Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of EP Composites with Directional CF@ZnO Skeletons
2.3. Characterization
3. Results and Discussion
3.1. Characterization of CF@ZnO Hybrids
3.2. Microstructures of CF@ZnO Skeletons and CF@ZnO/EP Composites
3.3. Thermal Performance of CF@ZnO/EP Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, X.; Wan, S.Q.; Kang, W.W.; Zhao, J.L.; Han, S.M.; Peng, D.Y.; Yang, P.; Wang, Q. Carbothermal synthesis of high-aspect-ratio AlN whiskers using graphite felt as carbon source. Ceram. Int. 2022, 48, 9842–9847. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Arrachea, L. Energy dynamics, heat production and heat-work conversion with qubits: Toward the development of quantum machines. Rep. Prog. Phys. 2023, 86, 036501. [Google Scholar] [CrossRef]
- Jasmee, S.; Omar, G.; Othaman, S.S.C.; Masripan, N.A.; Hamid, H.A. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review. Polym. Compos. 2021, 42, 2629–2652. [Google Scholar] [CrossRef]
- Agari, Y.; Ueda, A.; Nagai, S. Thermal conductivity of a polymer composite. J. Appl. Polym. Sci. 1993, 49, 1625–1634. [Google Scholar] [CrossRef]
- Wan, S.; Hao, X.; Zhu, L.; Yu, C.; Li, M.; Zhao, Z.; Kuang, J.; Yue, M.; Lu, Q.; Cao, W.; et al. Enhanced in-plane thermal conductivity and mechanical strength of flexible films by aligning and interconnecting Si3N4 nanowires. ACS Appl. Mater. Inter. 2023, 15, 32885–32894. [Google Scholar] [CrossRef]
- Niu, M.; Zhao, Z.; Wang, B.; Yu, C.; Li, M.; Hu, J.; Zhu, L.; Hao, X.; Wan, S.; Yue, M.; et al. Boosting the in-plane thermal conductivity of nanofibrillated cellulose films: Alignment engineering of cross-linked AlN whiskers. J. Mater. Chem. A 2023, 11, 23787–23797. [Google Scholar] [CrossRef]
- Essam, B.M.; Mohammed, A.T. Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. Int. J. Min. Met. Mater. 2021, 28, 475–486. [Google Scholar]
- Nasri, W.; Driss, Z.; Djebali, R.; Lee, K.Y.; Park, H.H.; Bezazi, A.; Reis, P.N. Thermal Study of Carbon-Fiber-Reinforced Polymer Composites Using Multiscale Modeling. Materials 2023, 16, 7233. [Google Scholar] [CrossRef]
- Kim, G.H.; Lee, D.; Shaker, A.; Shao, L.; Kwon, M.S.; Gidley, D.; Kim, J.; Pipe, K.P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 2015, 14, 295–300. [Google Scholar] [CrossRef]
- Nurul Hidayah, I.A.; Mariatti, M. Properties of single and hybrid aluminum and silver fillers filled high-density polyethylene composites. J. Thermoplast. Compos. Mater. 2012, 25, 209–221. [Google Scholar] [CrossRef]
- Kim, W.; Kim, C.; Lee, W.; Park, J.; Kim, D. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design. Biomolecules 2021, 11, 132. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.K.; Zhang, B.N.; Huang, J.H. Silver Attached Graphene-Based Aerogel Composite Phase Change Material and the Enhancement of Thermal Conductivity. Materials 2020, 13, 3271. [Google Scholar] [CrossRef]
- Hu, J.B.; Wei, Z.L.; Ge, B.Z.; Zhao, L.; Zhao, K.; Shi, Z.Q. AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion. J. Mater. Chem. A 2023, 11, 10727–10737. [Google Scholar] [CrossRef]
- Ohashi, M.; Kawakami, S.; Yokogawa, Y.; Lai, G.C. Spherical aluminum nitride fillers for heat-conducting plastic packages. J. Am. Ceram. Soc. 2005, 88, 2615–2618. [Google Scholar] [CrossRef]
- Masoud, E.M.; El-Bellihi, A.A.; Bayoumy, W.A.; Mousa, M.A. Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. J. Alloys Compd. 2013, 575, 223–228. [Google Scholar] [CrossRef]
- Wattanakul, K.; Manuspiya, H.; Yanumet, N. Thermal conductivity and mechanical properties of BN-filled epoxy composite: Effects of filler content, mixing conditions, and BN agglomerate size. J. Compos. Mater. 2011, 45, 1967–1980. [Google Scholar] [CrossRef]
- Guerra, V.; Wan, C.; McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 2019, 100, 170–186. [Google Scholar] [CrossRef]
- Shim, H.B.; Seo, M.K.; Park, S.J. Thermal conductivity and mechanical properties of various cross-section types carbon fiber-reinforced composites. J. Mater. Sci. 2002, 37, 1881–1885. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal conductivity of diamond composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef]
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 2015, 27, 2100–2106. [Google Scholar] [CrossRef]
- Ma, J.; Shang, T.; Ren, L.; Yao, Y.; Zhang, T.; Xie, J.; Zhang, B.; Zeng, X.; Sun, R.; Xu, J.B.; et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liao, M.Z.; Li, M.H.; Li, L.H.; Wei, X.Z.; Kong, X.D.; Xiong, S.Y.; Xia, J.C.; Fu, L.Q.; Cai, T.; et al. Enhanced thermal conductivity for polydimethylsiloxane composites with core-shell CFs@SiC filler. Compos. Commun. 2022, 33, 101209. [Google Scholar] [CrossRef]
