Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Validation of Simulation Procedure
3.2. Molecular Geometry
3.3. Effect of Length of the Terminal Chain of Dyes on the System
3.4. Effect of Substitution Position of the Terminal Chain on the System
3.5. Effect of Substituent Properties on Anthraquinone Dye Cores
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Wang, Y.; Zhu, M.; Qiu, L.; Zhu, J.; Zhang, B.; Liu, Y.; Lu, H.; Xu, M. Controlling the pretilt angles of guest–host liquid crystals via a hydrophilic Polyimide Layer through Oxygen Plasma Treatment. ACS Appl. Electron. Mater. 2022, 4, 4632–4640. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Liquid crystals: Control of transmittance by thermally induced phase transition in guest–host liquid crystals. Adv. Sustain. Syst. 2018, 2, 1870040. [Google Scholar] [CrossRef]
- Filho, P.A.; Dalkiranis, G.G.; Armond, R.A.S.Z.; Therézio, E.M.; Bechtold, I.H.; Vieira, A.A.; Cristiano, R.; Gallardo, H.; Marletta, A.; Oliveira, O.N., Jr. Emission ellipsometry used to probe aggregation of the luminescent 2,1,3-benzothiadiazole dyes and ordering in an E7 liquid crystal matrix. Phys. Chem. Chem. Phys. 2014, 16, 2892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, X.; Zhang, L.; Xu, J.; Yuan, B.; Chen, C.; Zou, C.; Wang, Q.; Gao, Y.; Yu, M. A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications. Chem. Eng. J. 2024, 479, 147668. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Z.; Ju, C.; Hu, X.; Yuan, D.; Zhao, W.; Shui, L.; Zhou, G. Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers 2019, 11, 694. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Duffy, A. Daylighting performance and glare calculation of a suspended particle device switchable glazing. Sol. Energy 2016, 132, 114–128. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; Manni, F.; Chidichimo, G.; Gigli, G.; Beneduci, A.; Capodilupo, A.-L. Colorless to All-Black Full-NIR high-contrast switching in solid electrochromic films prepared with organic mixed valence systems based on dibenzofulvene derivatives. Chem. Mater. 2018, 30, 5610–5620. [Google Scholar] [CrossRef]
- Garcia-Amorós, J.; Martínez, M.; Velasco, D. High pressure kinetics of azo dyes in nematic liquid crystals. J. Phys. Chem. C 2019, 123, 30578–30583. [Google Scholar] [CrossRef]
- Oh, S.W.; Baek, J.M.; Kim, S.H.; Yoon, T.H. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Adv. 2017, 7, 19497–19501. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; He, Y.; Yang, C. Ultra-thin and broadband P-band metamaterial absorber based on carbonyl iron powder composites. Materials 2024, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-C.; Cheng, W.-F.; Liu, C.-K.; Cheng, K.-T. Optically switchable bistable guest–host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals. Dyes Pigments 2019, 163, 641–646. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, Y.; Donà, L.; Gutiérrez, M.; Mslein, A.F.; Babal, A.S.; Amin, N.; Civalleri, B.; Tan, J.C. Tunable fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles for solid-state lighting. ACS Appl. Nano Mater. 2021, 4, 10321–10333. [Google Scholar] [CrossRef]
- Ono, H.; Harato, Y. All-optical focal length converter using large optical nonlinearity in guest-host liquid crystals. Appl. Phys. Lett. 1999, 74, 3429–3431. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Park, M.K.; Park, D.H.; Park, J.S.; Choi, J.C.; Kim, S.H.; Kim, H.R.J.S. Tilted orientation of photochromic dyes with guest-host effect of liquid crystalline polymer matrix for electrical UV sensing. J. Sens. 2016, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Yuki Kawata, T.Y. Hideyuki Kihara, Yasuhisa Yamamura, Kazuya Saito and Kohji Ohno, Unusual photoresponses in the upper critical solution temperature of polymer solutions mediated by changes in intermolecular interactions in an azo-doped liquid crystalline solvent. Phys. Chem. Chem. Phys. 2018, 20, 5850–5855. [Google Scholar] [CrossRef]
