The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Method of Obtaining Mesogens
2.2. Determination of the Enantiomeric Purity of Mesogens
3. Results and Discussion
3.1. Transition Temperatures and Phase Behavior
3.2. Dielectric Spectroscopy and Spontaneous Polarization
3.3. X-ray Diffraction
3.4. Helical Pitch Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelker, H. History of liquid crystals. Mol. Cryst. Liq. Cryst. 1973, 21, 1–48. [Google Scholar] [CrossRef]
- Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 2, 1387–1412. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Giesselmann, F. Current topics in smectic liquid crystal research. Chem. Phys. Chem. 2006, 7, 20–45. [Google Scholar] [CrossRef]
- Clark, N.A.; Lagerwall, S.T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 1980, 36, 899–901. [Google Scholar] [CrossRef]
- Lagerwall, S.T. Ferroelectric and Antiferroelectric Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar] [CrossRef]
- Yamamoto, N.; Koshoubu, N.; Mori, K.; Nakamura, K.; Yamada, Y. Full-color antiferroelectric liquid crystal display. Ferroelectrics 1993, 149, 295–304. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Zhang, H.; Pauwels, H.; Gayo, J.L.; Urruchi, V.; Quintana, X.; Otón, J.M. Characterizing Antiferroelectric Liquid Crystal Materials for Display Applications. Funct. Mater. 2000, 13, 121–126. [Google Scholar] [CrossRef]
- Fukuda, A.; Takanishi, Y.; Isozaki, T.; Ishikawa, K.; Takezoe, H. Antiferroelectric chiral smectic liquid crystals. J. Mater. Chem. 1994, 4, 997–1016. [Google Scholar] [CrossRef]
- Inui, S.; Iimura, N.; Suzuki, T.; Iwane, H.; Miyachi, K.; Takanishi, Y.; Fukuda, A. Thresholdless antiferroelectricity in liquid crystals and its application to displays. J. Mater. Chem. 1996, 6, 671–673. [Google Scholar] [CrossRef]
- Žekš, B. Landau free energy expansion for chiral ferroelectric smectic liquid crystals. Mol. Cryst. Liq. Cryst. 1984, 114, 259–270. [Google Scholar] [CrossRef]
- Pandey, M.B.; Dąbrowski, R.; Dhar, R. Antiferroelectric liquid crystals: Smart materials for future displays. Adv. Energy Mater. 2014, 10, 389–432. [Google Scholar] [CrossRef]
- Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P. Ferroelectric liquid crystals. Le J. Phys. Lett. 1975, 36, 69–71. [Google Scholar] [CrossRef]
- Chandani, A.D.L.; Górecka, E.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC. Jpn. J. Appl. Phys. 1989, 28, L1265–L1268. [Google Scholar] [CrossRef]
- Żurowska, M.; Morawiak, P.; Piecek, W.; Czerwiński, M.; Spadło, A.; Bennis, N. A new mesogenic mixture with antiferroelectric phase only at a broad temperature range. Liq. Cryst. 2016, 43, 1365–1374. [Google Scholar] [CrossRef]
- Fitas, J.; Marzec, M.; Kurp, K.; Żurowska, M.; Tykarska, M.; Bubnov, A. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures. Liq. Cryst. 2017, 44, 1468–1476. [Google Scholar] [CrossRef]
- Obadović, D.Ž.; Vajda, A.; Garić, M.; Bubnov, A.; Hamplová, V.; Kašpar, M.; Fodor-Csorba, K. Thermal analysis and X-ray studies of chiral ferroelectric liquid crystalline materials and their binary mixtures. J. Therm. Anal. Calorim. 2005, 82, 51–9523. [Google Scholar] [CrossRef]
