Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Performance Characterization
3. Results and Discussion
3.1. XRD Result Analysis
3.2. SEM Result Analysis
3.3. Analysis of Electrical Transport Performance
3.4. Analysis of Thermal Transport Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Bu, Z.; Lin, S.; Chen, Z.; Li, W.; Pei, Y. GeTe Thermoelectrics. Joule 2020, 4, 986–1003. [Google Scholar] [CrossRef]
- Yang, Q.; Lyu, T.; Nan, B.; Tie, J.; Xu, G. Enabling High Quality Factor and Enhanced Thermoelectric Performance in Bibr3-Doped Sn0.93Mn0.1Te via Band Convergence and Band Sharpening. Acs Appl. Mater. Interfaces 2022, 14, 32236–32243. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Cao, J.; Tan, X.Y.; Dong, J.; Liu, H.; Tan, C.K.I.; Xu, J.; Yan, Q.; Loh, X.J.; Suwardi, A. Thermoelectric Materials and Transport Physics. Mater. Today Phys. 2021, 21, 16. [Google Scholar] [CrossRef]
- He, R.; Schierning, G.; Nielsch, K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Adv. Mater. 2018, 3, 1870016. [Google Scholar] [CrossRef]
- Li, X.; Cai, K.; Gao, M.; Du, Y.; Shen, S. Recent Advances in Flexible Thermoelectric Films and Devices. Nano Energy 2021, 89, 106309. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; He, J. Progress and Challenges in Thermoelectric Materials and Generators. Physics 2022, 51, 174–179. [Google Scholar]
- Kim, S.; Lee, H.S. Effects of Addition of Si and Sb On the Microstructure and Thermoelectric Properties of GeTe. Met. Mater.-Int. 2019, 25, 528–538. [Google Scholar] [CrossRef]
- Cheng, J.H.; Lyu, T.; Liang, G.G.; Yao, W.Q.; Ao, W.Q.; Zhang, C.H.; Li, J.Q.; Liu, F.S.; Hu, L.P. Microstructure Design via Novel Thermodynamic Route to Enhance the Thermoelectric Performance of GeTe. Mater. Today Phys. 2022, 27, 100820. [Google Scholar] [CrossRef]
- Chao-Hua, Z.; Yi-Bo, W.; Jun-Qin, L.; Fu-Sheng, L. Phase and Defect Engineering of GeTe-Based Alloys for High Thermoelectric Performance. Chin. J. Struct. Chem. 2020, 39, 821–830. [Google Scholar]
- Chuang, L.; Wang, D.Y.; Tan, T.T.; Assadi, M.H.N.; Li, S. Processing Dependence of Structural and Physical Properties of Mg2Ge Thin Films Prepared by Pulsed Laser Deposition. Thin Solid Films 2012, 520, 6226–6229. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Yang, J.; Li, S. Recent Advances of Layered Thermoelectric Materials. Adv. Sustain. Syst. 2018, 2, 1800046. [Google Scholar] [CrossRef]
- Liu, W.D.; Wang, D.Z.; Liu, Q.; Zhou, W.; Shao, Z.; Chen, Z.G. High-Performance GeTe-Based Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2022, 10, 2000367. [Google Scholar] [CrossRef]
- Dong, Y. Investigation on Fabrication and Transportation Property for GeTe Based Thermoelectric Materials; University of Science and Technology Beijing: Beijing, China, 2021. [Google Scholar]
- Dong, Y.; Xu, G. Research and Development of GeTe Thermoelectric Materials. Mater. Rev. 2022, 36, 109–118. [Google Scholar]
- Dong, Y.; Gao, J.; Zou, P.; Xu, G. Effect of Excess Ge and Te on Thermoelectric Performance of Gete. Int. J. Appl. Ceram. Technol. 2021, 18, 1144–1152. [Google Scholar] [CrossRef]
- Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Xia, X.; Liao, J.; Liu, R. Superior Performance and High Service Stability for GeTe-Based Thermoelectric Compounds. Natl. Sci. Rev. 2019, 6, 944–954. [Google Scholar] [CrossRef]
- Bu, Z.; Chen, Z.; Zhang, X.; Lin, S.; Mao, J.; Li, W.; Chen, Y.; Pei, Y. Near-Room-Temperature Rhombohedral Ge1−xPbxTe Thermoelectrics. Mater. Today Phys. 2020, 15, 100260. [Google Scholar] [CrossRef]
- Shenoy, U.S.; Bhat, D.K.; Bhat, D.K. Probing of Bi Doped GeTe Thermoelectrics Leads to Revelation of Resonant States. J. Alloys Compd. 2022, 921, 165965. [Google Scholar] [CrossRef]
- Shtern, M.; Sherchenkov, A.; Shtern, Y.; Borgardt, N.; Rogachev, M.; Yakubov, A.; Babich, A.; Pepelyaev, D.; Voloshchuk, I.; Zaytseva, Y.; et al. Mechanical Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe and GeTe. J. Alloys Compd. 2023, 946, 169364. [Google Scholar] [CrossRef]
