Recent Developments in Materials for Physical Hydrogen Storage: A Review
Abstract
:1. Introduction
2. Physical Hydrogen Storage Materials
2.1. Compressed Hydrogen Storage Materials
2.1.1. Hollow Carbon Spheres (HCSs)
2.1.2. Hollow Glass Microspheres (HGMs)
2.2. Physical Absorption Materials
2.2.1. Carbon-Based Materials
2.2.2. Zeolites
2.2.3. MOFs
2.3. Advantages and Disadvantages of Physical Hydrogen Storage Materials
3. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Friedemann, A. Life after Fossil Fuels. A Reality Check on Alternative Energy; Lecture Notes in Energy; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.; Beerling, D.J.; Cao, J.; Marcott, S.; Masson-Delmotte, V.; Prather, M.J.; Rohling, E.J.; et al. Young People’s Burden: Requirement of Negative CO2 Emissions. Earth Syst. Dyn. 2017, 8, 577–616. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Sun, L.-L.; Cui, H.-J.; Ge, Q.-S. Will China Achieve Its 2060 Carbon Neutral Commitment from the Provincial Perspective? Adv. Clim. Chang. Res. 2022, 13, 169–178. [Google Scholar] [CrossRef]
- Shen, M.; Kong, F.; Tong, L.; Luo, Y.; Yin, S.; Liu, C.; Zhang, P.; Wang, L.; Chu, P.K.; Ding, Y. Carbon Capture and Storage (CCS): Development Path Based on Carbon Neutrality and Economic Policy. Carbon Neutrality 2022, 1, 37. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The Meaning of Net Zero and How to Get It Right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- Nadaleti, W.C.; dos Santos, G.B.; Lourenço, V.A. Integration of Renewable Energies Using the Surplus Capacity of Wind Farms to Generate H2 and Electricity in Brazil and in the Rio Grande Do Sul State: Energy Planning and Avoided Emissions within a Circular Economy. Int. J. Hydrog. Energy 2020, 45, 24190–24202. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for Hydrogen-Based Energy Storage—Past, Recent Progress and Future Outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Kojima, Y.; Miyaoka, H.; Ichikawa, T. Chapter 5—Hydrogen Storage Materials. In New and Future Developments in Catalysis; Suib, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 99–136. ISBN 978-0-444-53880-2. [Google Scholar]
- Suárez, S.H.; Chabane, D.; N’Diaye, A.; Ait-Amirat, Y.; Djerdir, A. Feasibility of Efficiency Improvement in a Fuel Cell System Powered by a Metal Hydride Tank. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar]
- Kojima, Y. Hydrogen Storage Materials for Hydrogen and Energy Carriers. Int. J. Hydrog. Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Zhang, L. Hydrogen Storage Methods, Systems and Materials. Highlights Sci. Eng. Technol. 2023, 58, 371–378. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, J.-H.; Kim, Y.-H.; Kim, J.-W.; Lee, K.-J.; Park, S.-J. Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes 2022, 10, 304. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of Hydrogen Storage Techniques for on Board Vehicle Applications. Int. J. Hydrog. Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The Survey of Key Technologies in Hydrogen Energy Storage. Int. J. Hydrog. Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Jensen, J.O.; Vestbø, A.P.; Li, Q.; Bjerrum, N.J. The Energy Efficiency of Onboard Hydrogen Storage. J. Alloys Compd. 2007, 446–447, 723–728. [Google Scholar] [CrossRef]
- Gröger, H.; Kind, C.; Leidinger, P.; Roming, M.; Feldmann, C. Nanoscale Hollow Spheres: Microemulsion-Based Synthesis, Structural Characterization and Container-Type Functionality. Materials 2010, 3, 4355–4386. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.W.; Archer, L.A.; Yang, Z. Hollow Micro-/Nanostructures: Synthesis and Applications. Adv. Mater. 2008, 20, 3987–4019. [Google Scholar] [CrossRef]