- Bubnov, A.; Tykarska, M.; Hamplová, V.; Kurp, K. Tuning the phase diagrams: The miscibility studies of multilactate liquid crystalline compounds. Phase Transit. 2016, 89, 885–893. [Google Scholar] [CrossRef]
- Wang, J.; Bergquist, L.; Hwang, J.-I.; Kim, K.-J.; Lee, J.-H.; Hegmann, T.; Jákli, A. Wide temperature-range, multi-component, optically isotropic antiferroelectric bent-core liquid crystal mixtures for display applications. Liq. Cryst. 2018, 45, 333–340. [Google Scholar] [CrossRef]
- Agrahari, A.; Nautiyal, V.K.; Vimal, T.; Pandey, S.; Kumar, S.; Manohar, R. Modification in different physical parameters of orthoconic antiferroelectric liquid crystal mixture via the dispersion of hexanethiol capped silver nanoparticles. J. Mol. Liq. 2021, 332, 115840. [Google Scholar] [CrossRef]
- Debnath, A.; Mandal, P.K. A wide range room temperature antiferroelectric liquid crystal mixture with moderate spontaneous polarization and sub-millisecond switching time. Opti. Mat. 2023, 135, 113236. [Google Scholar] [CrossRef]
- Czerwiński, M.; Tykarska, M. Helix parameters in bi- and multicomponent mixtures composed of orthoconic antiferroelectric liquid crystals with three ring molecular core. Liq. Cryst. 2014, 41, 850–860. [Google Scholar] [CrossRef]
- Verma, R.; Dabrowski, R.; Dhar, R. Thermodynamic, electrical and electro-optical features of the racemic mixture of an antiferroelectric liquid crystal suitable for displays. Liq. Cryst. 2015, 42, 1785–1797. [Google Scholar] [CrossRef]
- Knapkiewicz, M.; Robakowska, M.; Rachocki, A. Thermal stabilization of the smectic-Cα* phase by doping with photo-active reactive mesogen. J. Mol. Liq. 2022, 361, 119552. [Google Scholar] [CrossRef]
- Tomczyk, W.; Marzec, M.; Juszyńska-Gałązka, E.; Węgłowska, D. Mesomorphic and physicochemical properties of liquid crystal mixture composed of chiral molecules with perfluorinated terminal chains. J. Mol. Struct. 2017, 1130, 503–510. [Google Scholar] [CrossRef]
- Czerwiński, M.; Tykarska, M.; Kula, P. New ferroelectric liquid crystalline materials with properties suitable for surface stabilized and deformed helix effects. Liq. Cryst. Appl. 2021, 21, 6173. [Google Scholar] [CrossRef]
- Urbańska, M.; Szala, M. Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4’-Hydroxybiphenyl-4-carboxylate Derivatives. Crystals 2022, 12, 1710. [Google Scholar] [CrossRef]
- Nepal, S.; Das, B.; Das, M.K.; Das Sarkar, M.; Urbańska, M.; Czerwiński, M. Static permittivity and electro-optical properties of bi-component orthoconic antiferroelectric liquid crystalline mixtures targeted for polymer stabilized sensing systems. Polymers 2022, 14, 956. [Google Scholar] [CrossRef]
- Debnath, A.; Mandal, P.K. Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures. Liq. Cryst. 2017, 44, 2192–2202. [Google Scholar] [CrossRef]
- Czerwiński, M.; de Blas, M.G.; Bennis, N.; Herman, J.; Dmochowska, E.; Otón, J.M. Polymer stabilized highly tilted antiferroelectric liquid crystals—The influence of monomer structure and phase sequence of base mixtures. J. Mol. Liq. 2020, 327, 114869. [Google Scholar] [CrossRef]
- Urbańska, M.; Perkowski, P.; Szala, M. Synthesis and properties of antiferroelectric and/or ferroelectric compounds with the -CH2O group close to chirality centre. Liq. Cryst. 2019, 46, 2245–2255. [Google Scholar] [CrossRef]