- Nshimyimana, E.; Su, X.; Xie, H.; Liu, W.; Deng, R.; Luo, T.; Yan, Y.; Tang, X. Realization of Non-Equilibrium Process for High Thermoelectric Performance Sb-Doped GeTe. Sci. Bull. 2018, 63, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Bai, H.; Wu, H.; Wu, J.; Chen, Z.; Su, X.; Uher, C.; Tang, X. The Role of Ge Vacancies and Sb Doping in GeTe: A Comparative Study of Thermoelectric Transport Properties in SbxGe1−1.5xTe and SbxGe1-xTe Compounds. Mater. Today Phys. 2022, 24, 100682. [Google Scholar] [CrossRef]
- Bhat, D.K.; Shenoy, U.S. Mg/Ca Doping Ameliorates the Thermoelectric Properties of GeTe: Influence of Electronic Structure Engineering. J. Alloys Compd. 2020, 843, 155989. [Google Scholar] [CrossRef]
- Yin, L.C.; Liu, W.D.; Li, M.; Sun, Q.; Gao, H.; Wang, D.Z.; Wu, H.; Wang, Y.F.; Shi, X.L.; Liu, Q.; et al. High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe. Adv. Energy Mater. 2021, 11, 2102913. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Li, Z.; Lou, S.; Zhou, S. High Thermoelectric Properties of Disordered Layered Ge1-xSnxTe Semiconductors. Mater. Lett. 2022, 324, 132683. [Google Scholar] [CrossRef]
- Srinivasan, B.; Boussard-Pledel, C.; Bureau, B. Thermoelectric Performance of Codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe Materials Processed by Spark Plasma Sintering. Mater. Lett. 2018, 230, 191–194. [Google Scholar] [CrossRef]
- Ranganayakulu, V.K.; Chen, C.L.; Ou, M.N.; Lee, C.H.; Chen, Y.Y. Boosting the Thermoelectric Performance of GeTe Via Vacancy Control and Engineering Sintering Parameters. Mater. Today Commun. 2022, 33, 7. [Google Scholar] [CrossRef]
- Nshimyimana, E.; Hao, S.; Su, X.; Zhang, C.; Liu, W.; Yan, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M.G.; Tang, X. Discordant Nature of Cd in GeTe Enhances Phonon Scattering and Improves Band Convergence for High Thermoelectric Performance. J. Mater. Chem. A 2020, 8, 1193–1204. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; et al. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. J. Am. Chem. Soc. 2018, 140, 2673–2686. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.G.; Yang, L.; Zou, Y.C.; Dargusch, M.S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping. Adv. Mater. 2018, 20, 1705942. [Google Scholar] [CrossRef] [PubMed]
- Toby, B.H.; Von Dreele, R.B. Gsas-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Xu, G.; Ren, P.; Lin, T.; Wu, X.; Zhang, Y.; Ao, W.Q. Mechanism and Application Method to Analyze the Carrier Scattering Factor by Electrical Conductivity Ratio Based on Thermoelectric Property Measurement. J. Appl. Phys. 2018, 123, 015101. [Google Scholar] [CrossRef]
Sample | Lattice Constants (a/Å) | Lattice Constants (c/Å) | |
---|---|---|---|
After Synthesis | GeTe | 8.32687 | 10.66504 |
Ge0.99In0.01Te0.94Se0.06 | 8.29774 | 10.62952 | |
Ge0.98In0.01Sn0.01Te0.94Se0.06 | 8.31456 | 10.64281 | |
Ge0.96In0.01Sn0.03Te0.94Se0.06 | 8.37525 | 10.71494 | |
Ge0.93In0.01Sn0.06Te0.94Se0.06 | 8.37778 | 10.69770 | |
After Sintering | GeTe | 8.33132 | 10.67641 |
Ge0.99In0.01Te0.94Se0.06 | 8.30922 | 10.64808 | |
Ge0.98In0.01Sn0.01Te0.94Se0.06 | 8.33775 | 10.66573 | |
Ge0.96In0.01Sn0.03Te0.94Se0.06 | 8.33935 | 10.65400 | |
Ge0.93In0.01Sn0.06Te0.94Se0.06 | 8.35001 | 10.64475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Zhang, G.; Nan, B.; Xu, G.; Li, S.; Ren, L. Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe. Materials 2024, 17, 551. https://doi.org/10.3390/ma17030551
Guo T, Zhang G, Nan B, Xu G, Li S, Ren L. Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe. Materials. 2024; 17(3):551. https://doi.org/10.3390/ma17030551
Chicago/Turabian StyleGuo, Tao, Guangbing Zhang, Bohang Nan, Guiying Xu, Shuo Li, and Lingling Ren. 2024. "Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe" Materials 17, no. 3: 551. https://doi.org/10.3390/ma17030551
APA StyleGuo, T., Zhang, G., Nan, B., Xu, G., Li, S., & Ren, L. (2024). Study on the Effect of Sn, In, and Se Co-Doping on the Thermoelectric Properties of GeTe. Materials, 17(3), 551. https://doi.org/10.3390/ma17030551