- Gupta, A.; Shervani, S.; Amaladasse, F.; Sivakumar, S.; Balani, K.; Subramaniam, A. Enhanced Reversible Hydrogen Storage in Nickel Nano Hollow Spheres. Int. J. Hydrog. Energy 2019, 44, 22032–22038. [Google Scholar] [CrossRef]
- Li, S.; Pasc, A.; Fierro, V.; Celzard, A. Hollow Carbon Spheres, Synthesis and Applications—A Review. J. Mater. Chem. A 2016, 4, 12686–12713. [Google Scholar] [CrossRef]
- Kukułka, W.; Wenelska, K.; Baca, M.; Chen, X.; Mijowska, E. From Hollow to Solid Carbon Spheres: Time-Dependent Facile Synthesis. Nanomaterials 2018, 8, 861. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liang, K.; Liu, L.; Yu, Y.; Hou, S.; Chen, A. Fabrication of Monodisperse Hollow Mesoporous Carbon Spheres by Using “Confined Nanospace Deposition” Method for Supercapacitor. J. Alloys Compd. 2018, 736, 35–41. [Google Scholar] [CrossRef]
- Dong, C.; Li, Z.; Zhang, L.; Li, G.; Yao, H.; Wang, J.; Liu, Q.; Li, Z. Synthesis of Hollow Carbon Spheres from Polydopamine for Electric Double Layered Capacitors Application. Diam. Relat. Mater. 2019, 92, 32–40. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, F.; Xu, H.; Liu, L.; Guo, H. Synthesis of Carbon Hollow Particles by a Simple Inverse-Emulsion Method. Mater. Lett. 2010, 64, 1473–1475. [Google Scholar] [CrossRef]
- Jia, B.; Qin, M.; Zhang, Z.; Chu, A.; Zhang, L.; Liu, Y.; Lu, H.; Qu, X. One-Pot Synthesis of Cu–Carbon Hybrid Hollow Spheres. Carbon 2013, 62, 472–480. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, X.; Ye, L.; OuYang, C.; Hu, S.; Lei, L.; Xie, Y. Necklace-like Hollow Carbon Nanospheres from the Pentagon-Including Reactants: Synthesis and Electrochemical Properties. Inorg. Chem. 2006, 45, 8543–8550. [Google Scholar] [CrossRef]
- Fang, B.; Kim, M.; Kim, J.H.; Yu, J.-S. Controllable Synthesis of Hierarchical Nanostructured Hollow Core/Mesopore Shell Carbon for Electrochemical Hydrogen Storage. Langmuir 2008, 24, 12068–12072. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the Mechanism of Electrochemical Hydrogen Storage in Nanostructured Carbon Materials. Appl. Phys. A 2004, 78, 981–987. [Google Scholar] [CrossRef]
- Michalkiewicz, B.; Tang, T.; Kalenczuk, R.; Chen, X.; Mijowska, E. In Situ Deposition of Pd Nanoparticles with Controllable Diameters in Hollow Carbon Spheres for Hydrogen Storage. Int. J. Hydrog. Energy 2013, 38, 16179–16184. [Google Scholar] [CrossRef]
- Kim, J.; Han, K.-S. Ni Nanoparticles-Hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance. Trans. Korean Hydrog. New Energy Soc. 2013, 24, 550–557. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, Q.; Zheng, Z.; Xia, K.; Hu, J. Enhanced Room Temperature Hydrogen Storage Capacity of Hollow Nitrogen-Containing Carbon Spheres. Int. J. Hydrog. Energy 2010, 35, 210–216. [Google Scholar] [CrossRef]
- Soni, P.K.; Bhatnagar, A.; Shaz, M.A. Enhanced Hydrogen Properties of MgH2 by Fe Nanoparticles Loaded Hollow Carbon Spheres. Int. J. Hydrog. Energy 2023, 48, 17970–17982. [Google Scholar] [CrossRef]
- Elsabawy, K.M.; Fallatah, A.M. Over Saturated Metallic-Mg-Ions Diffused Hollow Carbon Nano-Spheres/Pt for Ultrahigh-Performance Hydrogen Storage. Mater. Lett. 2018, 221, 139–142. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, Y.; Mokaya, R. Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. J. Am. Chem. Soc. 2007, 129, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.-Y.; Tsao, C.-S.; Tseng, H.-P.; Chen, C.-H.; Yu, M.-S. Effects of Oxygen Functional Groups on the Enhancement of the Hydrogen Spillover of Pd-Doped Activated Carbon. J. Colloid Interface Sci. 2015, 441, 98–105. [Google Scholar] [CrossRef]
