: São Paulo, Brazil, 2000; 667p. [Google Scholar]
- Aslani, F. Mechanical properties of waste tire rubber concrete mechanical properties of waste tire rubber concrete. J. Mater. Civ. Eng. 2016, 28, 04015152. [Google Scholar] [CrossRef]
- Angelin, A.F.; Cecche Lintz, R.C.; Barbosa, L.A.G. Fresh and hardened properties of self-compacting concrete modified with lightweight and recycled aggregates. Rev. IBRACON Estrut. Mater. 2018, 11, 76–94. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Silva, B.A.; Silvestre, N.; Brito, J.; Júlio, E. Mechanical characterization of rubberized concrete using an image-processing/XFEM coupled procedure. Compos. B Eng. 2015, 78, 214–226. [Google Scholar] [CrossRef]
- Pereira, A.H.A.; Musolino, B.; Maciel, C.D.; Rodrigues, J.A. Algoritmo para determinação do amortecimento de materiais cerâmicos pela técnica das frequências naturais de vibração via excitação por impulso. Ceram 2012, 58, 229–237. [Google Scholar] [CrossRef]
- Otani, L.B.; Pereira, A.H.A. Estimation of the static modulus of elasticity of concrete using the impulse excitation technique. ATCP Phys. Eng. 2016, 38, 1–38. [Google Scholar]
- Khatri, R.P.; Sirivivatnanon, V.; Gross, W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete. Cem. Concr. Res. 1995, 25, 209–220. [Google Scholar] [CrossRef]
- Bachmann, H.; Ammann, W.J.; Deischl, F.; Eisenmann, J.; Floegl, I.; Hirsch, G.H.; Klein, G.K.; Lande, G.J.; Mahrenholtz, O.; Natke, H.G. Vibration Problems in Structures: Practical Guidelines, 2nd ed.; Birkhäuser Verlag: Berlin, Germany, 1997. [Google Scholar]
- Swamy, S.S.; Sreedhar, B.; Kalas, V.J.; Chandan, K.M. Experimental studies on compression and vibration characteristics of granite epoxy- an alternative material for precision machine tool beds. IJPRET 2014, 2, 120–135. [Google Scholar]
- Thakare, A.A.; Siddique, S.; Sarode, S.N.; Deewan, R.; Gupta, V.; Gupta, S.; Chaudhary, S. A study on rheological properties of rubber fiber dosed self-compacting mortar. Constr. Build. Mater. 2020, 262, 120745. [Google Scholar] [CrossRef]
- Angelin, A.F.; Miranda, E.J.P.; Dos Santos, J.M.C.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [Google Scholar] [CrossRef]
- Silva, F.M.; Miranda, E.J.P., Jr.; Dos Santos, J.M.C.; Gachet-Barbosa, L.A.; Gomes, A.E.; Lintz, R.C.C. The use of tire rubber in the production of high-performance concrete. Cerâm 2019, 65, 110–114. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Xua, J.; Han, Q. Microporous structures and compressive strength of high-performance rubber concrete with internal curing agent. Constr. Build. Mater. 2019, 215, 128–134. [Google Scholar] [CrossRef]
- Gupta, T.; Chaudhary, S.; Sharma, R.K. Assessment of mechanical and durability properties of concrete containing waste rubber tyre as fine aggregate. Constr. Build. Mater. 2014, 73, 562–574. [Google Scholar] [CrossRef]
