Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Homogenization Theory
2.2. Periodic Boundary Conditions (PBC)
3. Multiscale Concurrent Topology Optimization Based on BESO
3.1. Multiscale Concurrent Topology Optimization Method
3.2. Sensitivity Analysis
3.2.1. Sensitivity Analysis at the Macroscale
3.2.2. Sensitivity Analysis at the Microscale
3.3. Multiscale Concurrent Topology Optimization Process Based on BESO Method
4. Multiscale Concurrent Topology Optimization of Sandwich Simply Supported Beams
4.1. Macro and Micro Concurrent Topology Optimization
4.2. Macro and Micro Gradient Concurrent Topology Optimization
4.3. Macro and Micro Layered Gradient Concurrent Topology Optimization
4.4. Computational Efficiency Analysis of Optimization Algorithms
4.5. Three Multiscale Concurrent Topology Optimization of Sandwich Cantilever Beam Under Uniform Distributed Load
4.6. Three Multiscale Concurrent Topology Optimization Methods of 3D Sandwich Fully Clamped Beam Under Regional Uniform Distributed Load
5. Analysis of Experimental and Simulation Results
5.1. Preparing Test Samples
5.2. Static Three-Point Bending Experiment
5.3. Macro and Micro Deformation Mechanisms and Energy Absorption of Structures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markworth, A.J.; Ramesh, K.S.; Parks, W.P. Modelling studies applied to functionally graded materials. J. Mater. Sci. 1995, 30, 2183–2193. [Google Scholar] [CrossRef]
- Li, S.; Lu, G.; Wang, Z.; Zhao, L.; Wu, G. Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading. Int. J. Mech. Sci. 2015, 96–97, 1–12. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ahmad, Z.; Petrů, M.; Mazlan, S.A.; Faizal Johari, M.A.; Hatami, H.; Rahimian Koloor, S.S. An insight from nature: Honeycomb pattern in advanced structural design for impact energy absorption. J. Mater. Res. Technol. 2023, 22, 2862–2887. [Google Scholar] [CrossRef]
- Yao, R.; Pang, T.; He, S.; Li, Q.; Zhang, B.; Sun, G. A bio-inspired foam-filled multi-cell structural configuration for energy absorption. Compos. Part B Eng. 2022, 238, 109801. [Google Scholar] [CrossRef]
- Yang, J.; Gu, D.; Lin, K.; Yang, Y.; Ma, C. Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: Numerical simulation and selective laser melting process. J. Mech. Behav. Biomed. Mater. 2019, 91, 59–67. [Google Scholar] [CrossRef]
- Yin, S.; Guo, W.; Wang, H.; Huang, Y.; Yang, R.; Hu, Z.; Chen, D.; Xu, J.; Ritchie, R.O. Strong and Tough Bioinspired Additive-Manufactured Dual-Phase Mechanical Metamaterial Composites. J. Mech. Phys. Solids 2021, 149, 104341. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, F.; Jiang, X.; Wang, L. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J. Appl. Phys. 2020, 127, 150901. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Z.; Li, S.; Lei, J.; Wang, Z. Dynamic response and energy absorption performance of aluminum foam-filled sandwich circular tubes under internal blast loading. Int. J. Impact Eng. 2023, 173, 104458. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, Z.; Lu, G.; Nurick, G. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading. Int. J. Impact Eng. 2010, 37, 625–637. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-PapersOnLine 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Chinthavali, M.S. 3D Printing Technology for Automotive Applications. In Proceedings of the 2016 International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM), Raleigh, NC, USA, 13–15 June 2016; pp. 1–13. [Google Scholar]
- Schramm, U.; Zhou, M. Recent Developments in the Commercial Implementation of Topology Optimization. In IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials; Springer: Dordrecht, The Netherlands, 2006; pp. 239–248. [Google Scholar]
- Pavón-Domínguez, P.; Portillo-García, G.; Rincón-Casado, A.; Rodríguez-Parada, L. Influence of the Fractal Geometry on the Mechanical Resistance of Cantilever Beams Designed through Topology Optimization. Appl. Sci. 2021, 11, 10554. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Xie, Y.M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 2007, 43, 1039–1049. [Google Scholar] [CrossRef]