- Ramos-Castillo, C.M.; Reveles, J.U.; Zope, R.R.; de Coss, R. Palladium Clusters Supported on Graphene Monovacancies for Hydrogen Storage. J. Phys. Chem. C 2015, 119, 8402–8409. [Google Scholar] [CrossRef]
- Zielinska, B.; Michalkiewicz, B.; Chen, X.; Mijowska, E.; Kalenczuk, R.J. Pd Supported Ordered Mesoporous Hollow Carbon Spheres (OMHCS) for Hydrogen Storage. Chem. Phys. Lett. 2016, 647, 14–19. [Google Scholar] [CrossRef]
- Rangel, E.; Sansores, E. Theoretical Study of Hydrogen Adsorption on Nitrogen Doped Graphene Decorated with Palladium Clusters. Int. J. Hydrog. Energy 2014, 39, 6558–6566. [Google Scholar] [CrossRef]
- Adams, B.D.; Ostrom, C.K.; Chen, S.; Chen, A. High-Performance Pd-Based Hydrogen Spillover Catalysts for Hydrogen Storage. J. Phys. Chem. C 2010, 114, 19875–19882. [Google Scholar] [CrossRef]
- Pacuła, A.; Mokaya, R. Layered Double Hydroxides as Templates for Nanocasting Porous N-Doped Graphitic Carbons via Chemical Vapour Deposition. Microporous Mesoporous Mater. 2007, 106, 147–154. [Google Scholar] [CrossRef]
- Zubizarreta, L.; Arenillas, A.; Pis, J.J. Carbon Materials for H2 Storage. Int. J. Hydrog. Energy 2009, 34, 4575–4581. [Google Scholar] [CrossRef]
- Lim, K.L.; Kazemian, H.; Yaakob, Z.; Wan Daud, W. Solid-State Materials and Methods for Hydrogen Storage: A Critical Review. Chem. Eng. Technol. 2010, 33, 213–226. [Google Scholar] [CrossRef]
- Shetty, S.; Hall, M. Facile Production of Optically Active Hollow Glass Microspheres for Photo-Induced Outgassing of Stored Hydrogen. Fuel Energy Abstr. 2011, 36, 9694–9701. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Thomas, I.L. Alternative Energy Technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Snyder, M.; Wachtel, P.; Hall, M.; Shelbyy, J. Photo-Induced Hydrogen Diffusion in Cobalt-Doped Hollow Glass Microspheres. Phys. Chem. Glas.-Eur. J. Glas. Sci. Technol. Part B 2009, 50, 113–118. [Google Scholar]
- Rapp, D.B.; Shelby, J.E. Photo-Induced Hydrogen Outgassing of Glass. J. Non. Cryst. Solids 2004, 349, 254–259. [Google Scholar] [CrossRef]
- Ouyang, L.; Chen, K.; Jiang, J.; Yang, X.S.; Zhu, M. Hydrogen Storage in Light-Metal Based Systems: A Review. J. Alloys Compd. 2020, 829, 154597. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Li, J.; Sun, J.; Wang, T.; Li, W. Research on the Preparation and Performances of a New Type of Hollow Glass Microspheres. IOP Conf. Ser. Earth Environ. Sci. 2021, 821, 12010. [Google Scholar] [CrossRef]
- Dalai, S.; Vijayalakshmi, S.; Shrivastava, P.; Sivam, S.P.; Sharma, P. Preparation and Characterization of Hollow Glass Microspheres (HGMs) for Hydrogen Storage Using Urea as a Blowing Agent. Microelectron. Eng. 2014, 126, 65–70. [Google Scholar] [CrossRef]
- Li, F.; Zhou, Y.; Li, B.; Zhang, Z. Permeation and Photo-Induced Outgassing of Deuterium in Hollow Glass Microspheres Doped with Titanium. Int. J. Hydrog. Energy 2024, 49, 303–313. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Feng, J.; Zhang, Z.; Li, B. Influence of Titanium Doping on the Structure and Properties of Hollow Glass Microspheres for Inertial Confinement Fusion. J. Non. Cryst. Solids 2016, 436, 22–28. [Google Scholar] [CrossRef]