- Silva, F.M.; Barbosa, L.A.G.; Lintz, R.C.C.; Jacintho, A.E.P.G.A. Investigation on the properties of concrete tactile paving blocks made with recycled tire rubber. Constr. Build. Mater. 2015, 91, 71–79. [Google Scholar] [CrossRef]
- Sridhar, R.; Prasad, R. Vibration based damaged detection of steel fiber reinforced concrete. Mater. Today Proceeding 2019, 18, 3321–3329. [Google Scholar] [CrossRef]
- Kamde, D.K.; Pillai, R.G. Corrosion initiation mechanisms and servisse life estimation of concrete systems with fusion-bonded-epoxy (FBE) coated steel exposed to chlorides. Constr. Build. Mater. 2021, 277, 122314. [Google Scholar] [CrossRef]
- Ming, J.; Shi, J.J. Distribution of corrosion products at the steel-concrete interface: Influence of mil scale properties, reinforcing steel type and corrosion inducing method. Constr. Build. Mater. 2019, 299, 116854. [Google Scholar] [CrossRef]
Physical Properties | Cement | Silica Fume | Fine Aggregate | Coarse Aggregate | Marble/Granite (MGR) | Rubber Residues | SP |
---|---|---|---|---|---|---|---|
Density (g/cm3) | 3.08 | 2.21 | 2.65 | 3.01 | 2.58 | 1.16 | 1.08 |
Unit weight (g/cm3) | 1.03 | - | 1.50 | 1.51 | - | 0.39 | - |
Max diameter (mm) | - | - | 1.20 | 9.50 | 0.10 | 2.40 | - |
Fineness modulus | - | - | 1.76 | 5.47 | 10.28 | 2.82 | - |
Water absorption (%) | - | - | 0.20 | 1.40 | - | - | - |
Cement | Silica Fume | Marble/Granite (MG) | Rubber Residue | |
---|---|---|---|---|
Chemical composition (%) | ||||
CaO | 63.33 | 0.36 | 14.3 | - |
SiO2 | 19.19 | 95.61 | 48.2 | - |
Al2O3 | 5.15 | 0.17 | 12.0 | - |
Fe2O3 | 2.8 | 0.08 | 5.13 | - |
MgO | 0.92 | 0.55 | 2.82 | - |
Na2O | - | 0.19 | 2.03 | - |
K2O | - | 1.29 | 3.77 | - |
TiO2 | - | - | 1.17 | - |
Lost on ignition | 8.13 | 1.75 | 10.58 | - |
Insoluble residue | 0.48 | - | - | - |
Chemical element (%) | ||||
C | - | - | - | 91.5 |
Zn | - | - | - | 3.5 |
O | - | - | - | 3.3 |
S | - | - | - | 1.2 |
Na | - | - | - | 0.2 |
H | - | - | - | 0.2 |
Ca | - | - | - | 0.1 |
SCC/10SF | SCC/10SF/30MGR | SCC/10SF/30MGR/2.5R | SCC/20SF | SCC/20SF/30MGR | SCC/20SF/30MGR/5R | |
---|---|---|---|---|---|---|
Cement (kg/m3) | 366 | 366 | 366 | 365 | 350 | 345 |
Silica fume (kg/m3) | 37 | 37 | 37 | 37 | 35 | 35 |
MG (kg/m3) | 0 | 110 | 110 | 0 | 105 | 104 |
Rubber (kg/m3) | 0 | 0 | 9 | 0 | 0 | 17 |
Sand (kg/m3) | 1036 | 922 | 904 | 1033 | 991 | 976 |
Coarse aggregate (kg/m3) | 761 | 761 | 761 | 759 | 728 | 718 |
Steel fiber (kg/m3) | 10 | 10 | 10 | 20 | 20 | 20 |
Water (kg/m3) | 212 | 212 | 212 | 212 | 203 | 200 |
Superplasticizer (%) | 2 | 2 | 2 | 2 | 2 | 2 |
SCC/10SF | SCC/10SF/30MGR | SCC/10SF/30MGR/2.5R | SCC/20SF | SCC/20SF/30MGR | SCC/20SF/30MGR/5R | |