- Xia, L.; Xia, Q.; Huang, X.; Xie, Y.M. Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review. Arch. Comput. Methods Eng. 2018, 25, 437–478. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhang, J.; Yuan, J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 2016, 310, 711–748. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Zhu, J. A comprehensive study of feature definitions with solids and voids for topology optimization. Comput. Methods Appl. Mech. Eng. 2017, 325, 289–313. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Gao, L.; Walker, P. Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput. Methods Appl. Mech. Eng. 2018, 328, 340–364. [Google Scholar] [CrossRef]
- Sui, Y.K.; Ye, H.L.; Peng, X.R. Topological Optimization of Continuum Structure with Global Stress Constraints Based on ICM Method. In Computational Methods; Springer: Dordrecht, The Netherlands, 2006; pp. 1003–1014. [Google Scholar]
- Rong, J.; Yu, L.; Rong, X.; Zhao, Z. A novel displacement constrained optimization approach for black and white structural topology designs under multiple load cases. Struct. Multidiscip. Optim. 2017, 56, 865–884. [Google Scholar] [CrossRef]
- Habashneh, M.; Movahedi Rad, M. Plastic-limit probabilistic structural topology optimization of steel beams. Appl. Math. Model. 2024, 128, 347–369. [Google Scholar] [CrossRef]
- Habashneh, M.; Movahedi Rad, M. Optimizing structural topology design through consideration of fatigue crack propagation. Comput. Methods Appl. Mech. Eng. 2024, 419, 116629. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, X.; Gao, L. Topological design of sandwich structures with graded cellular cores by multiscale optimization. Comput. Methods Appl. Mech. Eng. 2020, 361, 112749. [Google Scholar] [CrossRef]
- Chen, W.; Tong, L.; Liu, S. Concurrent topology design of structure and material using a two-scale topology optimization. Comput. Struct. 2017, 178, 119–128. [Google Scholar] [CrossRef]
- Huang, X.; Radman, A.; Xie, Y.M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 2011, 50, 1861–1870. [Google Scholar] [CrossRef]
- Andreassen, E.; Andreasen, C.S. How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 2014, 83, 488–495. [Google Scholar] [CrossRef]
- Niu, B.; Yan, J.; Cheng, G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 2009, 39, 115–132. [Google Scholar] [CrossRef]
- Sivapuram, R.; Dunning, P.D.; Kim, H.A. Simultaneous material and structural optimization by multiscale topology optimization. Struct. Multidiscip. Optim. 2016, 54, 1267–1281. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Zhang, N.; Gao, L.; Brown, T. Integrated design of cellular composites using a level-set topology optimization method. Comput. Methods Appl. Mech. Eng. 2016, 309, 453–475. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Gao, L.; Qin, Q. Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput. Methods Appl. Mech. Eng. 2018, 331, 536–561. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Wang, M.Y. Concurrent design with connectable graded microstructures. Comput. Methods Appl. Mech. Eng. 2017, 317, 84–101. [Google Scholar] [CrossRef]
- Liu, L.; Yan, J.; Cheng, G. Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 2008, 86, 1417–1425. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Daynes, S.; Zhang, H.; Feih, S.; Wang, M.Y. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater. Des. 2018, 142, 114–123. [Google Scholar] [CrossRef]
- Groen, J.P.; Sigmund, O. Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int. J. Numer. Methods Eng. 2018, 113, 1148–1163. [Google Scholar] [CrossRef]
- Jia, J.; Da, D.; Loh, C.-L.; Zhao, H.; Yin, S.; Xu, J. Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata. Struct. Multidiscip. Optim. 2020, 62, 757–770. [Google Scholar] [CrossRef]
- Guo, Y.; Hsi, J.; Feng, L. Multiscale topology optimisation with nonparametric microstructures using three-dimensional convolutional neural network (3D-CNN) models. Virtual Phys. Prototyp. 2021, 16, 1–12. [Google Scholar] [CrossRef]
- Ntintakis, I.; Stavroulakis, G.E.; Plakia, N. Topology Optimization by the use of 3D Printing Technology in the Product Design Process. HighTech Innov. J. 2020, 1, 161–171. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Li, B. A review of the design methods of complex topology structures for 3D printing. Vis. Comput. Ind. Biomed. Art 2018, 1, 5. [Google Scholar] [CrossRef]
