Investigation on Mechanical Shock Wave Protective and Thermodynamic Properties of SiO2-Aerogel-Modified Polyurea
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Methods
3.1. Microscopic Morphology Observation
3.2. Mechanical Shock Wave Experiments and Evaluation Methods
3.2.1. Mechanical Shock Wave Experiments
3.2.2. Evaluation Methods and Indicators
Baseline Models
Evaluation Indicators
3.3. Thermodynamic Properties Experiments
3.3.1. Thermal Conductivity Experiments
3.3.2. Limiting Oxygen Index Experiments
3.3.3. Thermogravimetric Experiments
4. Results and Analysis
4.1. Microscopic Morphology Analysis
4.2. Mechanical Shock Wave Experiments Results and Analysis
4.2.1. Peak Overpressure Mitigation Analysis
4.2.2. Peak Acceleration Mitigation Analysis
4.3. Thermodynamic Properties Experiments Results and Analysis
4.3.1. Thermal Conductivity Experiments Results and Analysis
4.3.2. Limiting Oxygen Index Experiments Results and Analysis
4.3.3. Thermogravimetric Experiments Results and Analysis
5. Conclusions
- The mechanical shock wave experiment explored the shock wave mitigation performance of polyurea composites. For polyurea composites using the vacuum process, γp values first decrease and then go up with the increase in SiO2 aerogel concentration, and the change trend of γa values is similar to that of γp. The polyurea composites with the best mitigation performance is PA7V, with a γp of 17.84% and a γa of 58.25%. For polyurea composites using the atmospheric pressure process, γp values first decline and then rise with the increase in the SiO2 aerogel concentration, while the γa values first go up and then decline. PA5N has the best mitigation performance, with a γp of 12.66% and a γa of 52.28%.
- In thermal conductivity experiments, it is found that the addition of SiO2 aerogel is conducive to improving the thermal insulation performance of the materials, and the thermal insulation performance of all SiO2-aerogel-modified polyurea composites is better than that of PU. For polyurea composites with the vacuum process, the thermal insulation performance first goes up and then declines with the increasing concentration of SiO2 aerogel. PA3V has the best thermal insulation performance, with a thermal conductivity of 0.19621 W/m·K, which is 24.8% lower than PU. For polyurea composites with the atmospheric pressure process, the thermal insulation performance is significantly improved and slightly decreases (from 0.14174 W/m·K to 0.16793 W/m·K) with the increase in the SiO2 aerogel concentration. PA2N has the best thermal insulation performance, with a thermal conductivity of 0.14174 W/m·K, which is 45.65% lower than PU. These results indicate that the atmospheric pressure process is more conducive to improving the thermal insulation performance of polyurea composites.
- In the LOI experiments, it is found that the vacuum and atmospheric pressure processes significantly affect the flame retardancy of the materials. For polyurea composites using the vacuum process, their LOI values are higher than PU. Among them, the LOI of PA7V reached 22.5%, indicating a certain degree of self-extinguishing performance. This shows that the SiO2 aerogel is conducive to improving the flame retardancy of polyurea composites when the vacuum process used. For polyurea composites using the atmospheric pressure process, all their LOI values are below 21%. Only LOI values of PA4N and PA5N are slightly higher than that of PU, which are 19.7% and 20.4%, respectively, indicating that the atmospheric pressure process is not conducive to improving the flame retardancy of polyurea.