- Fitas, J.; Dłubacz, A.; Fryń, P.; Marzec, M.; Jaworska-Gołąb, T.; Deptuch, A.; Kurp, K.; Tykarska, M.; Żurowska, M. New ferroelectric and antiferroelectric liquid crystals studied by complementary methods. Liq. Cryst. 2017, 44, 566–576. [Google Scholar] [CrossRef]
- Drzewiński, W.; Dąbrowski, R.; Czupryński, K. Orthoconic antiferroelectrics. Synthesis and mesomorphic properties of optically active (S)-(+)-4-(1-methylheptyloxycarbonyl)phenyl 4′-(fluoroalkanoyloxyalkoxy)biphenyl-4-carboxylates and 4′-(alkanoyloxyalkoxy)biphenyl-4-carboxylates. Pol. J. Chem. 2002, 76, 273–284. [Google Scholar] [CrossRef]
- Chen, X.; Yamamoto, C.; Okamoto, Y. Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure Appl. Chem. 2007, 79, 1561–1573. [Google Scholar] [CrossRef]
- Kazusaki, M.; Kawabata, H.; Matsukura, H. Comparative study of amylose and cellulose derivatized chiral stationary phases in the reversed-phase mode. J. Liq. Chrom. Rel. Techn. 2000, 23, 2819–2828. [Google Scholar] [CrossRef]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC 2020, 122, 115709. [Google Scholar] [CrossRef]
- Perkowski, P. The parasitic effects in high-frequency dielectric spectroscopy of liquid crystals—The review. Liq. Cryst. 2021, 48, 767–793. [Google Scholar] [CrossRef]
- Perkowski, P.; Mrukiewicz, M.; Herman, J.; Kula, P.; Jaroszewicz, L. Dielectric investigation of the liquid crystal compound with the direct SmA*-SmCA* phase transition. Liq. Cryst. 2016, 43, 654–663. [Google Scholar] [CrossRef]
- Perkowski, P.; Ogrodnik, K.; Piecek, W.; Żurowska, M.; Raszewski, Z.; Dąbrowski, R.; Jaroszewicz, L. Influence of the bias field on dielectric properties of the SmCA* in the vicinity of the SmC*-SmCA* phase transition. Liq. Cryst. 2011, 38, 1159–1167. [Google Scholar] [CrossRef]
- Vertogen, G.; de Jeu, W.H. Thermotropic Liquid Crystals: Fundamentals; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mater. Sci. Forum 2001, 378–381, 118–123. [Google Scholar] [CrossRef]
- de Vries, A.; Ekachai, A.; Spielberg, N. Why the Molecules are Tilted in all Smectic A Phases, and How the Layer Thickness Can be Used to Measure Orientational Disorder. Mol. Cryst. Liq. Cryst. 1979, 49, 143–152. [Google Scholar] [CrossRef]
- Chruściel, J.; Rudzki, A.; Ossowska-Chruściel, M.D.; Zalewski, S. Studies of de Vries SmA* type phase in chiral thiobenzoates. Phase Trans. 2023, 96, 157–165. [Google Scholar] [CrossRef]
- Mulligan, K.M.; Bogner, A.; Song, Q.; Schubert, C.P.J.; Giesselmann, F.; Lemieux, R.P. Design of liquid crystals with ‘de Vries-like’ properties: The effect of carbosilane nanosegregation in 5-phenyl-1,3,4-thiadiazole mesogens. J. Mater. Chem. C 2014, 2, 8270–8276. [Google Scholar] [CrossRef]
- Podoliak, N.; Novotná, V.; Glogarová, M.; Hamplová, V.; Kašpar, M.; Bubnov, A.; Kapernaum, N.; Giesselmann, F. Study of de Vries behaviour of the smectic A*–smectic C* phase transition. Phase Trans. 2010, 83, 1026–1036. [Google Scholar] [CrossRef]
- San Jose, B.A.; Yan, J.; Akagi, K. Dynamic Switching of the Circularly Polarized Luminescence of Disubstituted Polyacetylene by Selective Transmission through a Thermotropic Chiral Nematic Liquid Crystal. Angew. Chem. Int. Ed. 2014, 53, 10641–10644. [Google Scholar] [CrossRef]