- Yu, H.; Hong, H.; Cao, S.; Ahmad, R. Topology Optimization for Multipatch Fused Deposition Modeling 3D Printing. Appl. Sci. 2020, 10, 943. [Google Scholar] [CrossRef]
- Bi, M.; Tran, P.; Xia, L.; Ma, G.; Xie, Y.M. Topology optimization for 3D concrete printing with various manufacturing constraints. Addit. Manuf. 2022, 57, 102982. [Google Scholar] [CrossRef]
- Cheng, G.; Liu, L.; Yan, J. Optimum Structure with Homogeneous Optimum Truss-like Material. In III European Conference on Computational Mechanics; Springer: Dordrecht, The Netherlands, 2006; p. 481. [Google Scholar]
- Makov, G.; Payne, M.C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51, 4014–4022. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct. Multidiscip. Optim. 2015, 52, 1229–1241. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. BESO for Extended Topology Optimization Problems. In Evolutionary Topology Optimization of Continuum Structures; Wiley: Hoboken, NJ, USA, 2010; pp. 65–120. [Google Scholar]
- Haug, E.J.; Choi, K.K.; Komkov, V. Design Sensitivity Analysis of Structural Systems; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Gao, J.; Li, H.; Gao, L.; Xiao, M. Topological shape optimization of 3D micro-structured materials using energy-based homogenization method. Adv. Eng. Softw. 2018, 116, 89–102. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.; Xia, L.; Gao, L. Concurrent topology optimization of multiscale composite structures in Matlab. Struct. Multidiscip. Optim. 2019, 60, 2621–2651. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Li, H.; Gao, L.; Chu, S. Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation. Comput. Mater. Sci. 2018, 155, 74–91. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Kang, Z. Topology optimization for concurrent design of layer-wise graded lattice materials and structures. Int. J. Eng. Sci. 2019, 138, 26–49. [Google Scholar] [CrossRef]
- Wang, Z.; Shiqiang, L.; Wang, G.; Lu, G.; Zhao, L. The Dynamic Behavior of Sandwich Plate with Layered Graded Metallic Honeycomb Cores; American Society of Mechanical Engineers: New York, NY, USA, 2016; p. V009T12A009. [Google Scholar]
- Ajdari, A.; Babaee, S.; Vaziri, A. Mechanical properties and energy absorption of heterogeneous and functionally graded cellular structures. Procedia Eng. 2011, 10, 219–223. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Shim, V.P.W.; Guo, Y.; Sun, Z.; Li, X.; Wang, Z. In-plane compression of 3D-printed self-similar hierarchical honeycombs—Static and dynamic analysis. Thin-Walled Struct. 2020, 157, 106990. [Google Scholar] [CrossRef]
Displacement Number | Displacement |
---|---|
Displacement of the four vertices A, B, C, D | |
Internal node displacement of the cell | |
Divide the displacement of the vertex of the edge 1, 4 | |
Divide the displacement of the vertex of the edge 2, 3 |
MM structure concurrent topology optimization result | Equivalent elastic modulus |
Volume Fraction | 0.2 | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|
Microstructure | ||||
Equivalent elastic modulus |
MM structure concurrent topology optimization result | Equivalent elastic modulus |
Volume Fraction | 0.2 | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|
Microstructure | ||||
Equivalent elastic modulus |
Microstructure | |||
Equivalent elastic modulus | |||
Microstructure | |||
Equivalent elastic modulus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, S.; Wang, Z. Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures. Materials 2024, 17, 6086. https://doi.org/10.3390/ma17246086
Li Z, Li S, Wang Z. Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures. Materials. 2024; 17(24):6086. https://doi.org/10.3390/ma17246086
Chicago/Turabian StyleLi, Zihao, Shiqiang Li, and Zhihua Wang. 2024. "Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures" Materials 17, no. 24: 6086. https://doi.org/10.3390/ma17246086
APA StyleLi, Z., Li, S., & Wang, Z. (2024). Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures. Materials, 17(24), 6086. https://doi.org/10.3390/ma17246086