Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries
Abstract
:1. Introduction
2. Compositions, Structures, and Methods
2.1. Chemical Composition and Crystal Structure
2.2. Structure, Synthesis, and Electrode Design
2.3. Electrochemical Evaluation
2.4. Battery Assembly and Recycling
3. Applications
3.1. Li-Ion Batteries
3.2. Na-Ion Batteries
3.3. K-Ion Batteries
Types of Materials | Methods | Current Density | Cycle No. | Cut-Off Voltage [V] | SC [mA h g−1] | CR (%) | CE [%] | ICE [%] | Initial Discharge/Charge Capacities [mA h g−1] | Rate Capacity (Current Density) [mA h g−1] | Year/Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
LIBs cathodes | |||||||||||
Li3V2(PO4)3/C nanobelts (aggregates) | Ball milling, solid-state reaction | 1C | 160 | 3.0–4.3 | 130 | 99.2 | ~100 | 99.2 | 131/132 | 131, 128, 122, 110 (1, 2, 4, 8C) | 2011 [40] |
Li9V3(P2O7)3(PO4)2 nanotubes | Molten salt | 0.5C | 300 | 2.5–4.6 | 147 | 95.0 | ~97 | 92.4 | 155/167 | 143, 131, 123, 104, 81, 63 (1, 2, 5, 10, 20, 40C) | 2015 [75] |
(NH4)2V7O16 particles | Hydrothermal, ball milling | 0.02 A g−1 | 50 | 1.3–3.2 | 181 | ~84 | >99 | 94.5 | 219/232 (0.01 A g−1) | 215 (0.01) 103 (0.2) | 2020 [32] |
0.02 A g−1 | 20 | 1.5–3.0 | 61 | ~87 | >99 | 73.9 | 71.4/96.6 | 70 (0.02) | |||
SIBs cathodes | |||||||||||
γ-Na0.96V2O5 particles | Soft chemistry synthesis (sodiation) | 0.2C | 50 | 1.75–4.0 | 112 | ~90 | ~100 | ~100 | 125/125 | 120, 85 (0.2, 2C) | 2018 [94] |
Na3V2(PO4)3@C core-shell nanoparticles (~40 nm) | Hydrothermal (surfactant-assisted), calcination | 5C | 700 | 2.5–3.8 | 91 | 96.1 | ~100 | 93 | 104/112 | 104, 95 (0.5, 5C) | 2014 [37] |
Na3V2(PO4)3 nanofiber | Hydrothermal, annealing | 10C | 1000 | 2.3–3.9 | 96 | 95.9 | ~100 | – | – | 113, 110, 108, 98, 94 (1, 5, 10, 50, 100C) | 2016 [38] |
Porous 1D Na3V2(PO4)3@C nanowires | Hydrothermal (surfactant-assisted), freeze-drying, post-heating | 1C 20C | 1000 | 2.3–3.9 | 97 74 | 93 81 | ~100 | 98 | 107/109 | 104, 104, 99, 96, 84, 77, 62) (0.5, 1,10, 20, 40, 50, 60C) | 2016 [8] |
Mo-doped Na3V2(PO4)3@C nanowires | Electrospinning, annealing | 1C 5C | 2000 | 2.5–4.0 | 115 101 | 95.3 93.0 | – | ~97 | 117/120 (0.1C) | 99, 93, 80 (50, 100, 150C) | 2021 [113] |
Full cell (with hard carbon, HC, as anode) b | 5C | 8000 | 2.3–3.8 | 87 | 85.7 | – | 94.5 | 111/117 | 109, 102, 98, 90, 79 (0.5, 10, 30, 50, 100C) | ||
3D Na3V2(PO4)3 @C@rGO | Freeze-drying, calcination (Ar-5%H2) | 100C | 10,000 | 2.5–3.8 | 55 | 64 | ~100 | ~98 | ~117/~120 (0.5C) | 115, 112, 103, 91, 86 (1, 30, 50, 80, 100C) | 2015 [45] |
Layered NaVOPO4/C composite | Refluxing, hydrothermal, ball-milling | 0.5C | 1000 | 2.0–4.2 | 75 | 67 | >99.5 | ~95 | 144/152 (0.02) | 144, 130, 118, 112, 96, 80, 58 (0.05, 0.1, 0.2, 0.5, 1, 2, 5C) | 2018 [105] |
Ultrafine Na7V3(P2O7)4 b | Sol–gel, calcination | 2C 10C | 100 | 2.5–4.2 | ~55 ~33 | ~97 92 | – | ~73 | 73/~100 | ~72/66/36 (0.025, 1, 10C) | 2016 [54] |
Na7V4(P2O7)4PO4 nanorods | Sol–gel, calcination | 0.05C 0.5C | 200 | 2.5–4.1 | 88 82 | 95.2 92.6 | – | ~94 | 92/~98 (0.05C) | 73 (10C) | 2014 [56] |
Fiber-shape Na3V2(PO4)2F3 @N-doped carbon | Electrospinning, calcination | 5C 20C 50C | 200 1000 1500 | 2.0–4.3 | 94 72 60 | 97.1 87.8 83.4 | – | 78.3 | 102/130 (5C) | 110, 102, 89, 85, 79 (0.1, 1, 10, 20, 30C) | 2020 [77] |
NVPF|| HC b | 1C | 150 | 2.2–4.3 | 82 | 82.0 | ~100 | <80 | – | 100 (1C) | ||
Na3V2(PO4)2F3@C nanocomposite | Sol–gel, sintering | 10C 30C | 1000 3000 | 2.0–4.3 | ~37 68 | 70 50 | >97 | 91 | – | 133,129, 112, 85, 74, 57 (0.5, 1, 5, 10, 15, 30C) | 2015 [78] |
Carbon-coated Na3(VOPO4)2F nanocomposite | Mechanochemical synthesis | 20C | 10,000 | 2.5–4.2 | 111 | 98 | ~100 | ~90 | 112/125 | 142, 113 (0.1, 20C) | 2021 [43] |
NVOPF/KB ||HC b | 2C | 100 | 2.0–4.2 | 61 | 90.7 | ~100 | ~76 | 94/123 | 94, 87, 74, 67, 58, 49 (0.2, 0.5, 1, 2, 5, 10C) | ||
Na3V2(PO4)1.95 (SiO4)0.05O2F nanocubes | Hydrothermal, annealing | 0.5C 10C | 700 1000 | 2.0–4.3 | 121 114 | 95.6 ~100 | ~100 | 98 | 126/128 (0.5C) | 126, 126, 123, 118, 110, 93, 76 (0.5, 1, 2, 5, 10, 20, 30C) | 2023 [29] |
Full cell (HC, pre- sodiated) | 1C 5C | 100 300 | 2.0–4.3 | 122 108 | 97.7 92.3 | 99.8 | 92.4 | 126/136 | 126, 91 (0.2, 15C) | ||