- In the thermogravimetric experiments, the thermal stability of polyurea composites is evaluated. For polyurea composites using the vacuum process, as the concentration of the SiO2 aerogel increases, the residual mass values increase (from 9.36% to 13.87%), the peak degradation temperatures increase (from 428.6 °C to 431.4 °C), and the peak degradation rates decline (from −20.74%/min to −18.82%/min). The experimental results show that the addition of the SiO2 aerogel is beneficial for improving the thermal stability of the polyurea composites when using the vacuum process. For polyurea composites using the atmospheric pressure process, the addition of the SiO2 aerogel can reduce the thermal stability of the polyurea composites. With the increase in the SiO2 aerogel concentration, the residual mass values (from 8.18% to 10.78%) and peak degradation rates (from −19.93%/min to −20.99%/min) go up. The results also show that the atmospheric pressure process damages the thermal stability of the polyurea composites compared with the vacuum process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edri, I.E. Blast Injury Risks to Humans within a Military Trench. Def. Technol. 2024, 40, 91–104. [Google Scholar] [CrossRef]
- Finlay, S.E.; Earby, M.; Baker, D.J.; Murray, V.S.G. Explosions and Human Health: The Long-Term Effects of Blast Injury. Prehospital Disaster Med. 2012, 27, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Siebert, U.; Stürznickel, J.; Schaffeld, T.; Oheim, R.; Rolvien, T.; Prenger-Berninghoff, E.; Wohlsein, P.; Lakemeyer, J.; Rohner, S.; Aroha Schick, L.; et al. Blast Injury on Harbour Porpoises (Phocoena phocoena) from the Baltic Sea after Explosions of Deposits of World War II Ammunition. Environ. Int. 2022, 159, 107014. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Guo, Z.; Yuan, M.; Qian, X.; Du, Z. Mechanical Response of Human Torso under Blast Loading. Saf. Sci. 2020, 131, 104936. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, Q.; Wu, Y.; Chen, H.; Liu, Y.; Wang, J.; Duan, X.; Chen, Q.; Ge, Z.; Zhang, Y. Extremely Strong and Tough Biodegradable Poly(Urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogen-Bonding Interactions. Adv. Mater. 2023, 35, 2212130. [Google Scholar] [CrossRef]
- Lu, L.; Xu, J.; Li, J.; Xing, Y.; Zhou, Z.; Zhang, F. High-Toughness and Intrinsically Self-Healing Cross-Linked Polyurea Elastomers with Dynamic Sextuple H-Bonds. Macromolecules 2024, 57, 2100–2109. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, C.; Lin, X.; Ma, C.; Zhang, G. Nanodiamond Reinforced Poly(Dimethylsiloxane)-Based Polyurea with Self-Healing Ability for Fouling Release Coating. ACS Appl. Polym. Mater. 2020, 2, 3181–3188. [Google Scholar] [CrossRef]
- Li, X.; Tan, X.; Chen, W.; Xiao, T.; Li, X.; Jiang, L.; Liu, S.; Tan, X.; Li, T. Robust and Durable Superhydrophobic Coatings with Antipollution Flashover Performance via Silane-Modified Polyurea. Langmuir 2024, 40, 5151–5161. [Google Scholar] [CrossRef]
- Song, D. Experimental Investigation on Blast and Post-Blast Performance of Reinforced Concrete Straight-Wall Arches Strengthened with Polyurea Coating. Constr. Build. Mater. 2023, 385, 131352. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Wang, Y.; Wu, G.; Cao, Y.; Ji, C. Dynamic Responses of Aluminum Alloy Plates Coated with Polyurea Elastomer Subjected to Repeated Blast Loads: Experimental and Numerical Investigation. Thin-Walled Struct. 2023, 189, 110912. [Google Scholar] [CrossRef]