---|---|---|---|---|---|---|
Slump flow (mm) | 730 | 837 | 725 | 735 | 725 | 595 |
T500 (s) | 1.10 | 1.86 | 1.40 | 1.00 | 2.00 | 3.00 |
J-ring (mm) | 20.00 | 25.00 | 5.50 | 17.50 | 15.75 | 6.25 |
V Funnel (s) | 3.10 | 3.18 | 4.20 | 8.00 | 4.10 | 8.00 |
Sample | Compressive Strength, CS (MPa) | Tensile Strength, TS (MPa) | ||
---|---|---|---|---|
7 Days | 28 Days | 7 Days | 28 Days | |
SCC/10SF | 58.1 (±1) | 73.3 (±1.4) | 5.7 (±0.2) | 6.4 (±0.2) |
SCC/10SF/30MGR | 57.3 (±1) | 73.3 (±3.2) | 5.8 (±0.3) | 6.8 (±0.5) |
SCC/10SF/30MGR/2.5R | 49.9 (±1.5) | 62.7 (±3.1) | 5.4 (±0.6) | 5.6 (±0.4) |
SCC/20SF | 50.0 (±2) | 71.0 (±2.0) | 6.0 (±0.2) | 6.1 (±0.1) |
SCC/20SF/30MGR | 55 (±2) | 72.7 (±2.6) | 5.7 (±0.3) | 7.2 (±0.1) |
SCC/20SF/30MGR/5R | 34.9 (±2.7) | 45.5 (±1.9) | 4.1 (±0.2) | 5.3 (±0.7) |
Sample | Static Modulus (Gpa) | Dynamics Flexural Modulus (Gpa) | Dynamics Longitudinal Modulus (Gpa) | Damping Ratio ζ (%) |
---|---|---|---|---|
SCC/10SF | 39.8 (±1.2) | 44.4 (±1.6) | 43.7 (±1.3) | 0.34 (±0.01) |
SCC/10SF/30MGR | 40.2 (±1.7) | 45.6 (±0.2) | 44.9 (±0.6) | 0.34 (±0.02) |
SCC/10SF/30MGR/2.5R | 37.4 (±1.6) | 42.5 (±0.7) | 41.7 (±0.6) | 0.35 (±0.01) |
SCC/20SF | 40.7 (±1.9) | 45.5 (±0.5) | 44.8 (±0.5) | 0.37 (±0.01) |
SCC/20SF/30MGR | 40.1 (±0.6) | 45.9 (±0.5) | 45.4 (±0.3) | 0.35 (±0.01) |
SCC/20SF/30MGR/5R | 31.4 (±1.2) | 35.1 (±0.6) | 35.0 (±0.5) | 0.38 (±0.01) |
SCC/10SF | SCC/10SF/30MGR | SCC/10SF/30MGR/2.5R | SCC/20SF | SCC/20SF/30MGR | SCC/20SF/30MGR/5R | |
---|---|---|---|---|---|---|
Water absorption (%) | 4.02 (±0.08) | 4.08 (±0.06) | 4.40 (±0.01) | 5.04 (±0.57) | 4.53 (±0.03) | 5.80 (±0.12) |
Void index (%) | 9.33 (±0.17) | 9.55 (±0.09) | 10.04 (±0.08) | 11.68 (±1.27) | 10.45 (±0.07) | 12.16 (±0.21) |
Specific mass (kg/m3) | 2320 (±3.48) | 2339 (±17.05) | 2280 (±15.66) | 2319 (±12.58) | 2306 (±3.48) | 2097 (±12.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.E.; Gachet, L.A.; Lintz, R.C.C.; de L. N. M. Melo, M.; Osório, W.R. Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions. Materials 2024, 17, 5717. https://doi.org/10.3390/ma17235717
Gomes AE, Gachet LA, Lintz RCC, de L. N. M. Melo M, Osório WR. Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions. Materials. 2024; 17(23):5717. https://doi.org/10.3390/ma17235717
Chicago/Turabian StyleGomes, Amauri Ernesto, Luisa A. Gachet, Rosa Cristina C. Lintz, Mirian de L. N. M. Melo, and Wislei R. Osório. 2024. "Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions" Materials 17, no. 23: 5717. https://doi.org/10.3390/ma17235717
APA StyleGomes, A. E., Gachet, L. A., Lintz, R. C. C., de L. N. M. Melo, M., & Osório, W. R. (2024). Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions. Materials, 17(23), 5717. https://doi.org/10.3390/ma17235717