RuO2-coated Na3V2O2(PO4)2F nanowires | Hydrothermal (microemulsion-mediated), hydrolysis precipitation | 20C | 1000 | 2.5–4.3 | 95 | 90.5 | 99.3 | 94.0 | 126/134 (0.1C) | 120 (1C) 110 (20C) 70 (40C) | 2015 [19] |
NaVPO4F/C nanofiber membrane | Electrospinning, carbonization | 2C | 1000 | 2.6–4.5 | ~99 | 96.5 | ~100 | ~95 | ~120/126 | 120, 111, 105, 101, 82, 61 (1, 2, 5, 10, 30, 50C) | 2017 [36] |
PIBs cathodes | |||||||||||
K3V2(PO4)2F3 powder | Solid-state reaction, electrochemical ion exchange | 10 20 (mA g−1) | 100 180 | 2.0–4.6 | 101 90 | 97 95 | – | ~74 | 104/140 | 104, 83, 50 (0.1, 1, 2.5C) | 2019 [80] |
KVPF||graphite b | – | 50 | 1.5–4.5 | 59 | 70.2 | >96 | 67 | 84/126 | – | ||
Bilayered δ-K0.51V2O5 nanobelts | Chemical preintercalation, hydrothermal | 0.1 2 (A g−1) | 100 | 2.0–4.5 | 78 51 | 61.3 60.5 | ~100 | – | 131/69 (0.03 A g−1) | 125, 117, 97, 89, 64 (0.05, 0.2, 1, 2, 10 A g−1) | 2019 [127] |
KVO||graphite b | 0.3 (A g−1) | 100 | 1.8–3.9 | 67 | 84 | ~91 | – | 94/44 (0.1 A g−1) | 94, 60 (0.1, 2 A g−1) | ||
Layered KVOPO4 nanosheets | Hydrothermal, chemical potassiation | 0.5C 5C | 100 500 | 2.0–4.6 | ~98 63 | 86.8 75.6 | 98.5 | ~91 | 115/126 (0.2C) | 113, 107, 103, 98, 92, 83(0.5, 1, 2, 5, 10, 20C) | 2019 [132] |
KVPO4F/C nanoplates | Hydrothermal, annealing | 0.5C 10C | 100 1000 | 2.0–5.0 | 93 80 | 92.4 82.5 | ~99 | ~86 | 135/116 (0.2C) | 107, 100, 99, 93, 74 (0.2, 5, 10, 50, 100C) | 2022 [130] |
KVPO4F/C||soft carbon | 0.5C | 500 | 1.5–4.8 | 76 | 80.3 | ~99 | ~52 | 180/93 | 95, 89, 87, 69 (0.5, 5, 10, 20C) | ||
Pomegranate-like carbon-coated KVPO4F microspheres a | Hydrothermal, calcination | 0.3C | 100 | 2.0–5.0 | 93 | 91.4 | ~95 | ~42 | 272/114 | 103, 93, 86, 70 (0.2, 0.5, 1, 5C) | 2022 [129] |
K2[(VOHPO4)2 (C2O4)]/rGO composite (particles) | Precipitation, dehydration | 2C 0.1C | 150 /500 100 | 2.5–4.5 | 85/60 94 | 95/67 96 | 97.4 | 87.5 | 98/112 (0.1C) | 100, 98, 95, 92, 84, 80 (0.2, 0.5, 1, 2, 5, 10C) | 2019 [134] |
Pea-shaped KVP2O7@C particles | Spray drying | 0.5C | 100 | 2.0–4.95 | 45 | 88 | ~95 | ~59 | 60/102 | 60, 52, 46, 36 (0.2, 0.5, 1, 3C) | 2021 [135] |
KVP||graphite b | 0.5C | 400 | 1.0–4.9 | 46 | 89 | 99 | ~90 | 52/58 | 52 (0.5C) |
4. Conclusions and Perspectives
- Polyanionic vanadium phosphates and fluorophosphates and their analogs/derivatives have higher redox potential, structural/thermal stability, operational safety, and cycle life compared to vanadium oxides or vanadates; however, the latter ones usually show higher capacity. Some vanadium oxide bronzes have attracted significant attention as cathode materials for alkali-metal or alkali-metal-ion batteries due to their layered and open-framework structures, as well as their superior thermal stability, moisture tolerance, and high electrochemical reactivity. They may serve as high-voltage cathode materials, although their cycling performance needs further improvement to compete with these polyanions, such as vanadium phosphates. Thus, their utilization needs a balanced and comprehensive evaluation; more parameters, including cost, yield, and productivity, should be considered for practical application scenarios.
- Solid state reactions are a facile way to synthesize these vanadium-based materials, especially for vanadium polyanionic compounds, of which stoichiometric amounts of precursors such as alkali-containing salts (Li, Na, or K-containing), vanadium-containing compounds (e.g., V2O5, sodium metavanadate, vanadium acetylacetonate), phosphates, and/or carbon sources (reductant/conductor), NaF are usually needed, ball-milling, hydrothermal/solvothermal methods, sol–gel methods, followed by annealing/calcination under N2, Ar, or Ar/H2 atmosphere are usually needed. Although the hydrothermal/solvothermal methods can be directly used for the synthesis of these vanadium-based materials with ideal 0D, 1D, 2D, or even 3D (with the assistance of freeze drying), their harsh conditions (i.e., high pressure and high temperature of liquids) may not be suitable for low-cost, large-scale industrial production. Thus, the (high-energy) ball-milling or sol–gel methods followed by further annealing/calcination will be the more efficient strategies for ultimate mass production.
