Hydroxyapatite Nanocoatings Deposited by Means of Resonant Matrix-Assisted Pulsed Laser Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Hydroxyapatite Microparticles
2.3. MAPLE Deposition
2.4. Sample Characterization
2.5. Adhesion Test
2.6. Statistical Analysis
3. Results
3.1. Selection of Solvents
3.2. MAPLE Deposition of HAp Coatings
3.2.1. SEM Investigations
3.2.2. Sample Thickness Investigations
3.2.3. Raman Investigations
3.2.4. XRD Analysis
3.2.5. Adhesion Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, M.; Rack, H.J. Titanium Alloys in Total Joint Replacement—A Materials Science Perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Gross, K.A.; Berndt, C.C. Thermal Processing of Hydroxyapatite for Coating Production. J. Biomed. Mater. Res. 1998, 39, 580–587. [Google Scholar] [CrossRef]
- Ding, S.-J. Properties and Immersion Behavior of Magnetron-Sputtered Multi-Layered Hydroxyapatite/Titanium Composite Coatings. Biomaterials 2003, 24, 4233–4238. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, K.-H.; Ong, J.L. A Review on Calcium Phosphate Coatings Produced Using a Sputtering Process—An Alternative to Plasma Spraying. Biomaterials 2005, 26, 327–337. [Google Scholar] [CrossRef]
- Weng, W.; Baptista, J.L. Alkoxide Route for Preparing Hydroxyapatite and Its Coatings. Biomaterials 1998, 19, 125–131. [Google Scholar] [CrossRef]
- Choudhury, P.; Agrawal, D.C. Sol–Gel Derived Hydroxyapatite Coatings on Titanium Substrates. Surf. Coat. Technol. 2011, 206, 360–365. [Google Scholar] [CrossRef]
- Li, P.; de Groot, K.; Kokubo, T. Bioactive Ca10(PO4)6(OH)2–TiO2 Composite Coating Prepared by Sol-Gel Process. J. Sol-Gel Sci. Technol. 1996, 7, 27–34. [Google Scholar] [CrossRef]
- Han, Y.; Fu, T.; Lu, J.; Xu, K. Characterization and Stability of Hydroxyapatite Coatings Prepared by an Electrodeposition and Alkaline-Treatment Process. J. Biomed. Mater. Res. 2001, 54, 96–101. [Google Scholar] [CrossRef]
- Ishizawa, H.; Ogino, M. Hydrothermal Precipitation of Hydroxyapatite on Anodic Titanium Oxide Films Containing Ca and P. J. Mater. Sci. 1999, 34, 5893–5898. [Google Scholar] [CrossRef]
- León, B. Pulsed Laser Deposition of Thin Calcium Phosphate Coatings. In Thin Calcium Phosphate Coatings for Medical Implants; León, B., Jansen, J., Eds.; Springer: New York, NY, USA, 2009; pp. 101–155. ISBN 978-0-387-77719-1. [Google Scholar]
- Clèries, L.; Martínez, E.; Fernández-Pradas, J.M.; Sardin, G.; Esteve, J.; Morenza, J.L. Mechanical Properties of Calcium Phosphate Coatings Deposited by Laser Ablation. Biomaterials 2000, 21, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Popescu-Pelin, G.; Sima, F.; Sima, L.E.; Mihailescu, C.N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I.N. Hydroxyapatite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation: Comparative Study. Appl. Surf. Sci. 2017, 418, 580–588. [Google Scholar] [CrossRef]
- Duta, L.; Popescu, A.C. Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources. Coatings 2019, 9, 335. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Popescu-Pelin, G.; Zgura, I.; Anastasescu, M.; Oktar, F.N. Influence of Post-Deposition Thermal Treatments on the Morpho-Structural, and Bonding Strength Characteristics of Lithium-Doped Biological-Derived Hydroxyapatite Coatings. Coatings 2022, 12, 1883. [Google Scholar] [CrossRef]
- Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; et al. Composite Biocompatible Hydroxyapatite–Silk Fibroin Coatings for Medical Implants Obtained by Matrix Assisted Pulsed Laser Evaporation. Mater. Sci. Eng. B 2010, 169, 151–158. [Google Scholar] [CrossRef]
- Florea, D.A.; Grumezescu, V.; Bîrcă, A.C.; Vasile, B.Ș.; Iosif, A.; Chircov, C.; Stan, M.S.; Grumezescu, A.M.; Andronescu, E.; Chifiriuc, M.C. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. Materials 2022, 15, 7337. [Google Scholar] [CrossRef]
- Florea, D.A.; Grumezescu, V.; Bîrcă, A.C.; Vasile, B.Ș.; Mușat, M.; Chircov, C.; Stan, M.S.; Grumezescu, A.M.; Andronescu, E.; Chifiriuc, M.C. Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. Int. J. Mol. Sci. 2022, 23, 7910. [Google Scholar] [CrossRef]
- Duta, L.; Ristoscu, C.; Stan, G.E.; Husanu, M.A.; Besleaga, C.; Chifiriuc, M.C.; Lazar, V.; Bleotu, C.; Miculescu, F.; Mihailescu, N.; et al. New Bio-Active, Antimicrobial and Adherent Coatings of Nanostructured Carbon Double-Reinforced with Silver and Silicon by Matrix-Assisted Pulsed Laser Evaporation for Medical Applications. Appl. Surf. Sci. 2018, 441, 871–883. [Google Scholar] [CrossRef]
- Toftmann, B.; Rodrigo, K.; Schou, J.; Pedrys, R. High Laser-Fluence Deposition of Organic Materials in Water Ice Matrices by “MAPLE”. Appl. Surf. Sci. 2005, 247, 211–216. [Google Scholar] [CrossRef]
- Sawczak, M.; Jendrzejewski, R.; Maskowicz, D.; Garcia, Y.; Dîrtu, M.; Kumar, V.; Śliwiński, G. Host–Guest Exchange Contribution to Transition Temperature Downshift in Nanocrystalline Fe(Pyrazine)[Pt(CN)4] Thin Films Prepared by Matrix-Assisted Pulsed Laser Evaporation. J. Appl. Phys. 2021, 129, 155308. [Google Scholar] [CrossRef]
- Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G. Organic Semiconductor Rubrene Thin Films Deposited by Pulsed Laser Evaporation of Solidified Solutions. In Proceedings of the Third International Conference on Applications of Optics and Photonics, Faro, Portugal, 8–12 May 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10453. 104532H. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-Nm to 200-Μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Kondo, S.; Saeki, S.; Person, W.B. Infrared Intensities of Acetonitrile. J. Phys. Chem. 1984, 88, 3152–3157. [Google Scholar] [CrossRef]
- Maskowicz, D.; Jendrzejewski, R.; Kopeć, W.; Gazda, M.; Karczewski, J.; Niedziałkowski, P.; Kleibert, A.; Vaz, C.A.F.; Garcia, Y.; Sawczak, M. Thin Films of Nanocrystalline Fe(Pz)[Pt(CN)4] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation. Materials 2021, 14, 7135. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Sakai, A.; Komori, A.; Sakamoto, Y.; Matsuno, H.; Serizawa, T.; Hashizume, M. Control of Biomimetic Hydroxyapatite Deposition on Polymer Substrates Using Different Protein Adsorption Abilities. Colloids Surf. B Biointerfaces 2015, 130, 77–83. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; LewisOscar, F.; Selvaraj, R.; Brindhadevi, K.; Pugazhendhi, A. Natural Organic and Inorganic–Hydroxyapatite Biopolymer Composite for Biomedical Applications. Prog. Org. Coat. 2020, 147, 105858. [Google Scholar] [CrossRef]
- Gheisari, H.; Karamian, E.; Abdellahi, M. A Novel Hydroxyapatite –Hardystonite Nanocomposite Ceramic. Ceram. Int. 2015, 41, 5967–5975. [Google Scholar] [CrossRef]