- Heilmeier, G.H. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett. 1968, 13, 91–92. [Google Scholar] [CrossRef]
- George, H.; Heilmeier, J.A.C.; Louis, A. Zanoni, Guest-host interactions in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1969, 8, 293–304. [Google Scholar]
- Kawamoto, H. The history of liquid crystal displays. Proc. IEEE 2002, 90, 460–500. [Google Scholar] [CrossRef]
- Goodby, J.W.; Saez, I.M.; Cowling, S.J.; Gasowska, J.S.; MacDonald, R.A.; Sia, S.; Watson, P.; Toyne, K.J.; Hird, M.; Lewis, R.A.; et al. Molecular complexity and the control of self-organising processes. Liq. Cryst. 2009, 36, 567–605. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Molecular design parameters of anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability. J. Phys. Chem. C 2016, 120, 11151–11162. [Google Scholar] [CrossRef]
- Sims Mark, T. Dyes as guests in ordered systems: Current understanding and future directions. Liq. Cryst. 2016, 43, 2363–2374. [Google Scholar] [CrossRef]
- Scheffer, T.J. Optimized three-component dye mixtures for achromatic guest-host liquid-crystal displays. J. Appl. Phys. 1982, 53, 257–264. [Google Scholar] [CrossRef]
- Matsui, M.; Sumiya, Y.; Shibata, K.; Muramatsu, H.; Abe, Y.; Kaneko, M. Fluorine-containing negative dichroic 1,4-bis(acylamino)anthraquinone dyes. Liq. Cryst. 1997, 23, 821–832. [Google Scholar] [CrossRef]
- Talukder, J.R.; Lin, H.Y.; Wu, S.T. Photo- and electrical-responsive liquid crystal smart dimmer for augmented reality displays. Opt. Express 2019, 27, 18169. [Google Scholar] [CrossRef] [PubMed]
- Fegan, S.K.; Kirsch, P.; Müller-Plathe, F. The alignment of dichroic dyes in a nematic liquid crystal: A molecular dynamics investigation. Liq. Cryst. 2018, 45, 1377–1384. [Google Scholar] [CrossRef]
- Matsui, M.; Nakagawa, H.; Joglekar, B.; Shibata, K.; Muramatsu, H.; Abe, Y.; Kaneko, M. Synthesis of perfluoroalkylated azo dyes and their application to guest-host liquid crystal display. Liq. Cryst. 1996, 21, 669–682. [Google Scholar] [CrossRef]
- Matsui, M.; Shirai, K.; Tanaka, N.; Funabiki, K.; Muramatsu, H.; Shibata, K.; Abe, Y.; Ohgomori, Y. Synthesis of tris-, tetrakis-, and pentakisazo dyes and their application to guest±host liquid crystal displays. J. Mater. Chem. 1999, 9, 2755–2763. [Google Scholar] [CrossRef]
- Seki, H.; Shishido, C.; Yasui, S.; Uchida, T.s. Dichroic azo dyes for guest-host liquid-crystal cell. Jpn. J. Appl. Phys. 1982, 21 (Pt 1), 191–192. [Google Scholar] [CrossRef]
- Shaki, H. Color, fastness, antibacterial, and skin sensitivity properties of high lightfastness azo disperse dyes incorporating sulfamide groups. Fiber Polym. 2020, 21, 2530–2538. [Google Scholar] [CrossRef]
- Matsui, M.; Okada, S.; Kadowaki, M.; Yamada, M. Synthesis of perfluorobutyl-substituted ester-disazo dyes and their application to guest-host liquid crystal displays. Liq. Cryst. 2002, 29, 707–712. [Google Scholar] [CrossRef]
- Iwanaga, H.; Naito, K.; Nakai, Y. The molecular structures and properties of anthraquinone-type dichroic dyes. Mol. Cryst. Liq. Cryst. C 2006, 364, 211–218. [Google Scholar] [CrossRef]
- Iwanaga, H. Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays. Materials 2009, 2, 1636–1661. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Chen, K.; Wang, Z.; Wang, M.; Ding, H.; Xiao, J.; Yang, D.; Yu, H.; Zhang, L.; et al. Synthesis and characterisation of liquid crystalline anthraquinone dyes with excellent dichroism and solubility. Liq. Cryst. 2016, 43, 1307–1314. [Google Scholar] [CrossRef]
- Cowling, S.J.; Ellis, C.; Goodby, J.W. Anthraquinone liquid crystal dichroic dyes—A new form of chromonic dye? Liq. Cryst. 2011, 38, 1683–1698. [Google Scholar] [CrossRef]