- Structure regulation and crystallinity are of great importance to guarantee the vanadium-based materials optimal performances. The electrode and full cell engineering also affect the performances of the device; e.g., 3D open and highly conductive frameworks of the electrode generally show a higher utilization ratio of active materials as well as enhanced ionic/electronic transport and diffusion, thus resulting in higher rate capacities and higher power densities thereof. In addition, the cost-effectiveness, the phase and structure stability are also of great importance for practical application, e.g., although with high capacity, some materials do not have a stable phase in air and some may undergo structural damage during electrochemical deep cycling. The carbon-coating, nanostructuring, ion-doping, and compositing/hybridization are typical methods to enhance the conductivity for high performances.
- The high-plateau capacity ratio plays a key role in effective application since it will demonstrate enhanced energy density and a decreased number of batteries connected in series. And the mechanism of large voltage drops or significant polarization should be further studied to optimize the full cell performance. In operando, XRD analysis and density-functional theory (DFT) calculations are efficient ways to give fascinating insights into the joint optimization of structures and performances.
- Overcharge behavior and significant electrolyte decomposition may happen along with these high-voltage cathodes. Proper electrolytes that can effectively alleviate overcharge behavior (for high initial coulombic efficiency, ICE) and not weaken the electrochemical performances (e.g., specific capacity, voltage polarization) are urgently needed for practical application. For high-voltage cells (e.g., up to 4.8 V), electrolyte additives such as fluoroethylene carbonate (FEC) and tris(2,2,2-trifluoroethyl) phosphate (TFP) may be added for stabilization. New electrolytes with higher electrochemical stability and cyclability, such as ionic liquids, may be adopted.
- The good match with appropriate anode materials is of great importance, e.g., these vanadium-based materials matching with highly conductive hard carbon will endow the full cell with high voltage output, especially for SIBs. However, the full cells of SIB now often encounter low rate performance, viz., the rate performance, powder densities, and voltage output need further improvements, and the modification, optimization, and matching of hard carbons are critical for competitive applications. The ICE of the hard carbon-based anodes should also be evaluated and enhanced for practical application. Pre-lithiation, pre-sodiation, or pre-potassiation is usually adopted to form stable solid-electrolyte interphase (SEI) layers on the hard carbon anode for higher ICE by reducing the irreversible capacity loss for the full cells. The compatibility of the anode materials with the cathode materials is also vital. In addition, the classic hard carbon materials, some vanadium oxide bronze-based anode materials are showing high capacity and a high average discharge plateau for the full battery; however, they may decay fast when poor compatibility exists.
- Flexible and freestanding electrodes are promising for flexible, wearable batteries and smart devices. Vanadium-based materials are playing a distinct role in the fabrication of these high-performance cathodes as well as anodes, although frontier research is still in its infant stage. More effort should be put into the enhancement of mechanical strength, flexibility, battery design, energy/power densities, cycling performances, and safety.
- Although some nanostructured V-based cathode materials are showing excellent performance in a coin-cell configuration with low massive loading (ca. 1–2 mg cm−2), this does not necessarily guarantee their large-scale implementation in commercial batteries. Due to high mass loading and sufficiently high tap density, as well as enough adhesion to the Al current collector, nanostructured materials usually have a high surface area but low tap density (or compact density, an important parameter in the production of alkali-ion batteries), thus possibly stripping them from the current collector and making them unsuitable for further assembly. So structural regulation is needed, and moderate aggregation is beneficial to higher performance in practical applications of electrochemical energy storage and conversion.
5. Patents
- W. Ni, Preparation method of high-purity vanadium pentoxide nanofiber non-woven fabric (CN113481656B), 2021. https://patents.google.com/patent/CN113481656B/en (accessed on 20 January 2024).
- W. Ni, Low-cost room-temperature rapid batch preparation method and equipment for special-shaped vanadium oxide nanofibers and aggregates thereof (CN114293321B), 2021. https://patents.google.com/patent/CN114293321B/en (accessed on 20 January 2024).
- W. Ni, Preparation method of porous nano vanadium oxide, porous nano vanadium oxide and application (CN116119713A), 2022. https://patents.google.com/patent/CN116119713A/en (accessed on 20 January 2024).
- W. Ni, Hydrated sodium polyvanadate, sodium vanadium oxide nanofiber and aggregate, and preparation method (CN117187987A), 2023. https://patents.google.com/patent/CN117187987A/en (accessed on 20 January 2024).
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, S.; Yang, Y.; Tang, F.; Yao, Y.; Lv, X.; Liu, L.; Xu, C.; Feng, Y.; Rui, X.; Yu, Y. Vanadium fluorophosphates: Advanced cathode materials for next-generation secondary batteries. Mater. Horiz. 2023, 10, 1901–1923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tan, H.; Rui, X.; Yu, Y. Vanadium-based materials: Next generation electrodes powering the battery revolution? Acc. Chem. Res. 2020, 53, 1660–1671. [Google Scholar] [CrossRef]
- Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398. [Google Scholar] [CrossRef]
- Ni, W.; Shi, L.-Y. Rich structural chemistry of metal phosphates/phosphonates for emerging applications: V, Ti-containing materials. In Metal Phosphates and Phosphonates: Fundamental to Advanced Emerging Applications; Gupta, R.K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 41–59. [Google Scholar]
- Bianchini, M.; Xiao, P.; Wang, Y.; Ceder, G. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700514. [Google Scholar] [CrossRef]
- Chen, G.; Huang, Q.; Wu, T.; Lu, L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—A review. Adv. Funct. Mater. 2020, 30, 2001289. [Google Scholar] [CrossRef]
- Sharma, L.; Adiga, S.P.; Alshareef, H.N.; Barpanda, P. Fluorophosphates: Next generation cathode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001449. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, Y.; Shi, J.; Zeng, L.; Gu, L.; Yu, Y. One-dimensional Na3V2(PO4)3/C nanowires as cathode materials for long-life and high rate Na-ion batteries. ChemNanoMat 2016, 2, 726–731. [Google Scholar] [CrossRef]
- Cheng, Y.; Xia, Y.; Chen, Y.; Liu, Q.; Ge, T.; Xu, L.; Mai, L. Vanadium-based nanowires for sodium-ion batteries. Nanotechnology 2019, 30, 192001. [Google Scholar] [CrossRef]
- Balogun, M.-S.; Luo, Y.; Lyu, F.; Wang, F.; Yang, H.; Li, H.; Liang, C.; Huang, M.; Huang, Y.; Tong, Y. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9733–9744. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Zhang, Y.; Song, T.; Wang, X.; Wu, X.; Law, M.-K.; Long, B. In situ K doped γ-LiV2O5 as long-life anode and cathode for lithium ion battery. ACS Appl. Energy Mater. 2022, 5, 10402–10408. [Google Scholar] [CrossRef]
- Kovrugin, V.M.; Chotard, J.-N.; Fauth, F.; Masquelier, C. Na7V3(P2O7)4 as a high voltage electrode material for Na-ion batteries: Crystal structure and mechanism of Na+ extraction/insertion by operando X-ray diffraction. J. Mater. Chem. A 2020, 8, 21110–21121. [Google Scholar] [CrossRef]
- Sørensen, D.R.; Mathiesen, J.K.; Ravnsbæk, D.B. Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J. Power Sources 2018, 396, 437–443. [Google Scholar] [CrossRef]
- Guo, J.Z.; Wang, P.F.; Wu, X.L.; Zhang, X.H.; Yan, Q.; Chen, H.; Zhang, J.P.; Guo, Y.G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Wu, S.; Liang, H.; Zhou, W.; Liu, J.; Goonetilleke, D.; Sharma, N.; Sit, P.H.L.; Zhang, W.; Yu, D.Y.W. High-performance NaVO3 with mixed cationic and anionic redox reactions for Na-ion battery applications. Chem. Mater. 2020, 32, 8836–8844. [Google Scholar] [CrossRef]
- Sijuade, A.A.; Eze, V.O.; Arnett, N.Y.; Okoli, O.I. Vanadium MXenes materials for next-generation energy storage devices. Nanotechnology 2023, 34, 252001. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Liang, S.; Chen, L.; Li, Y.; Luo, Z.; Chen, S. Recent advances in vanadium-based nanomaterials and their composites for supercapacitors. Sustain. Energy Fuels 2020, 4, 4902–4933. [Google Scholar] [CrossRef]
- Wei, Q.; DeBlock, R.H.; Butts, D.M.; Choi, C.; Dunn, B. Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 2020, 3, 221–234. [Google Scholar] [CrossRef]
- Peng, M.; Li, B.; Yan, H.; Zhang, D.; Wang, X.; Xia, D.; Guo, G. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 6452–6456. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Ni, W.; Hu, J.; Ma, J. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 2019, 11, 44. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, Q.; Zhang, P.; Tian, W.; Dai, K.; Zhang, L.; Mao, J.; Shao, G. Review—Research progress on layered transition metal oxide cathode materials for sodium ion batteries. J. Electrochem. Soc. 2021, 168, 050524. [Google Scholar] [CrossRef]
- Wang, Q.; Chu, S.; Guo, S. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries. Chin. Chem. Lett. 2020, 31, 2167–2176. [Google Scholar] [CrossRef]
- Guo, S.; Sun, Y.; Yi, J.; Zhu, K.; Liu, P.; Zhu, Y.; Zhu, G.-Z.; Chen, M.; Ishida, M.; Zhou, H. Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: A bridge between crystal structure and electrochemical performance. NPG Asia Mater. 2016, 8, e266. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Z.; Han, K.; Zhang, X.; Liu, Z.; Yang, C.; Meng, J.; Li, M.; Huang, M.; Wei, X.; et al. Advances in fine structure optimizations of layered transition-metal oxide cathodes for potassium-ion batteries. Adv. Energy Mater. 2023, 13, 2202861. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J. Mater. Chem. A 2020, 8, 21387–21407. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Sun, X.; Wang, C.; Zhang, B.; Zhao, J. The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. J. Power Sources 2018, 396, 155–163. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, J.; Wang, E.; Liu, X.; Shen, X.; Rong, X.; Zheng, Q.; Ren, G.; Zhang, N.; Liu, X.; et al. A Novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance na-ion batteries. Adv. Energy Mater. 2021, 11, 2100729. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, R.; Zhao, J.; Ding, F.; Yang, Y.; Rong, X.; Guo, X.; Yang, C.; Liu, H.; Zhong, B.; et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2022, 7, 97–107. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, Z.; Zhou, Y.; Li, J.; Ling, Z.; Fang, G.; Liang, S.; Cao, X. Unlocking rapid and robust sodium storage of fluorophosphate cathode via multivalent anion substitution. Nano Energy 2023, 114, 108604. [Google Scholar] [CrossRef]
- Li, P.; Gao, M.; Wang, D.; Li, Z.; Liu, Y.; Liu, X.; Li, H.; Sun, Y.; Liu, Y.; Niu, X.; et al. Optimizing vanadium redox reaction in Na3V2(PO4)3 cathodes for sodium-ion batteries by the synergistic effect of additional electrons from heteroatoms. ACS Appl. Mater. Interfaces 2023, 15, 9475–9485. [Google Scholar] [CrossRef]