- Jia, S.; Wang, C.; Xu, W.; Ma, D.; Qi, F. Experimental Investigation on Weak Shock Wave Mitigation Characteristics of Flexible Polyurethane Foam and Polyurea. Def. Technol. 2024, 31, 179–191. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Y.; Zhang, P.; Cai, S.; Liu, J. Blast Resistance of Metallic Double Arrowhead Honeycomb Sandwich Panels with Different Core Configurations under the Paper Tube-Guided Air Blast Loading. Int. J. Mech. Sci. 2021, 1, 106457. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, J.; Cui, J.; Zhang, Y.; Wang, Y.; Zhang, Y.; Han, Y.; Sun, M. Energy Absorption Characteristics of Composite Material with Fiber–Foam Metal Sandwich Structure Subjected to Gas Explosion. Materials 2024, 17, 1596. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, Z.; Liu, Z.; Zhuang, Z. Shock Loading Mitigation Performance and Mechanism of the PE/Wood/PU/Foam Structures. Int. J. Impact Eng. 2021, 155, 103904. [Google Scholar] [CrossRef]
- Lv, W.; Li, D.; Dong, L. Study on Blast Resistance of a Composite Sandwich Panel with Isotropic Foam Core with Negative Poisson’s Ratio. Int. J. Mech. Sci. 2021, 191, 106105. [Google Scholar] [CrossRef]
- Ma, D.; Wang, C.; Xu, W.; Jia, S. Investigate of Shock Wave Mitigation Performance of Nano-carbon Fillers Modified Epoxy Composites. Polym. Compos. 2022, 43, 7463–7472. [Google Scholar] [CrossRef]
- Lin, K.; Tan, Y.; Chen, H.; Tao, X.; Ouyang, Y.; Du, Y. Phononic Characteristics to Determine Absorbing Shock-Wave Energy for Low-Dimensional Materials. Carbon 2023, 203, 410–415. [Google Scholar] [CrossRef]
- Wei, C. Shock Attenuation of Silicone Rubber Composites with Shear Thickening Fluid. Int. J. Mech. Sci. 2024, 278, 109462. [Google Scholar] [CrossRef]
- Njoroge, J.; Chakrabarty, A.; Cagin, T. Shockwave Response of Polymer and Polymer Nanocomposites. Appl. Sci. 2019, 9, 3899. [Google Scholar] [CrossRef]
- Bober, D.B.; Herbold, E.B.; Toyoda, Y.; Maddox, B.; Kumar, M. A Description of Structured Waves in Shock Compressed Particulate Composites. J. Appl. Phys. 2020, 127, 235108. [Google Scholar] [CrossRef]
- Tsai, L.; Prakash, V.; Rajendran, A.M.; Dandekar, D.P. Structure of Shock Waves in Glass Fiber Reinforced Polymer Matrix Composites. Appl. Phys. Lett. 2007, 90, 061909. [Google Scholar] [CrossRef]
- Moumen, A.E. Carbon Nanotubes as a Player to Improve Mechanical Shock Wave Absorption. Compos. B Eng. 2019, 164, 67–71. [Google Scholar] [CrossRef]
- Ni, A.; Zhu, Y.; Wang, X.; Li, Y.; Liu, J.; Fang, X.; Lu, Z.; Yang, B.; Sun, J. Dual Nanofillers-Reinforced Noncovalently Cross-Linked Polymeric Composites with Unprecedented Mechanical Strength. CCS Chem. 2023, 5, 2312–2323. [Google Scholar] [CrossRef]
- Wei, C.; Liu, Z.; Yin, H.; Hao, X.; Zhong, F.; Mao, C. Shock Wave Energy Dissipation in Strong and Tough Poly(Dimethylsiloxane) Composites with Controlled Microstructure. Polym. Test. 2024, 135, 108460. [Google Scholar] [CrossRef]
- Rauls, M.B.; Ravichandran, G. Structure of Shock Waves in Particulate Composites. J. Appl. Phys. 2020, 127, 065902. [Google Scholar] [CrossRef]
- Ma, D.; Wang, C.; Xu, W.; Jia, S.; Qi, F. Shock Wave Mitigation and Impact Resistance Response of Kevlar Fabric with Novel Shear-Stiffening Gel Core. J. Mater. Res. Technol. 2023, 27, 839–851. [Google Scholar] [CrossRef]