- Yu, Y.; Kimura, K. Preparation of V or W Doped TiO2 Coating Hollow Glass Spheres and Photocatalytic Characterization. J.-Min. Mater. Process. Inst. Jpn. 2002, 118, 206–210. [Google Scholar] [CrossRef]
- Dalai, S.; Vijayalakshmi, S.; Sharma, P.; Choo, K.Y. Magnesium and Iron Loaded Hollow Glass Microspheres (HGMs) for Hydrogen Storage. Int. J. Hydrog. Energy 2014, 39, 16451–16458. [Google Scholar] [CrossRef]
- Dalai, S.; Savithri, V.; Shrivastava, P.; Sivam, S.; Sharma, P. Fabrication of Zinc-Loaded Hollow Glass Microspheres (HGMs) for Hydrogen Storage. Int. J. Energy Res. 2015, 39, 717–726. [Google Scholar] [CrossRef]
- Dalai, S.; Savithri, V.; Sharma, P. Investigating the Effect of Cobalt Loading on Thermal Conductivity and Hydrogen Storage Capacity of Hollow Glass Microspheres (HGMs). Mater. Today Proc. 2017, 4, 11608–11616. [Google Scholar] [CrossRef]
- Dalai, S.; Vijayalakshmi, S.; Shrivastava, P.; Sivam, S.; Sharma, P. Effect of Co Loading on the Hydrogen Storage Characteristics of Hollow Glass Microspheres (HGMs). Int. J. Hydrog. Energy 2014, 39, 3304–3312. [Google Scholar] [CrossRef]
- Züttel, A. Materials for Hydrogen Storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A Sustainable Energy Carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef]
- Bénard, P.; Chahine, R. Storage of Hydrogen by Physisorption on Carbon and Nanostructured Materials. Scr. Mater. 2007, 56, 803–808. [Google Scholar] [CrossRef]
- Ustinov, E.A.; Gavrilov, V.Y.; Mel’gunov, M.S.; Sokolov, V.V.; Berveno, V.P.; Berveno, A.V. Characterization of Activated Carbons with Low-Temperature Hydrogen Adsorption. Carbon 2017, 121, 563–573. [Google Scholar] [CrossRef]
- Alhameedi, K.; Hussain, T.; Bae, H.; Jayatilaka, D.; Lee, H.; Karton, A. Reversible Hydrogen Storage Properties of Defect-Engineered C4N Nanosheets under Ambient Conditions. Carbon 2019, 152, 344–353. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Blankenship, L.S.; Balahmar, N.; Mokaya, R. Oxygen-Rich Microporous Carbons with Exceptional Hydrogen Storage Capacity. Nat. Commun. 2017, 8, 1545. [Google Scholar] [CrossRef] [PubMed]
- Sdanghi, G.; Nicolas, V.; Mozet, K.; Schaefer, S.; Maranzana, G.; Celzard, A.; Fierro, V. A 70 MPa Hydrogen Thermally Driven Compressor Based on Cyclic Adsorption-Desorption on Activated Carbon. Carbon 2020, 161, 466–478. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Tsai, W.-T.; Li, M.-H. Characterization of Activated Carbon Prepared from Chlorella-Based Algal Residue. Bioresour. Technol. 2015, 184, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, H.; Takahata, T.; Toda, I.; Ono, H.; Ohshio, S.; Himeno, S.; Kokubu, T.; Saitoh, H. Hydrogen Storage Ability of Porous Carbon Material Fabricated from Coffee Bean Wastes. Int. J. Hydrog. Energy 2011, 36, 580–585. [Google Scholar] [CrossRef]
- Jin, H.; Lee, Y.S.; Hong, I. Hydrogen Adsorption Characteristics of Activated Carbon. Catal. Today 2007, 120, 399–406. [Google Scholar] [CrossRef]
- Jordá-Beneyto, M.; Suárez-García, F.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Hydrogen Storage on Chemically Activated Carbons and Carbon Nanomaterials at High Pressures. Carbon 2007, 45, 293–303. [Google Scholar] [CrossRef]
- Sharon, M.; Soga, T.; Afre, R.; Sathiyamoorthy, D.; Dasgupta, K.; Bhardwaj, S.; Sharon, M.; Jaybhaye, S. Hydrogen Storage by Carbon Materials Synthesized from Oil Seeds and Fibrous Plant Materials. Int. J. Hydrog. Energy 2007, 32, 4238–4249. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Sun, Y. Enhanced Storage of Hydrogen at the Temperature of Liquid Nitrogen. Int. J. Hydrog. Energy 2004, 29, 319–322. [Google Scholar] [CrossRef]