- Esparcia, E.; Joo, J.; Lee, J. Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm 2021, 23, 5267–5283. [Google Scholar] [CrossRef]
- Heo, J.W.; Bu, H.; Hyoung, J.; Hong, S.-T. Ammonium vanadium bronze, (NH4)2V7O16, as a new lithium intercalation host material. Inorg. Chem. 2020, 59, 4320–4327. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, J.; Chen, M.; Guo, Y.; Zhou, G.; Li, N.; Zhou, S.; Wong, C.-P. Self-assembled NaV6O15 flower-like microstructures for high-capacity and long-life sodium-ion battery cathode. Nano Energy 2020, 68, 104357. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Okubo, M.; Yamada, A.; Tateyama, Y. Possible high-potential ilmenite type Na1MO3 (M = V–Ni) cathodes realized by dominant oxygen redox reaction. Phys. Rev. Mater. 2020, 4, 015401. [Google Scholar] [CrossRef]
- Kuang, Q.; Zhao, Y.; Dong, Y.; Fan, Q.; Lin, X.; Liu, X. A comparative study of Li8NaV3(P2O7)3(PO4)2 and Li9V3(P2O7)3(PO4)2: Synthesis, structure and electrochemical properties. J. Power Sources 2016, 306, 337–346. [Google Scholar] [CrossRef]
- Jin, T.; Liu, Y.; Li, Y.; Cao, K.; Wang, X.; Jiao, L. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700087. [Google Scholar] [CrossRef]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Ren, W.; Zheng, Z.; Xu, C.; Niu, C.; Wei, Q.; An, Q.; Zhao, K.; Yan, M.; Qin, M.; Mai, L. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 2016, 25, 145–153. [Google Scholar] [CrossRef]
- Ni, W. Green, sustainable and massive synthesis of sodium vanadate nanowires toward industrialization. Prog. Progress. Nat. Sci. Mater. Int. 2024, 34. [Google Scholar] [CrossRef]
- Pan, A.; Choi, D.; Zhang, J.-G.; Liang, S.; Cao, G.; Nie, Z.; Arey, B.W.; Liu, J. High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication. J. Power Sources 2011, 196, 3646–3649. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; Zhu, W.; Xu, C.; Rui, X. Electrospinning polyanionic materials for high-Rate Na storage. Batter. Supercaps 2023, 6, e202300271. [Google Scholar] [CrossRef]
- Subramanian, Y.; Oh, W.; Choi, W.; Lee, H.; Jeong, M.; Thangavel, R.; Yoon, W.-S. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 2021, 403, 126291. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Q.; Han, M.; Qi, X.; Li, B.; Zhang, Q.; Zhao, J.; Yang, C.; Liu, H.; Hu, Y.-S. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021, 12, 2848. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospinning for flexible sodium-ion batteries. Energy Storage Mater. 2022, 45, 704–719. [Google Scholar] [CrossRef]
- Rui, X.; Sun, W.; Wu, C.; Yu, Y.; Yan, Q. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 2015, 27, 6670–6676. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900. [Google Scholar] [CrossRef]
- Tertov, I.V.; Drozhzhin, O.A.; Alekseeva, A.M.; Kirsanova, M.A.; Mironov, A.V.; Abakumov, A.M.; Antipov, E.V. β-LiVP2O7 as a positive electrode material for Li-ion batteries. Electrochim. Acta 2021, 389, 138759. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Tertov, I.V.; Alekseeva, A.M.; Aksyonov, D.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. β-NaVP2O7 as a superior electrode material for Na-ion batteries. Chem. Mater. 2019, 31, 7463–7469. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Y.; Yan, D.; Han, W.; Kuang, Q.; Wen, M. Layered Li-rich vanadium phosphate Li9V3(P2O7)3(PO4)2: Cathode and anode materials for lithium-ion batteries. Electrochim. Acta 2016, 191, 207–214. [Google Scholar] [CrossRef]
- Saravanan, K.; Mason, C.W.; Rudola, A.; Wong, K.H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450. [Google Scholar] [CrossRef]
- Min, X.; Huo, H.; Li, R.; Zhou, J.; Hu, Y.; Dai, C. Cycling stability of Li3V2(PO4)3/C cathode in a broad electrochemical window. J. Electroanal. Chem. 2016, 774, 76–82. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, Y.; Li, L.; Song, L.; Gao, J. Monoclinic Na2VOP2O7: A 4V-class cost-effective cathode for sodium-ion batteries. Mater. Today Phys. 2023, 33, 101038. [Google Scholar] [CrossRef]
- Kim, J.; Park, I.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kang, K. Tailoring a new 4V-class cathode material for Na-ion batteries. Adv. Energy Mater. 2016, 6, 1502147. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S.; Zhao, B. First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery. Energy Storage Mater. 2016, 4, 71–78. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, H.; Chung, J.; Lee, J.H.; Kim, B.G.; Choi, J.-J.; Chung, K.Y.; Cho, W.; Kim, S.-J.; Goddard, W.A.; et al. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. USA 2014, 111, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, S. 1D Nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9111–9117. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-U.; Seo, D.-H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603–4614. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4 F. J. Electrochem. Soc. 2003, 150, A1394. [Google Scholar] [CrossRef]
- Park, Y.-U.; Seo, D.-H.; Kwon, H.-S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.-I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Xu, S.; Xu, C.; Rui, X. Advanced vanadium oxides for sodium-ion batteries. Adv. Funct. Mater. 2023, 33, 2306055. [Google Scholar] [CrossRef]
- Niu, X.; Li, N.; Chen, Y.; Zhang, J.; Yang, Y.; Tan, L.; Wu, J.; Guo, L.; Zhu, Y. Structure evolution of V2O5 as electrode materials for metal-ion batteries. Batter. Supercaps 2023, 6, e202300238. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Massé, R.C.; Uchaker, E.; Cao, G. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 2018, 11, 205–259. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.-F.; Liu, Y.; Zhang, H.; Ren, Y.; Sun, C.-J.; Lu, W.; Zhou, Y.; Stanciu, L.; Stach, E.A.; et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015, 6, 6127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ge, P.; Xie, L.; Miao, Y.; Cao, X. Doped-Li1+xV3O8 as cathode materials for lithium-ion batteries: A mini review. Electrochem. Commun. 2020, 115, 106722. [Google Scholar] [CrossRef]