- Haris, A. An Experimental Study on Shock Wave Mitigation Capability of Polyurea and Shear Thickening Fluid Based Suspension Pads. Def. Technol. 2018, 14, 12–18. [Google Scholar] [CrossRef]
- Liu, L.; Shan, X.; Hu, X.; Lv, W.; Wang, J. Superhydrophobic Silica Aerogels and Their Layer-by-Layer Structure for Thermal Management in Harsh Cold and Hot Environments. ACS Nano 2021, 15, 19771–19782. [Google Scholar] [CrossRef]
- Jadhav, S.; Sarawade, P. Recent Advances and Prospective of Reinforced Silica Aerogel Nanocomposites and Their Applications. Eur. Polym. J. 2024, 206, 112766. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Gong, L.; Zhang, H. Aramid Fibers Reinforced Silica Aerogel Composites with Low Thermal Conductivity and Improved Mechanical Performance. Compos. Part Appl. Sci. Manuf. 2016, 84, 316–325. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in Carbon Nanostructure–Silica Aerogel Composites: A Review. J. Mater. Chem. A 2018, 6, 1340–1369. [Google Scholar] [CrossRef]
- O’Mahony, T.F.; Morris, M.A. Hydroxylation Methods for Mesoporous Silica and Their Impact on Surface Functionalisation. Microporous Mesoporous Mater. 2021, 317, 110989. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Lin, L.; Wu, T.; Brunner, S.; Galmarini, S.; Bi, J.; Malfait, W.J.; Zhao, S.; Ostrikov, K. (Ken) Silica Aerogels: From Materials Research to Industrial Applications. Int. Mater. Rev. 2023, 68, 862–900. [Google Scholar] [CrossRef]
- Rother, G.; Stack, A.G.; Gautam, S.; Liu, T.; Cole, D.R.; Busch, A. Water Uptake by Silica Nanopores: Impacts of Surface Hydrophilicity and Pore Size. J. Phys. Chem. C 2020, 124, 15188–15194. [Google Scholar] [CrossRef]
Material | SiO2 Aerogel (Mass Concentration) | Process of Step2 and Step3 |
---|---|---|
PA1V | 1% | Vacuum (6 × 10−2 Pa) |
PA2V | 2% | |
PA3V | 3% | |
PA5V | 5% | |
PA7V | 7% | |
PA10V | 10% | |
PA1N | 1% | Atmospheric pressure (1.01 × 105 Pa) |
PA2N | 2% | |
PA3N | 3% | |
PA4N | 4% | |
PA5N | 5% |
Material | Thermal Conductivity Factor (W/m·K) | Limiting Oxygen Index (%) |
---|---|---|
PU | 0.26081 | 19.6 |
PA1V | 0.25267 | 20.2 |
PA2V | — | 21.2 |
PA3V | 0.19621 | 21.2 |
PA5V | 0.20616 | 21.4 |
PA7V | 0.23566 | 22.5 |
PA10V | 0.23648 | 20.1 |
PA1N | — | 19.2 |
PA2N | 0.14174 | 19.2 |
PA3N | 0.14346 | 19.5 |
PA4N | 0.15206 | 19.7 |
PA5N | 0.16793 | 20.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, W.; Yang, T.; Ma, D.; Jia, S.; Li, Z. Investigation on Mechanical Shock Wave Protective and Thermodynamic Properties of SiO2-Aerogel-Modified Polyurea. Materials 2024, 17, 5817. https://doi.org/10.3390/ma17235817
Liu C, Xu W, Yang T, Ma D, Jia S, Li Z. Investigation on Mechanical Shock Wave Protective and Thermodynamic Properties of SiO2-Aerogel-Modified Polyurea. Materials. 2024; 17(23):5817. https://doi.org/10.3390/ma17235817
Chicago/Turabian StyleLiu, Chuanyi, Wenlong Xu, Tonghui Yang, Dong Ma, Shiyu Jia, and Zehao Li. 2024. "Investigation on Mechanical Shock Wave Protective and Thermodynamic Properties of SiO2-Aerogel-Modified Polyurea" Materials 17, no. 23: 5817. https://doi.org/10.3390/ma17235817
APA StyleLiu, C., Xu, W., Yang, T., Ma, D., Jia, S., & Li, Z. (2024). Investigation on Mechanical Shock Wave Protective and Thermodynamic Properties of SiO2-Aerogel-Modified Polyurea. Materials, 17(23), 5817. https://doi.org/10.3390/ma17235817