- Lamari, F.; Aoufi, A.; Malbrunot, P.; Levesque, D. Hydrogen Adsorption in the NaA Zeolite: A Comparison Between Numerical Simulations and Experiments. J. Chem. Phys. 2000, 112, 5991–5999. [Google Scholar] [CrossRef]
- Oriňáková, R.; Oriňák, A. Recent Applications of Carbon Nanotubes in Hydrogen Production and Storage. Fuel 2011, 90, 3123–3140. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Kaufmann, A.; Mukasyan, A.; Varma, A. Single- and Multi-Wall Carbon Nanotubes Produced Using the Floating Catalyst Method: Synthesis, Purification and Hydrogen up-Take. Carbon 2006, 44, 2160–2170. [Google Scholar] [CrossRef]
- Guldi, D.M.; Rahman, G.M.A.; Zerbetto, F.; Prato, M. Carbon Nanotubes in Electron Donor–Acceptor Nanocomposites. Acc. Chem. Res. 2005, 38, 871–878. [Google Scholar] [CrossRef]
- Kaskun, S.; Akinay, Y.; Kayfeci, M. Improved Hydrogen Adsorption of ZnO Doped Multi-Walled Carbon Nanotubes. Int. J. Hydrog. Energy 2020, 45, 34949–34955. [Google Scholar] [CrossRef]
- Rashidi, A.M.; Nouralishahi, A.; Khodadadi, A.A.; Mortazavi, Y.; Karimi, A.; Kashefi, K. Modification of Single Wall Carbon Nanotubes (SWNT) for Hydrogen Storage. Int. J. Hydrog. Energy 2010, 35, 9489–9495. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Hydrogen Storage Capacity of Single-Walled Carbon Nanotube Prepared by a Modified Arc Discharge. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 355–358. [Google Scholar] [CrossRef]
- Silambarasan, D.; Surya, V.J.; Iyakutti, K. Experimental Investigation of Hydrogen Storage in Single Walled Carbon Nanotubes Functionalized with Borane. Int. J. Hydrog. Energy 2011, 36, 3574–3579. [Google Scholar] [CrossRef]
- Silambarasan, D.; Surya, V.J.; Vasu, V.; Iyakutti, K. Reversible and Reproducible Hydrogen Storage in Single-Walled Carbon Nanotubes Functionalized with Borane. In Carbon Nanotubes—Recent Progress Rahman; Rahman, M.M., Asiri, A.M., Eds.; IntechOpen: Rijeka, Croatia, 2018; ISBN 978-1-78923-053-6. [Google Scholar]
- Barghi, S.H.; Tsotsis, T.T.; Sahimi, M. Chemisorption, Physisorption and Hysteresis during Hydrogen Storage in Carbon Nanotubes. Int. J. Hydrog. Energy 2014, 39, 1390–1397. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. Influence of the Pore Size in Multi-Walled Carbon Nanotubes on the Hydrogen Storage Behaviors. J. Solid State Chem. 2012, 194, 307–312. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Wu, C.-Z.; Xu, S.-T.; Cheng, H.-M. Hydrogen Storage in Carbon Nanotubes Revisited. Carbon 2010, 48, 452–455. [Google Scholar] [CrossRef]
- Mosquera, E.; Diaz-Droguett, D.E.; Carvajal, N.; Roble, M.; Morel, M.; Espinoza, R. Characterization and Hydrogen Storage in Multi-Walled Carbon Nanotubes Grown by Aerosol-Assisted CVD Method. Diam. Relat. Mater. 2014, 43, 66–71. [Google Scholar] [CrossRef]
- Mosquera-Vargas, E.; Tamayo, R.; Morel, M.; Roble, M.; Díaz-Droguett, D.E. Hydrogen Storage in Purified Multi-Walled Carbon Nanotubes: Gas Hydrogenation Cycles Effect on the Adsorption Kinetics and Their Performance. Heliyon 2021, 7, e08494. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-S.; Mai, Y.-J.; Li, S.-R.; Shu, C.-W.; Wang, C.-H. Characterization and Hydrogen Storage of Surface-Modified Multiwalled Carbon Nanotubes for Fuel Cell Application. J. Nanomater. 2012, 2012, 939683. [Google Scholar] [CrossRef]
- Chambers, A.; Park, C.; Baker, R.T.K.; Rodriguez, N.M. Hydrogen Storage in Graphite Nanofibers. J. Phys. Chem. B 1998, 102, 4253–4256. [Google Scholar] [CrossRef]