- Esparcia, E.A., Jr.; Chae, M.S.; Ocon, J.D.; Hong, S.-T. Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 2018, 30, 3690–3696. [Google Scholar] [CrossRef]
- Christensen, C.K.; Sørensen, D.R.; Hvam, J.; Ravnsbæk, D.B. Structural evolution of disordered LixV2O5 bronzes in V2O5 cathodes for Li-ion batteries. Chem. Mater. 2019, 31, 512–520. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, D.; Wu, H.; Pei, C.; Xiao, T.; Ma, H.; Ni, S. Construction of a LiVO3/C core–shell structure for high-rate lithium storage. New J. Chem. 2023, 47, 1508–1516. [Google Scholar] [CrossRef]
- Fu, X.; Pu, X.; Wang, H.; Zhao, D.; Liu, G.; Zhao, D.; Chen, Z. Understanding capacity fading of the LiVO3 cathode material by limiting the cutoff voltage. Phys. Chem. Chem. Phys. 2019, 21, 7009–7015. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yang, Y.; Liu, X.; Guo, Z.; Feng, C. Controllable synthesis of FeVO4@TiO2 nanostructures as anode for lithium ion battery. J. Nanopart. Res. 2017, 19, 243. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Gao, H.; Sun, W.; Zhao, H.; Feng, C.; Mao, J.; Guo, Z. Synthesis of porous MoV2O8 nanosheets as anode material for superior lithium storage. Energy Storage Mater. 2019, 22, 128–137. [Google Scholar] [CrossRef]
- Zhang, C.; Song, H.; Liu, C.; Liu, Y.; Zhang, C.; Nan, X.; Cao, G. Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater. 2015, 25, 3497–3504. [Google Scholar] [CrossRef]
- Liao, C.; Zhang, Q.; Zhai, T.; Li, H.; Zhou, H. Development and perspective of the insertion anode Li3VO4 for lithium-ion batteries. Energy Storage Mater. 2017, 7, 17–31. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Jia, Z.; Wu, W.; Zhang, X.; Liu, X.-X.; Sun, X. The development of vanadyl phosphate cathode materials for energy storage systems: A review. Chem. Eur. J. 2020, 26, 8190–8204. [Google Scholar] [CrossRef]
- Hu, P.; Wang, X.; Ma, J.; Zhang, Z.; He, J.; Wang, X.; Shi, S.; Cui, G.; Chen, L. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016, 26, 382–391. [Google Scholar] [CrossRef]
- Miao, X.; Li, C.; Chu, W.; Wu, P.; Tong, D.G. Li9V3(P2O7)3(PO4)2 nanotubes fabricated by a simple molten salt approach with excellent cycling stability and enhanced rate capability in lithium-ion batteries. RSC Adv. 2015, 5, 243–247. [Google Scholar] [CrossRef]
- Lv, Z.; Ling, M.; Yue, M.; Li, X.; Song, M.; Zheng, Q.; Zhang, H. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications. J. Energy Chem. 2021, 55, 361–390. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Zhong, G.; Wang, C.; Wu, S.; Xu, K.; Yang, C. Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 25920–25929. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, D.; Yang, X.; Chen, N.; Wang, C.; Bie, X.; Wei, Y.; Chen, G.; Du, F. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 2015, 3, 21478–21485. [Google Scholar] [CrossRef]
- Ruan, Y.-L.; Wang, K.; Song, S.-D.; Han, X.; Cheng, B.-W. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 2015, 160, 330–336. [Google Scholar] [CrossRef]
- Lin, X.; Huang, J.; Tan, H.; Huang, J.; Zhang, B. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 2019, 16, 97–101. [Google Scholar] [CrossRef]
- Beltrop, K.; Beuker, S.; Heckmann, A.; Winter, M.; Placke, T. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries. Energy Environ. Sci. 2017, 10, 2090–2094. [Google Scholar] [CrossRef]
- Xu, Y.; Titirici, M.; Chen, J.; Cora, F.; Cullen, P.L.; Edge, J.S.; Fan, K.; Fan, L.; Feng, J.; Hosaka, T.; et al. 2023 roadmap for potassium-ion batteries. J. Phys. Energy 2023, 5, 021502. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Hou, B.-H.; Guo, J.-Z.; Ning, Q.-L.; Pang, W.-L.; Wang, J.; Lü, C.-L.; Wu, X.-L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252. [Google Scholar] [CrossRef]
- Krishna, M.M.; Jayasree, G.; Mallu, R.R.; Basak, P. Impact of electrolyte composition on the performance of Na3(VOPO4)2F Cathodes: A Comprehensive Case Study. ACS Appl. Energy Mater. 2023, 6, 9287–9299. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.; Chen, C.; Lin, Z.; Zhang, S.; Lu, J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 2019, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Samarin, A.S.; Ivanov, A.V.; Fedotov, S.S. Toward efficient recycling of vanadium phosphate-based sodium-ion batteries: A review. Clean Technol. 2023, 5, 881–900. [Google Scholar] [CrossRef]
- Yue, Y.; Liang, H. Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1602545. [Google Scholar] [CrossRef]
- Rui, X.; Lu, Z.; Yu, H.; Yang, D.; Hng, H.H.; Lim, T.M.; Yan, Q. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-L.; Wen, Y.; Wu, C.; van Aken, P.A.; Maier, J.; Yu, Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015, 15, 1388–1394. [Google Scholar] [CrossRef]
- Ren, M.M.; Zhou, Z.; Gao, X.P.; Peng, W.X.; Wei, J.P. Core−shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 5689–5693. [Google Scholar] [CrossRef]
- Ni, Q.; Zheng, L.; Bai, Y.; Liu, T.; Ren, H.; Xu, H.; Wu, C.; Lu, J. An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett. 2020, 5, 1763–1770. [Google Scholar] [CrossRef]
- Kuang, Q.; Xu, J.; Zhao, Y.; Chen, X.; Chen, L. Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries. Electrochim. Acta 2011, 56, 2201–2205. [Google Scholar] [CrossRef]
- Dugas, R.; Zhang, B.; Rozier, P.; Tarascon, J.M. Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes. J. Electrochem. Soc. 2016, 163, A867. [Google Scholar] [CrossRef]