- Peláez, J.; Wilson, M. Molecular orientational and dipolar correlation in the liquid crystal mixture E7: A molecular dynamics simulation study at a fully atomistic level. Phys. Chem. Chem. Phys. 2007, 9, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Dyes in liquid crystals: Experimental and computational studies of a guest–host system based on a combined DFT and MD approach. Chem. Eur. J. 2015, 21, 10123–10130. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Experimental and molecular dynamics studies of anthraquinone dyes in a nematic liquid-crystal host: A rationale for observed alignment trends. Phys. Chem. Chem. Phys. 2016, 18, 20651–20663. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Principal molecular axis and transition dipole moment orientations in liquid crystal systems: An assessment based on studies of guest anthraquinone dyes in a nematic host. Phys. Chem. Chem. Phys. 2017, 19, 813–827. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Tian Lu, F.C. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Zhou, Q.; Guo, Y.; Zhu, Y. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584. [Google Scholar] [CrossRef]
- Chen, S.; Ullah, N.; Zhang, R.Q. Exciton self-trapping in sp2 carbon nanostructures induced by edge ether groups. J. Phys. Chem. Lett. 2018, 9, 4857–4864. [Google Scholar] [CrossRef]
- Bahadur, B.; Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.W.; Vill, V. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1998; Volume 2 A, pp. 257–302. [Google Scholar]
- Birendra, B. Liquid Crystals: Applications and Uses; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1992; Volume 3, pp. 65–208. [Google Scholar]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Shu, Y.; Truhlar, D.G. Relationships between orbital energies, optical and fundamental gaps, and exciton shifts in approximate density functional theory and quasiparticle theory. J. Chem. Theory Comput. 2020, 16, 4337–4350. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Yan, X.; Lu, T.; Wang, H.; Xiong, W.; Zhao, M. Photophysical properties and optical nonlinearity of cyclo[18]carbon (C18) precursors, C18–(CO)n (n = 2, 4, and 6): Focusing on the effect of the carbonyl groups. Phys. Chem. Chem. Phys. 2022, 24, 7466–7473. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.T.; Mandle, R.J.; Goodby, J.W.; Moore, J.N. Guest–host systems containing anthraquinone dyes with multiple visible transitions giving positive and negative dichroic order parameters: An assessment of principal molecular axes and computational methods. Liq. Cryst. 2017, 44, 2029–2045. [Google Scholar] [CrossRef]
- van Gurp, M. The use of rotation matrices in the mathematical description of molecular orientations in polymers. Colloid Polym. Sci. 1995, 273, 607–625. [Google Scholar] [CrossRef]
- Qi, G.; Shi, S.; Ke, Z. A study on relationship between structure and order parameter of anthraquinone type dichroic dyes. J. East China Univ. Sci. Technol. 1988, 14, 86–89. [Google Scholar]
- Su, X.Y.; Fan, C.S.; Li, J.X.; Luo, Z.L. Preparation and properties of oxymethylene-bridged negative liquid crystal. Chin. J. Liq. Cryst. Displays 2016, 31, 353. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. Visual Molecular Dynamics. J Mol. Gragh. Model. 1996, 14, 33–38. [Google Scholar]
- Bondi, A. van der Walls Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Guo, X.; Zhang, B.; Liu, Y.; Liu, J. Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials 2024, 17, 6240. https://doi.org/10.3390/ma17246240
Chen R, Guo X, Zhang B, Liu Y, Liu J. Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials. 2024; 17(24):6240. https://doi.org/10.3390/ma17246240
Chicago/Turabian StyleChen, Ruisi, Xintao Guo, Bo Zhang, Ying Liu, and Jun Liu. 2024. "Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods" Materials 17, no. 24: 6240. https://doi.org/10.3390/ma17246240
APA StyleChen, R., Guo, X., Zhang, B., Liu, Y., & Liu, J. (2024). Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials, 17(24), 6240. https://doi.org/10.3390/ma17246240