- Liu, J.; Song, Z.-P.; Sun, L.-Y.; Li, B.-X.; Lu, Y.-Q.; Li, Q. Circularly polarized luminescence in chiral orientationally ordered soft matter systems. Resp. Mat. 2023, 1, e20230005. [Google Scholar] [CrossRef]
- Lin, S.; Sun, H.; Qiao, J.; Ding, X.; Guo, J. Phototuning Energy Transfer in Self-Organized Luminescent Helical Superstructures for Photonic Applications. Adv. Optical Mater. 2020, 8, 2000107. [Google Scholar] [CrossRef]
- Suzuki, S.; Kaneko, K.; Hanasaki, T.; Shizuma, M.; Imai, Y. Circularly Polarized Luminescence Switching of Chiral Perylene Diimide-Doped Nematic Liquid Crystal Using DC Electric Field. ChemPhotoChem. 2023, e202300224. [Google Scholar] [CrossRef]
- Gong, W.; Zhou, M.; Xiao, L.; Fan, C.; Yuan, Y.; Gong, Y.; Zhang, H. Multicolor-Tunable and Time-Dependent Circularly Polarized Room-Temperature Phosphorescence from Liquid Crystal Copolymers. Adv. Opt. Mater. 2023, 2301922. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q. Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals. Adv. Mater. 2012, 24, 1926–1945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Liquid crystal-templated chiral nanomaterials: From chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 2022, 11, 223. [Google Scholar] [CrossRef]
- Gong, W.; Huang, G.; Yuan, Y.; Zhang, H. Strong and Multicolor-Tunable Pure Organic Circularly Polarized Room-Temperature Phosphorescence from Cholesteric Liquid Crystal. Adv. Opt. Mater. 2023, 11, 2300745. [Google Scholar] [CrossRef]
- Shen, W.; Li, G. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Li, C.-Y.; Pan, J.-T.; Ji, Y.-E.; Jiang, C.; Zheng, R.; Wang, Z.-Y.; Wang, Y.; Li, B.-X.; Lu, Y.-Q. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 2022, 11, 270. [Google Scholar] [CrossRef] [PubMed]
Peak Area (%) | 3PhPhCH2O | 7PhPhCH2O |
---|---|---|
(S) | 99.246 | 99.640 |
(R) | 0.754 | 0.360 |
% ee | 98.5 | 99.3 |
Rs | 2.24 | 2.03 |
Acronym | Phase Transition Behavior a | ||||||||
---|---|---|---|---|---|---|---|---|---|
7PhPhCH2O | Cr | 51.6–58.6 | SmCa* | 60.7–63.1 | SmC* | 158.2–162.8 | SmA* | 179.1–183.6 | Iso |
44.2–45.8 | 57.3–59.4 | 152.1–159.3 | 175.1–182.4 | ||||||
57.5 | 61.4 | 160.1 | 180.7 | ||||||
45.7 | 58.3 | 159.0 | 180.1 | ||||||
22.4 | 0.05 | 0.18 | 6.7 | ||||||
3PhPhCH2O | Cr | 90.4–93.5 | - | SmC* | 149.5–152.5 | SmA* | 168.3–175.9 | Iso | |
74.7–77.6 | 143.4–148.6 | 168.2–171.1 | |||||||
90.4; 94.9 | 129.8 | 169.0 | |||||||
80.5; 85.0 | 131.1 | 168.2 | |||||||
15.1; 1.7 | 0.30 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, M.; Zając, M.; Perkowski, P.; Deptuch, A. The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases. Materials 2024, 17, 618. https://doi.org/10.3390/ma17030618
Urbańska M, Zając M, Perkowski P, Deptuch A. The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases. Materials. 2024; 17(3):618. https://doi.org/10.3390/ma17030618
Chicago/Turabian StyleUrbańska, Magdalena, Monika Zając, Paweł Perkowski, and Aleksandra Deptuch. 2024. "The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases" Materials 17, no. 3: 618. https://doi.org/10.3390/ma17030618
APA StyleUrbańska, M., Zając, M., Perkowski, P., & Deptuch, A. (2024). The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases. Materials, 17(3), 618. https://doi.org/10.3390/ma17030618