- Bernal, M.M.; Tortello, M.; Colonna, S.; Saracco, G. Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties. Nanomaterials 2017, 7, 428. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Ezugwu, S.; Divigalpitiya, R.; Fanchini, G. Relationship between electrical and thermal conductivity in graphene-based transparent and conducting thin films. Carbon 2013, 61, 595–601. [Google Scholar] [CrossRef]
- Song, K.H.; Choi, J.; Cho, D.H.; Lee, I.H.; Ahn, C. Enhanced Thermal Pad Composites Using Densely Aligned MgO Nanowires. Materials 2023, 16, 5102. [Google Scholar] [CrossRef]
- Goto, T.; Sakakibara, N.; Inoue, K.; Mayumi, K.; Shimizu, Y.; Ito, T.; Ito, K.; Hakuta, Y.; Terashima, K. Fabrication of flexible porous slide-ring polymer/carbon nanofiber composite elastomer by simultaneous freeze-casting and cross-linking reaction with dimethyl sulfoxide. Compos. Sci. Technol. 2021, 215, 109028. [Google Scholar] [CrossRef]
- Abbaspour, S.F.; Kanvisi, M. Magnetic filler alignment of single graphene nanoplatelets modified by Fe3O4 to improve the thermal conductivity of the epoxy composite. J. Ind. Eng. Chem. 2023, 122, 68–78. [Google Scholar] [CrossRef]
- Rutkowski, P.; Kata, D.; Jankowski, K.; Piekarczyk, W. Thermal properties of hot-pressed aluminum nitride–graphene composites. J. Therm. Anal. Calorim. 2016, 124, 93–100. [Google Scholar] [CrossRef]
- Sikora, P.; Abd Elrahman, M.; Stephan, D. The influence of nanomaterials on the thermal resistance of cement-based composites—A review. Nanomaterials 2018, 8, 465. [Google Scholar] [CrossRef]
- Niu, M.Y.; Zhao, Z.; Wang, B.K.; Yu, C.; Li, M.Y.; Hu, J.J.; Yue, M.; Lu, Q.P.; Wang, Q. Silver nanoparticle-decorated AlN whiskers hybrids for enhancing the thermal conductivity of nanofibrillated cellulose composite films. Chem. Commun. 2023, 59, 12577–12580. [Google Scholar] [CrossRef]
- Zhuo, L.H.; Chen, S.S.; Xie, F.; Qin, P.L.; Lu, Z.Q. Toward high thermal conductive aramid nanofiber papers: Incorporating hexagonal boron nitride bridged by silver nanoparticles. Polym. Compos. 2021, 42, 1773–1781. [Google Scholar] [CrossRef]
- Qian, R.; Yu, J.; Wu, C.; Zhai, X.; Jiang, P. Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv. 2013, 3, 17373–17379. [Google Scholar] [CrossRef]
- An, X.H.; Cheng, J.H.; Yin, H.Q.; Xie, L.D.; Zhang, P. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Transf. 2015, 90, 872–877. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Drummer, D.; Shen, W.T.; Wang, Y.; Schneider, K.; Tomiak, F. ZnO nanowire-decorated Al2O3 hybrids for improving the thermal conductivity of polymer composites. J. Mater. Chem. C 2020, 8, 5297–5622. [Google Scholar] [CrossRef]
- Zhao, Z.; Peng, D.Y.; Zhi, Y.H.; Hao, X.; Wan, S.Q.; Yue, M.; Kuang, J.L.; Xuan, W.W.; Zhu, L.F.; Cao, W.B.; et al. Synergistic effects of oriented AlN skeletons and 1D SiC nanowires for enhancing the thermal conductivity of epoxy composites. J. Alloys Compd. 2023, 963, 171244. [Google Scholar] [CrossRef]
- Hao, X.; Wan, S.Q.; Zhao, Z.; Zhu, L.F.; Peng, D.Y.; Yue, M.; Kuang, J.L.; Cao, W.B.; Liu, G.H.; Wang, Q. Enhanced Thermal Conductivity of Epoxy Composites by Introducing 1D AlN Whiskers and Constructing Directionally Aligned 3D AlN Filler Skeletons. ACS Appl. Mater. Interfaces 2023, 15, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.N.; Xu, S.S.; Wang, Z.Y.; Hao, L.C.; Shi, Z.Q.; Zhao, J.P.; Zhang, Q.G.; Ishizaki, K.; Wang, B.; Yang, J.F. Wood-Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites. Adv. Sci. 2022, 9, 2103592. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Yu, C.; Sun, C.; Wang, B.; Niu, M.; Li, M.; Xuan, W.; Wang, Q. Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks. Materials 2024, 17, 649. https://doi.org/10.3390/ma17030649
Lin W, Yu C, Sun C, Wang B, Niu M, Li M, Xuan W, Wang Q. Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks. Materials. 2024; 17(3):649. https://doi.org/10.3390/ma17030649
Chicago/Turabian StyleLin, Wei, Chang Yu, Chang Sun, Baokai Wang, Mengyang Niu, Mengyi Li, Weiwei Xuan, and Qi Wang. 2024. "Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks" Materials 17, no. 3: 649. https://doi.org/10.3390/ma17030649
APA StyleLin, W., Yu, C., Sun, C., Wang, B., Niu, M., Li, M., Xuan, W., & Wang, Q. (2024). Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks. Materials, 17(3), 649. https://doi.org/10.3390/ma17030649