- Emery, N.; Baddour-Hadjean, R.; Batyrbekuly, D.; Laïk, B.; Bakenov, Z.; Pereira-Ramos, J.-P. γ-Na0.96V2O5: A new competitive cathode material for sodium-ion batteries synthesized by a soft chemistry route. Chem. Mater. 2018, 30, 5305–5314. [Google Scholar] [CrossRef]
- Pan, Z.-T.; He, Z.-H.; Hou, J.-F.; Kong, L.-B. Sodium vanadium hexacyanoferrate as a high-rate capability and long-life cathode material for Na-ion batteries. J. Energy Storage 2022, 53, 105165. [Google Scholar] [CrossRef]
- Baster, D.; Kondracki, Ł.; Oveisi, E.; Trabesinger, S.; Girault, H.H. Prussian blue analogue—Sodium–vanadium hexacyanoferrate as a cathode material for Na-ion batteries. ACS Appl. Energy Mater. 2021, 4, 9758–9765. [Google Scholar] [CrossRef]
- Yin, X.; Sarkar, S.; Shi, S.; Huang, Q.-A.; Zhao, H.; Yan, L.; Zhao, Y.; Zhang, J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, J.; Pan, A.; Liang, S. Recent advances in phosphate cathode materials for sodium-ion batteries. Acta Phys.-Chim. Sin. 2020, 36, 190501. [Google Scholar]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Tepavcevic, S.; Xiong, H.; Stamenkovic, V.R.; Zuo, X.; Balasubramanian, M.; Prakapenka, V.B.; Johnson, C.S.; Rajh, T. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 2012, 6, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Kovrugin, V.M.; David, R.; Chotard, J.-N.; Recham, N.; Masquelier, C. A High voltage cathode material for sodium batteries: Na3V(PO4)2. Inorg. Chem. 2018, 57, 8760–8768. [Google Scholar] [CrossRef]
- Fang, R.; Olchowka, J.; Pablos, C.; Camacho, P.S.; Carlier, D.; Croguennec, L.; Cassaignon, S. Effect of the particles morphology on the electrochemical performance of Na3V2(PO4)2F3-yOy. Batter. Supercaps 2022, 5, e202100179. [Google Scholar] [CrossRef]
- Fang, R.; Olchowka, J.; Pablos, C.; Bianchini Nuernberg, R.; Croguennec, L.; Cassaignon, S. Impact of the F– for O2– Substitution in Na3V2(PO4)2F3–yOy on their transport properties and electrochemical performance. ACS Appl. Energy Mater. 2022, 5, 1065–1075. [Google Scholar] [CrossRef]
- Yang, Z.; Li, G.; Sun, J.; Xie, L.; Jiang, Y.; Huang, Y.; Chen, S. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Storage Mater. 2020, 25, 724–730. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Q.; Xiao, L.; Rong, Y.; Liu, Y.; Chen, Z.; Ai, X.; Cao, Y.; Yang, H.; Xie, J.; et al. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem 2018, 4, 1167–1180. [Google Scholar] [CrossRef]
- Qi, Y.; Mu, L.; Zhao, J.; Hu, Y.-S.; Liu, H.; Dai, S. Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 9911–9916. [Google Scholar] [CrossRef] [PubMed]
- Shraer, S.D.; Luchinin, N.D.; Trussov, I.A.; Aksyonov, D.A.; Morozov, A.V.; Ryazantsev, S.V.; Iarchuk, A.R.; Morozova, P.A.; Nikitina, V.A.; Stevenson, K.J.; et al. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries. Nat. Commun. 2022, 13, 4097. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Dong, J.; Uchaker, E.; Zhang, Q.; Zhou, X.; Hou, S.; Li, J.; Cao, G. Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries. J. Mater. Chem. A 2015, 3, 17563–17568. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, X.; Luo, Z.; Fang, G.; Liu, F.; Zhou, J.; Pan, A.; Liang, S. Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling. Adv. Sci. 2018, 5, 1800680. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, H. Recent research process of carbon engineering on Na3V2(PO4)3 for sodium-ion battery cathodes: A mini review. Electron. Mater. 2023, 4, 17–32. [Google Scholar] [CrossRef]
- Liu, J.; Tang, K.; Song, K.; van Aken, P.A.; Yu, Y.; Maier, J. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 2014, 6, 5081–5086. [Google Scholar] [CrossRef]
- Wu, L.; Hao, Y.; Shi, S.; Zhang, X.; Li, H.; Sui, Y.; Yang, L.; Zhong, S. Controllable synthesis of Na3V2(PO4)3/C nanofibers as cathode material for sodium-ion batteries by electrostatic spinning. Front. Chem. 2018, 6, 617. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.; Zhao, F.; Zhang, J.; Liu, Y.; Hou, L.; Yuan, C. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100287. [Google Scholar] [CrossRef]
- Luo, L.; Cheng, B.; Chen, Y.; Chen, S.; Liu, G.; Zhuo, H. Electrospun Na3V2(PO4)3/C nanofibers as self-standing cathode material for high performance sodium ion batteries. Mater. Res. Express 2020, 7, 025508. [Google Scholar] [CrossRef]
- Xu, D.; Chen, R.; Chen, B.; Zhou, S.; Zhang, Y.; Chang, Z.; Pan, A. High-performance flexible sodium-ion batteries enabled by high-voltage sodium vanadium fluorophosphate nanorod arrays. Sci. China Mater. 2023, 66, 3837–3845. [Google Scholar] [CrossRef]
- Wang, D.; Wei, Q.; Sheng, J.; Hu, P.; Yan, M.; Sun, R.; Xu, X.; An, Q.; Mai, L. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 12074–12079. [Google Scholar] [CrossRef] [PubMed]
- Clites, M.; Hart, J.L.; Taheri, M.L.; Pomerantseva, E. Annealing-assisted enhancement of electrochemical stability of Na-preintercalated bilayered vanadium oxide electrodes in Na-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1063–1075. [Google Scholar] [CrossRef]
- Min, X.; Xiao, J.; Fang, M.; Wang, W.; Zhao, Y.; Liu, Y.; Abdelkader, A.M.; Xi, K.; Kumar, R.V.; Huang, Z. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243. [Google Scholar] [CrossRef]
- Zhang, K.-Y.; Gu, Z.-Y.; Ang, E.H.; Guo, J.-Z.; Wang, X.-T.; Wang, Y.; Wu, X.-L. Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and application prospects. Mater. Today 2022, 54, 189–201. [Google Scholar] [CrossRef]
- Kim, H.; Seo, D.-H.; Bianchini, M.; Clément, R.J.; Kim, H.; Kim, J.C.; Tian, Y.; Shi, T.; Yoon, W.-S.; Ceder, G. A new strategy for high-voltage cathodes for K-ion batteries: Stoichiometric KVPO4F. Adv. Energy Mater. 2018, 8, 1801591. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Samarin, A.S.; Antipov, E.V. KTiOPO4-structured electrode materials for metal-ion batteries: A review. J. Power Sources 2020, 480, 228840. [Google Scholar] [CrossRef]
