Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Surface Appearance of Joint
3.2. XRD Phase Analysis of Joints
3.3. Analysis of Microstructure of Joint
3.3.1. Microstructure of Aluminum Side Weld
3.3.2. Microstructure of Weld Center
3.3.3. Microstructure of Copper Side Weld
3.4. Properties and Fracture Analysis of Welded Joints
3.4.1. Analysis of Mechanical Properties of Joints
3.4.2. Analysis of Hardness Distribution of Joints
3.4.3. Fracture Analysis of Joints
3.4.4. The Mechanism of the Role of Filler Material
3.4.5. Analysis of Electrical Conductivity of Joints
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zillner, J.; Balle, F. In-depth evaluation of ultrasonically welded Al/Cu joint: Plastic deformation, microstructural evolution, and correlation with mechanical properties. Materials 2023, 16, 3033. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, F.; Strugulea, M.; Höltgen, C.; Roth, S.; Schmidt, M. Seam properties of overlap welding strategies from copper to aluminum using green laser radiation for battery tab connections in electric vehicles. Materials 2023, 16, 1069. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.-S.; Cho, D.-W.; Jung, D.; Kang, H.; Kim, J.O.; Kim, Y.-J.; Park, C. Investigation on laser welding of Al ribbon to Cu sheet: Weldability, microstructure, and mechanical and electrical properties. Metals 2021, 11, 831. [Google Scholar] [CrossRef]
- Beygi, R.; Carbas, R.; Marques, E.; Barbosa, A.; Kasaei, M.; da Silva, L. Mechanism of toughness enhancement of brittle fracture by intermittent η-intermetallic in Al/Cu joint made by FSW. Mater. Sci. Eng. A 2024, 890, 145907. [Google Scholar] [CrossRef]
- Yan, S.; Li, Z.; Song, L.; Zhang, Y.; Wei, S. Research and development status of laser micro-welding of aluminum-copper dissimilar metals: A review. Opt. Lasers Eng. 2023, 161, 107312. [Google Scholar] [CrossRef]
- Dai, W.; Guo, W.; Li, Q.; Xiao, J.; Li, W.; Zhang, H. Homogenization of local microstructure and mechanical properties in friction stir welded Al-Cu alloy joint achieved through laser shock peening. J. Mater. Process. Technol. 2024, 333, 118579. [Google Scholar] [CrossRef]
- Milašinović, V.; Alil, A.; Milašinović, M.; Vencl, A.; Hatala, M.; Dikić, S.; Gligorijević, B. Continuous drive friction welded Al/Cu joints produced using short welding time, elevated rotational speed, and high welding pressures. Materials 2024, 17, 3284. [Google Scholar] [CrossRef]
- Ma, B.; Gao, X.; Huang, Y.; Zhang, Y.; Huang, Y. Effect of different pulse shapes on the laser welding of aluminum and copper. Opt. Laser Technol. 2024, 171, 110312. [Google Scholar] [CrossRef]
- Li, G.; Song, J.; Lu, X.; Zhu, X.; Xu, S.; Guo, Y. Investigation on microstructure and mechanical properties of Al/Cu butt joints by CMT method in asymmetrical V-groove configuration. Metall. Res. Technol. 2020, 117, 303. [Google Scholar] [CrossRef]
- Khajeh, R.; Jafarian, H.R.; Seyedein, S.H.; Jabraeili, R.; Eivani, A.R.; Park, N.; Kim, Y.; Heidarzadeh, A. Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints. J. Mater. Res. Technol. 2021, 14, 1945–1957. [Google Scholar] [CrossRef]
- Chang, Z.; Huang, M.; Wang, X.; Wang, H.; Sun, G.; Zhou, L. Microstructure Evolution and Mechanical Properties of Thick 2219 Aluminum Alloy Welded Joints by Electron-Beam Welding. Materials 2023, 16, 7028. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Masters, I.; Das, A. In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack. J. Manuf. Process. 2021, 70, 78–96. [Google Scholar] [CrossRef]
- Vatnalmath, M.; Auradi, V.; Murthy, B.V.; Nagaral, M.; Pandian, A.A.; Islam, S.; Khan, M.S.; Anjinappa, C.; Razak, A. Impact of bonding temperature on microstructure, mechanical, and fracture behaviors of TLP bonded joints of Al2219 with a Cu interlayer. ACS Omega 2023, 8, 26332–26339. [Google Scholar] [CrossRef] [PubMed]