- Lueking, A.D.; Yang, R.T.; Rodriguez, N.M.; Baker, R.T.K. Hydrogen Storage in Graphite Nanofibers: Effect of Synthesis Catalyst and Pretreatment Conditions. Langmuir 2004, 20, 714–721. [Google Scholar] [CrossRef]
- Jain, P.; Fonseca, D.A.; Schaible, E.; Lueking, A.D. Hydrogen Uptake of Platinum-Doped Graphite Nanofibers and Stochastic Analysis of Hydrogen Spillover. J. Phys. Chem. C 2007, 111, 1788–1800. [Google Scholar] [CrossRef]
- Lueking, A.; Pan, L.; Narayanan, D.; Burgess Clifford, C. Effect of Expanded Graphite Lattice in Exfoliated Graphite Nanofibers on Hydrogen Storage. J. Phys. Chem. B 2005, 109, 12710–12717. [Google Scholar] [CrossRef]
- Huang, C.-W.; Wu, H.-C.; Li, Y.-Y. Hydrogen Storage in Platelet Graphite Nanofibers. Sep. Purif. Technol. 2007, 58, 219–223. [Google Scholar] [CrossRef]
- Browning, D.J.; Gerrard, M.L.; Lakeman, J.B.; Mellor, I.M.; Mortimer, R.J.; Turpin, M.C. Studies into the Storage of Hydrogen in Carbon Nanofibers: Proposal of a Possible Reaction Mechanism. Nano Lett. 2002, 2, 201–205. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, Y.-S.; Park, S.-J. Preparation of Platinum-Decorated Porous Graphite Nanofibers, and Their Hydrogen Storage Behaviors. J. Colloid Interface Sci. 2008, 318, 530–533. [Google Scholar] [CrossRef]
- Gupta, B.K.; Srivastava, O.N. High-Yield Production of Graphitic Nanofibers. Int. J. Hydrog. Energy 2008, 33, 2975–2979. [Google Scholar] [CrossRef]
- Alekseeva, O.K.; Pushkareva, I.V.; Pushkarev, A.S.; Fateev, V.N. Graphene and Graphene-Like Materials for Hydrogen Energy. Nanotechnolog. Russ. 2020, 15, 273–300. [Google Scholar] [CrossRef]
- Ivanovskii, A.L. Graphene-Based and Graphene-like Materials. Russ. Chem. Rev. 2012, 81, 571. [Google Scholar] [CrossRef]
- Dhar, P.; Gaur, S.S.; Kumar, A.; Katiyar, V. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study. Sci. Rep. 2018, 8, 3886. [Google Scholar] [CrossRef]
- Wei, L.; Mao, Y. Enhanced Hydrogen Storage Performance of Reduced Graphene Oxide Hybrids with Nickel or Its Metallic Mixtures Based on Spillover Mechanism. Int. J. Hydrog. Energy 2016, 41, 11692–11699. [Google Scholar] [CrossRef]
- Zhou, C.; Szpunar, J.A.; Cui, X. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage. ACS Appl. Mater. Interfaces 2016, 8, 15232–15241. [Google Scholar] [CrossRef]
- Arjunan, A.; Viswanathan, B.; Nandhakumar, V. Heteroatom Doped Multi-Layered Graphene Material for Hydrogen Storage Application. Graphene 2016, 5, 39–50. [Google Scholar] [CrossRef]
- Muthu, R.N.; Rajashabala, S.; Kannan, R. Facile Synthesis and Characterization of a Reduced Graphene Oxide/Halloysite Nanotubes/Hexagonal Boron Nitride (RGO/HNT/h-BN) Hybrid Nanocomposite and Its Potential Application in Hydrogen Storage. RSC Adv. 2016, 6, 79072–79084. [Google Scholar] [CrossRef]
- Klechikov, A.G.; Mercier, G.; Merino, P.; Blanco, S.; Merino, C.; Talyzin, A.V. Hydrogen Storage in Bulk Graphene-Related Materials. Microporous Mesoporous Mater. 2015, 210, 46–51. [Google Scholar] [CrossRef]
- Kag, D.; Luhadiya, N.; Patil, N.D.; Kundalwal, S.I. Strain and Defect Engineering of Graphene for Hydrogen Storage via Atomistic Modelling. Int. J. Hydrog. Energy 2021, 46, 22599–22610. [Google Scholar] [CrossRef]
- Ao, Z.; Dou, S.; Xu, Z.; Jiang, Q.; Wang, G. Hydrogen Storage in Porous Graphene with Al Decoration. Int. J. Hydrog. Energy 2014, 39, 16244–16251. [Google Scholar] [CrossRef]
- Edwards, P.; Kuznetsov, V.; David, B. Hydrogen Energy. Philos. Trans. A Math. Phys. Eng. Sci. 2007, 365, 1043–1056. [Google Scholar] [CrossRef]