- Deng, L.; Niu, X.; Ma, G.; Yang, Z.; Zeng, L.; Zhu, Y.; Guo, L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 2018, 28, 1800670. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, X.; Tan, L.; Deng, L.; Jin, S.; Zeng, L.; Xu, H.; Zhu, Y. K0.83V2O5: A new layered compound as a stable cathode material for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 9332–9340. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Qu, J.; Hong, Y.; Deng, L.; Wang, R.; Feng, M.; Wang, J.; Zeng, L.; Zhang, Q.; Guo, L.; et al. High-performance layered potassium vanadium oxide for K-ion batteries enabled by reduced long-range structural order. J. Mater. Chem. A 2021, 9, 13125–13134. [Google Scholar] [CrossRef]
- Clites, M.; Hart, J.L.; Taheri, M.L.; Pomerantseva, E. Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-Ion batteries. ACS Energy Lett. 2018, 3, 562–567. [Google Scholar] [CrossRef]
- Zhu, Y.-R.; Cao, K.; Chen, F.; Dong, J.-M.; Ren, N.-Q.; Chen, C.-H. Fine valence regulation of hydrated vanadium oxide as a novel cathode for stable potassium-ion storage. Chem. Commun. 2023, 59, 10000–10003. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-H.; Zhang, Q.; Yang, X.; Zhao, E.-Y.; Sun, T.; Zhang, X.-B.; Wang, S.; Yu, X.-Q.; Yan, J.-M.; Jiang, Q. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-Ion batteries. Chem 2019, 5, 168–179. [Google Scholar] [CrossRef]
- Han, J.; Li, G.-N.; Liu, F.; Wang, M.; Zhang, Y.; Hu, L.; Dai, C.; Xu, M. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805–1808. [Google Scholar] [CrossRef]
- Xie, C.; Liu, X.; Han, J.; Lv, L.; Zhou, X.; Han, C.; You, Y. Pomegranate-like KVPO4F@C microspheres as high-volumetric-energy-density cathode for potassium-ion batteries. Small 2022, 18, 2204348. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, X.; Zhang, Q.; Hu, Q.; Li, Y.; Du, Y.; Xu, J.; Gu, L.; Zhou, X. Synthesis of KVPO4F/carbon porous single crystalline nanoplates for high-rate potassium-ion batteries. Nano Lett. 2022, 22, 4933–4940. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.; Ou, B.; Zhang, S.; Wang, H.; Hu, J.; Kang, F.; Zhai, D. A dilute fluorinated phosphate electrolyte enables 4.9 V-class potassium ion full batteries. Adv. Funct. Mater. 2023, 33, 2305829. [Google Scholar] [CrossRef]
- Liao, J.; Hu, Q.; Che, B.; Ding, X.; Chen, F.; Chen, C. Competing with other polyanionic cathode materials for potassium-ion batteries via fine structure design: New layered KVOPO4 with a tailored particle morphology. J. Mater. Chem. A 2019, 7, 15244–15251. [Google Scholar] [CrossRef]
- Liao, J.; Hu, Q.; Mu, J.; He, X.; Wang, S.; Chen, C. A vanadium-based metal–organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem. Commun. 2019, 55, 659–662. [Google Scholar] [CrossRef]
- Hameed, A.S.; Katogi, A.; Kubota, K.; Komaba, S. A layered inorganic–organic open framework material as a 4 V positive electrode with high-rate performance for K-ion batteries. Adv. Energy Mater. 2019, 9, 1902528. [Google Scholar] [CrossRef]
- He, X.-D.; Liao, J.-Y.; Chen, T.; Zhang, L.-M.; Ding, X.; Wang, J.-R.; Wang, S.; Wen, Z.-Y.; Chen, C.-H. Spray drying derived wrinkled pea-shaped carbon-matrixed KVP2O7 as a cathode material for potassium-ion batteries. J. Alloys Compd. 2021, 884, 161126. [Google Scholar] [CrossRef]
Cathode Materials | Structure Type (Space Group) | Potential Window (V) | Discharge Plateaus (V) | Theoretical Capacities (mA h g−1) | Experimental Capacities (mA h g−1) | Theor./Exp. Energy Densities (W h kg−1) | Year/Ref. |
---|---|---|---|---|---|---|---|
LIBs cathodes | |||||||
γ-LiV2O5 | 2D layered | 4.0–2.0 | 3.5, 2.5 | 284 | 210 @0.02 A g−1 | – | 2022/[11] |
α-Li3V2(PO4)3 | NASICON Monoclinic (P21/n) | 4.4–3.0 | 4.1, 3.7, 3.6 (av. ~3.8 V) | 197 (4.8–3.0 V) 133 (4.3–3.0 V) a | 131 | – | 2018/[13] |
LiVPO4F | ) | 4.6–2.5 | 4.2 | 156 | [email protected] | 655/592 | 2018/[26] |
Li9V3(P2O7)3(PO4)2 | Layered Trigonal c1) | 4.6–2.5 | 4.5, 3.8 | 173.5 | [email protected] | – | 2015/[75] |
SIBs cathodes | |||||||
Na3V2(PO4)3 | NASICON Rhombohedral c) | 3.8–2.5 | 3.4 | 118 | 115@1C | 401(394)/384 | 2015/[45] |
NaVOPO4 | Layered Monoclinic (P21/c) | 4.5–2.0 | 4.0, 3.6 | 145 | [email protected] | 591 b/~450 | 2014/[57] 2021/[76] |
Na3V2(PO4)2F3 | NASICON Tetragonal (P42/mnm) | 4.3–2.0 | 4.0/4.1 c, 3.6, 3.3 (av. ~3.9/3.8 V) | 128 | 110/102 @0.1/1C [email protected] | 507(495) c /500 | 2020/[77] 2015/[78] |
NaVPO4F | NASICON monoclinic (C2/c) | 4.5–2.6 | 3.4 | 143 | 120@1C | 485/– | 2017/[36] |
Tetragonal (I4/mmm) | 4.3–1.5 | 4.2, 3.7 (av. 3.95 V) | 143 | 121/69 @0.05/0.5C | 527/478 | 2015/[79] | |
Na3V2O2(PO4)2F d | Pseudolayered Tetragonal (I4/mmm) | 4.3–2.5 | 4.0, 3.6 (av. 3.8 V) | 130 | 120 (1C) | 494/479 | 2015/[19] |
β-NaVP2O7 | Monoclinic (P21/c) | 4.4–2.0 | 4.1, 3.8 (av. 3.9 V) | 108 | 104, 96 (0.1, 1C) | 421 e/393 | 2019/[48] |
Na7V3(P2O7)4 | Quasi 2D Monoclinic (C2/c) | 4.35–2.5 | 4.1 | 79.6 | ~80 | 329/– | 2016/[53,54] |
Na7V4(P2O7)4PO4 | 21c) | 4.2–2.0 | 3.88 | 92.8 | [email protected] | 357/– | 2014/[55] |
PIBs cathodes | |||||||
K3V2(PO4)2F3 | NASICON orthorhombic (Cmcm) | 4.6–2.0 | 4.3, 3.4 (av. ~3.7 V) | 115 | 104/83 @0.1/1C | –/385 | 2019/[80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, W. Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries. Materials 2024, 17, 587. https://doi.org/10.3390/ma17030587
Ni W. Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries. Materials. 2024; 17(3):587. https://doi.org/10.3390/ma17030587
Chicago/Turabian StyleNi, Wei. 2024. "Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries" Materials 17, no. 3: 587. https://doi.org/10.3390/ma17030587
APA StyleNi, W. (2024). Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries. Materials, 17(3), 587. https://doi.org/10.3390/ma17030587