- Sas-Boca, I.-M.; Iluțiu-Varvara, D.-A.; Tintelecan, M.; Aciu, C.; Frunzӑ, D.I.; Popa, F. Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite. Materials 2022, 15, 8807. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, P.; Nasirin, A.R.; Akbari, H.; Hashemi, R. Experimental and Numerical Investigation of Forming Limit Diagrams during Single Point Incremental Forming for Al/Cu Bimetallic Sheets. Metals 2024, 14, 214. [Google Scholar] [CrossRef]
- Goodarzi, N.; Hashemi, R.; Abedini, R. Microstructure investigation and optimization of process parameters of ultrasonic welding for Al–Cu dissimilar joints using design of experiment. J. Mater. Res. Technol. 2024, 31, 2236–2248. [Google Scholar] [CrossRef]
- Liu, D.; Ni, C.; Ma, Z.; Li, B.; Tang, Y.; Wang, X. Microstructure and mechanical properties of dissimilar metal joints of copper/aluminum using FeCoCrNiMn filler material. Weld. World 2024, 68, 543–555. [Google Scholar] [CrossRef]
- Yan, S.; Shi, Y. Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal. J. Manuf. Process. 2020, 59, 343–354. [Google Scholar] [CrossRef]
- Payak, V.; Paulraj, J.; Roy, B.S.; Bhargava, M.; Choudhury, S. Microstructural and mechanical characteristics of friction stir welded Al6101/C11000 joints with zinc and silver interlayer. Int. J. Adv. Manuf. Technol. 2023, 128, 1419–1439. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, X.; Liu, J.; Li, P. Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint. J. Manuf. Process. 2021, 67, 226–240. [Google Scholar] [CrossRef]
- Chen, T.; Liu, F.; Pang, L.; Hu, H.; Gao, P. Microstructure and performance study of Al/Cu Laser welding with Ag interlayer. Int. J. Precis. Eng. Manuf. 2024, 25, 79–89. [Google Scholar] [CrossRef]
- Eslami, N.; Hischer, Y.; Harms, A.; Lauterbach, D.; Böhm, S. Influence of copper-sided tin coating on the weldability and formation of friction stir welded aluminum-copper-joints. Metals 2019, 9, 179. [Google Scholar] [CrossRef]
- Guo, J.; Li, C.; Bian, J.; Zhang, J.; Geng, B. Microstructures and Electrical Resistivity of Aluminum–Copper Joints. Metals 2023, 13, 1474. [Google Scholar] [CrossRef]
- Huan, P.-C.; Tang, X.-X.; Sun, Q.; Akira, K.; Wang, X.-N.; Wang, J.; Wang, J.-L.; Wei, X.; Di, H.-S. Comparative study of solder wettability on aluminum substrate and microstructure-properties of Cu-based component/aluminum laser soldering joint. Mater. Des. 2022, 215, 110485. [Google Scholar] [CrossRef]
- Xu, W.; Yang, J.; Peng, M.; Zhao, Y.; Liu, H.; Deng, P.; Gao, Y.; Zhang, H. Characteristics of torch-offset cold metal transition-cycle step welding of 5052Al alloy with T2 copper via Al-12Si filler. J. Mater. Eng. Perform. 2023, 32, 587–595. [Google Scholar] [CrossRef]
- Witusiewicz, V.; Hecht, U.; Fries, S.; Rex, S. The Ag–Al–Cu system: II. A thermodynamic evaluation of the ternary system. J. Alloys Compd. 2005, 387, 217–227. [Google Scholar] [CrossRef]
- ASTM E8/E8M-24; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2024.
- Zhang, Z.; Zhang, J.; Zhao, X.; Cheng, X.; Liu, X.; Zhang, Q. Thermodynamic Simulation Calculations of Phase Transformations in Low-Aluminum Zn-Al-Mg Coatings. Materials 2024, 17, 2719. [Google Scholar] [CrossRef]
- Sun, T.; Jabar, S.; Kumar, N.; Liu, C.; Ceglarek, D.; Franciosa, P. The impact of ring-shaped laser beam on dissimilar welding of Al-Cu thin sheets for battery tab-to-busbar connection: Microstructural, mechanical and electrical characteristics. Opt. Laser Technol. 2024, 179, 111312. [Google Scholar] [CrossRef]