- Lyu, J.; Kudiiarov, V.; Lider, A. An Overview of the Recent Progress in Modifications of Carbon Nanotubes for Hydrogen Adsorption. Nanomaterials 2020, 10, 255. [Google Scholar] [CrossRef]
- Vergara-Rubio, A.; Ribba, L.; Picón Borregales, D.E.; Sapag, K.; Candal, R.; Goyanes, S. Ultramicroporous Carbon Nanofibrous Mats for Hydrogen Storage. ACS Appl. Nano Mater. 2022, 5, 15353–15361. [Google Scholar] [CrossRef]
- Ngqalakwezi, A.; Nkazi, D.B. Hydrogen Storage: Materials, Kinetics and Thermodynamics. In Advanced Applications of Hydrogen and Engineering Systems in the Automotive Industry; Cocco, L., Aziz, M., Eds.; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83968-298-8. [Google Scholar]
- Langmi, H.W.; Book, D.; Walton, A.; Johnson, S.R.; Al-Mamouri, M.M.; Speight, J.D.; Edwards, P.P.; Harris, I.R.; Anderson, P.A. Hydrogen Storage in Ion-Exchanged Zeolites. J. Alloys Compd. 2005, 404–406, 637–642. [Google Scholar] [CrossRef]
- Dong, J.; Wang, X.; Xu, H.; Zhao, Q.; Li, J. Hydrogen Storage in Several Microporous Zeolites. Int. J. Hydrog. Energy 2007, 32, 4998–5004. [Google Scholar] [CrossRef]
- Georgiev, D.; Bogdanov, B.; Angelova, K.; Markovska, I.; Hristov, Y. Synthetic Zeolites-Structure, Clasification, Current Trends In Zeolite Synthesis. In Proceedings of the International Scientific Conference, Stara Zagora, Bulgaria, 4–5 June 2009. [Google Scholar]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and Applications of Pervaporation through Zeolite Membranes. J. Memb. Sci. 2004, 245, 1–33. [Google Scholar] [CrossRef]
- Sun, Y.; DeJaco, R.F.; Li, Z.; Tang, D.; Glante, S.; Sholl, D.S.; Colina, C.M.; Snurr, R.Q.; Thommes, M.; Hartmann, M. Fingerprinting Diverse Nanoporous Materials for Optimal Hydrogen Storage Conditions Using Meta-Learning. Sci. Adv. 2021, 7, eabg3983. [Google Scholar] [CrossRef]
- Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Synthesis, Structure, and Properties of New Mg(II)-Metal–Organic Framework and Its Prowess as Catalyst in the Production of 4H-Pyrans. Ind. Eng. Chem. Res. 2017, 56, 2917–2924. [Google Scholar] [CrossRef]
- Gangu, K.K.; Dadhich, A.S.; Mukkamala, S.B. Synthesis, Crystal Structure and Fluorescent Properties of Two Metal-Organic Frameworks Constructed from Cd(II) and 2,6-Naphthalene Dicarboxylic Acid. Inorg. Nano-Met. Chem. 2017, 47, 313–319. [Google Scholar] [CrossRef]
- Bétard, A.; Fischer, R.A. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 2012, 112, 1055–1083. [Google Scholar] [CrossRef]
- Sun, W.-F.; Sun, Y.-X.; Zhang, S.-T.; Chi, M.-H. Hydrogen Storage, Magnetism and Electrochromism of Silver Doped FAU Zeolite: First-Principles Calculations and Molecular Simulations. Polymers 2019, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.M.; Alexandre, J.Y.N.H.; Souza, J.E.S.; Neto, J.G.L.; de Sousa Júnior, P.G.; Rocha, M.V.P.; dos Santos, J.C.S. The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules 2022, 27, 4529. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous Materials for Hydrogen Storage. Chem 2022, 8, 693–716. [Google Scholar] [CrossRef]
- Gross, K.J.; Carrington, K.R.; Barcelo, S.; Karkamkar, A.; Purewal, J.; Ma, S.; Zhou, H.-C.; Dantzer, P.; Ott, K.; Pivak, Y. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials; EMN-HYMARC (EMN-HyMARC); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016. [Google Scholar]
- Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergström, L. Structuring Adsorbents and Catalysts by Processing of Porous Powders. J. Eur. Ceram. Soc. 2014, 34, 1643–1666. [Google Scholar] [CrossRef]