- Nosenko, V.V.; Yaremko, A.M.; Dzhagan, V.M.; Vorona, I.P.; Romanyuk, Y.A.; Zatovsky, I.V. Nature of Some Features in Raman Spectra of Hydroxyapatite-Containing Materials. J. Raman Spectrosc. 2016, 47, 726–730. [Google Scholar] [CrossRef]
- Głąb, M.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Kordyka, A.; Godzierz, M.; Wróbel, P.S.; Tomala, A.; Tyliszczak, B.; Sobczak-Kupiec, A. Evaluation of the Impact of pH of the Reaction Mixture, Type of the Stirring, and the Reagents’ Concentration in the Wet Precipitation Method on Physicochemical Properties of Hydroxyapatite so as to Enhance Its Biomedical Application Potential. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2649–2666. [Google Scholar] [CrossRef]
- Seredin, P.; Goloshchapov, D.; Buylov, N.; Kashkarov, V.; Emelyanova, A.; Eremeev, K.; Ippolitov, Y. Compositional Analysis of the Dental Biomimetic Hybrid Nanomaterials Based on Bioinspired Nonstoichiometric Hydroxyapatite with Small Deviations in the Carbonate Incorporation. Nanomaterials 2022, 12, 4453. [Google Scholar] [CrossRef]
- Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef]
- Londoño-Restrepo, S.M.; Jeronimo-Cruz, R.; Millán-Malo, B.M.; Rivera-Muñoz, E.M.; Rodriguez-García, M.E. Effect of the Nano Crystal Size on the X-Ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones. Sci. Rep. 2019, 9, 5915. [Google Scholar] [CrossRef]
- Kawsar, M.; Hossain, M.S.; Bahadur, N.M.; Ahmed, S. Synthesis of Nano-Crystallite Hydroxyapatites in Different Media and a Comparative Study for Estimation of Crystallite Size Using Scherrer Method, Halder-Wagner Method Size-Strain Plot, and Williamson-Hall Model. Heliyon 2024, 10, e25347. [Google Scholar] [CrossRef]
- Bunge, H.J. Influence of Texture on Powder Diffraction. Textures Microstruct. 1997, 29, 1–26. [Google Scholar] [CrossRef]
- Wagner, F. Texture Determination by Using X Ray Diffraction BT—Characterization Techniques of Glasses and Ceramics; Rincon, J.M., Romero, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 169–186. ISBN 978-3-662-03871-0. [Google Scholar]
Sample (Matrix) | Deposition Rate (SEM) [Impulse/nm] | Deposition Rate (Profilometry) [Impulse/nm] |
---|---|---|
H2O | 190.5 ± 18 | 179 ± 16 |
IPA | 172 ± 16 | 213 ± 19 |
IPA + ACN | 112 ± 10 | 108 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maskowicz, D.; Maroszek, K.; Jendrzejewski, R.; Sawczak, M. Hydroxyapatite Nanocoatings Deposited by Means of Resonant Matrix-Assisted Pulsed Laser Evaporation. Materials 2024, 17, 5778. https://doi.org/10.3390/ma17235778
Maskowicz D, Maroszek K, Jendrzejewski R, Sawczak M. Hydroxyapatite Nanocoatings Deposited by Means of Resonant Matrix-Assisted Pulsed Laser Evaporation. Materials. 2024; 17(23):5778. https://doi.org/10.3390/ma17235778
Chicago/Turabian StyleMaskowicz, Dominik, Kacper Maroszek, Rafał Jendrzejewski, and Mirosław Sawczak. 2024. "Hydroxyapatite Nanocoatings Deposited by Means of Resonant Matrix-Assisted Pulsed Laser Evaporation" Materials 17, no. 23: 5778. https://doi.org/10.3390/ma17235778
APA StyleMaskowicz, D., Maroszek, K., Jendrzejewski, R., & Sawczak, M. (2024). Hydroxyapatite Nanocoatings Deposited by Means of Resonant Matrix-Assisted Pulsed Laser Evaporation. Materials, 17(23), 5778. https://doi.org/10.3390/ma17235778