Base Materials | Chemical Composition | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al 6061 | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
0.65~0.80 | 0.7 | 0.15~0.20 | 0.15 | 0.8~0.9 | 0.08~0.12 | 0.25 | 0.15 | Bal. | |
Cu T2 | Zn | Sn | Ni | S | Pb | O | Fe | As | Cu |
0.002~0.003 | 0.002 | 0.003~0.005 | 0.005 | 0.005 | 0.004~0.006 | 0.006 | 0.002 | ≥99.99 |
Laser Power/W | 650 | 700 | 750 | 800 | 850 |
---|---|---|---|---|---|
Welding speed/(mm·s−1) | 13 | 13 | 13 | 13 | 13 |
Defocus amount/mm | 0 | 0 | 0 | 0 | 0 |
Pulse frequency/Hz | 50 | 50 | 50 | 50 | 50 |
Point | Al (at%) | Cu (at%) | Zn (at%) | Ag (at%) | Possible Phase |
---|---|---|---|---|---|
1 | 46.54 | 24.06 | 8.34 | 21.06 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
2 | 51.72 | 38.39 | 4.24 | 5.65 | (Al) + AlCu3 |
3 | 31.33 | 8.38 | 15.66 | 44.63 | (Al) + Ag2Al + Cu5Zn8 |
4 | 47.03 | 25.58 | 6.31 | 21.08 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
5 | 30.20 | 14.70 | 14.92 | 40.18 | (Al) + Ag2Al + Cu5Zn8 |
6 | 47.19 | 43.87 | 5.23 | 3.71 | (Al) + AlCu3 |
7 | 49.40 | 18.17 | 9.00 | 23.43 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
8 | 58.65 | 35.99 | 2.78 | 2.58 | (Al) + AlCu3 |
9 | 36.54 | 14.76 | 13.20 | 35.50 | (Al) + Ag2Al + Cu5Zn8 |
10 | 47.89 | 23.26 | 6.56 | 22.28 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
11 | 53.99 | 33.46 | 4.63 | 7.92 | (Al) + AlCu3 |
12 | 45.57 | 16.49 | 10.65 | 27.29 | (Al) + Ag2Al + Cu5Zn8 |
13 | 44.26 | 13.62 | 10.73 | 31.39 | (Al) + Ag2Al + Cu5Zn8 |
14 | 49.02 | 18.32 | 7.61 | 25.06 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
15 | 56.47 | 30.56 | 2.11 | 10.86 | (Al) + AlCu3 + Ag2Al + Cu5Zn8 |
16 | 44.81 | 45.41 | 4.54 | 5.24 | (Al) + AlCu3 |
17 | 30.13 | 22.98 | 12.90 | 33.99 | (Al) + Ag2Al + Cu5Zn8 |
Point | Al (at%) | Cu (at%) | Zn (at%) | Ag (at%) | Possible Phase |
---|---|---|---|---|---|
1 | 24.84 | 21.69 | 17.88 | 35.59 | (Al) + Ag2Al + Cu5Zn8 |
2 | 42.04 | 42.04 | 6.38 | 9.53 | (Al) + AlCu3 |
3 | 21.90 | 11.07 | 18.67 | 48.37 | (Ag) + Ag2Al + Cu5Zn8 |
4 | 30.47 | 53.78 | 6.45 | 9.31 | (Al) + AlCu3 |
5 | 33.53 | 13.55 | 14.40 | 38.52 | (Al) + Ag2Al + Cu5Zn8 |
6 | 42.60 | 47.33 | 5.44 | 4.63 | (Al) + AlCu3 |
7 | 43.39 | 21.78 | 9.01 | 25.82 | (Al) + Ag2Al + Cu5Zn8 |
8 | 51.36 | 41.59 | 4.00 | 3.05 | (Al) + AlCu3 |
9 | 37.28 | 13.77 | 12.56 | 36.39 | (Al) + Ag2Al + Cu5Zn8 |
10 | 48.87 | 45.01 | 3.45 | 2.66 | (Al) + AlCu3 |
11 | 9.23 | 19.75 | 19.42 | 51.60 | (Ag) + Ag2Al + Cu5Zn8 |
12 | 24.94 | 59.10 | 8.55 | 7.41 | (Al) + AlCu3 |
13 | 26.30 | 56.90 | 7.94 | 8.86 | (Al) + AlCu3 |
14 | 20.60 | 14.42 | 18.12 | 46.85 | (Ag) + Ag2Al + Cu5Zn8 |
15 | 32.12 | 53.06 | 5.47 | 9.35 | (Al) + AlCu3 |
16 | 26.07 | 10.70 | 17.71 | 45.52 | (Ag) + Ag2Al + Cu5Zn8 |
17 | 52.31 | 38.68 | 3.21 | 5.81 | (Al) + AlCu3 |
18 | 33.56 | 8.07 | 14.69 | 43.68 | (Al) + Ag2Al + Cu5Zn8 |
19 | 50.32 | 41.18 | 3.98 | 4.52 | (Al) + AlCu3 |
20 | 35.78 | 7.81 | 10.98 | 45.42 | (Al) + Ag2Al + Cu5Zn8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Liu, F.; Gao, P.; Pang, L.; Su, Y. Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints. Materials 2024, 17, 5726. https://doi.org/10.3390/ma17235726
He Z, Liu F, Gao P, Pang L, Su Y. Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints. Materials. 2024; 17(23):5726. https://doi.org/10.3390/ma17235726
Chicago/Turabian StyleHe, Ziquan, Fei Liu, Ping Gao, Lihui Pang, and Yong Su. 2024. "Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints" Materials 17, no. 23: 5726. https://doi.org/10.3390/ma17235726
APA StyleHe, Z., Liu, F., Gao, P., Pang, L., & Su, Y. (2024). Influence of Ag-18Cu-10Zn Filler Material on Microstructure and Properties of Laser-Welded Al/Cu Dissimilar Butt Joints. Materials, 17(23), 5726. https://doi.org/10.3390/ma17235726