- Ren, J.; North, B.C. Shaping Porous Materials for Hydrogen Storage Applications: A. J. Technol. 2014, 3, 13. [Google Scholar] [CrossRef]
- Adhikari, A.K.; Lin, K.-S.; Tu, M.-T. Hydrogen Storage Capacity Enhancement of MIL-53(Cr) by Pd Loaded Activated Carbon Doping. J. Taiwan Inst. Chem. Eng. 2016, 63, 463–472. [Google Scholar] [CrossRef]
- Musyoka, N.M.; Ren, J.; Annamalai, P.; Langmi, H.W.; North, B.C.; Mathe, M.; Bessarabov, D. Synthesis of a Hybrid MIL-101(Cr)/ZTC Composite for Hydrogen Storage Applications. Res. Chem. Intermed. 2016, 42, 5299–5307. [Google Scholar] [CrossRef]
- Naeem, A.; Ting, V.P.; Hintermair, U.; Tian, M.; Telford, R.; Halim, S.; Nowell, H.; Hołyńska, M.; Teat, S.J.; Scowen, I.J.; et al. Mixed-Linker Approach in Designing Porous Zirconium-Based Metal–Organic Frameworks with High Hydrogen Storage Capacity. Chem. Commun. 2016, 52, 7826–7829. [Google Scholar] [CrossRef]
- Li, J.-P.; Ma, Y.-Q.; Geng, L.-H.; Li, Y.-H.; Yi, F.-Y. A Highly Stable Porous Multifunctional Co(Ii) Metal–Organic Framework Showing Excellent Gas Storage Applications and Interesting Magnetic Properties. CrystEngComm 2015, 17, 6471–6475. [Google Scholar] [CrossRef]
- Gómez-Gualdrón, D.A.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Application of Consistency Criteria to Calculate BET Areas of Micro-and Mesoporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mian, M.R.; Lee, S.-J.; Chen, H.; Zhang, X.; Kirlikovali, K.O.; Shulda, S.; Melix, P.; Rosen, A.S.; Parilla, P.A. Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. J. Am. Chem. Soc. 2021, 143, 18838–18843. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.-X.; Thornton, A.W.; Hill, A.J.; Cox, B.J.; Hill, J.M.; Hill, M.R. High Performance Hydrogen Storage from Be-BTB Metal–Organic Framework at Room Temperature. Langmuir 2013, 29, 8524–8533. [Google Scholar] [CrossRef]
- Gu, K.; Wei, F.; Cai, Y.; Lin, S.; Guo, H. Dynamics of Initial Hydrogen Spillover from a Single Atom Platinum Active Site to the Cu(111) Host Surface: The Impact of Substrate Electron–Hole Pairs. J. Phys. Chem. Lett. 2021, 12, 8423–8429. [Google Scholar] [CrossRef] [PubMed]
- Conner, W.C.J.; Falconer, J.L. Spillover in Heterogeneous Catalysis. Chem. Rev. 1995, 95, 759–788. [Google Scholar] [CrossRef]
- Shen, H.; Li, H.; Yang, Z.; Li, C. Magic of Hydrogen Spillover: Understanding and Application. Green Energy Environ. 2022, 7, 1161–1198. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Q.; He, H. Synergistic Effect of Hydrogen Spillover and Nano-Confined AlH3 on Room Temperature Hydrogen Storage in MOFs: By GCMC, DFT and Experiments. Int. J. Hydrog. Energy 2023, in press. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.T. Significantly Enhanced Hydrogen Storage in Metal–Organic Frameworks via Spillover. J. Am. Chem. Soc. 2006, 128, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, R.T. Hydrogen Storage in Metal–Organic Frameworks by Bridged Hydrogen Spillover. J. Am. Chem. Soc. 2006, 128, 8136–8137. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Horike, S.; Kaye, S.S.; Herm, Z.R.; Queen, W.L.; Brown, C.M.; Grandjean, F.; Long, G.J.; Dailly, A.; Long, J.R. Hydrogen Storage and Carbon Dioxide Capture in an Iron-Based Sodalite-Type Metal–Organic Framework (Fe-BTT) Discovered via High-Throughput Methods. Chem. Sci. 2010, 1, 184–191. [Google Scholar] [CrossRef]
- Ibarra, I.A.; Yang, S.; Lin, X.; Blake, A.J.; Rizkallah, P.J.; Nowell, H.; Allan, D.R.; Champness, N.R.; Hubberstey, P.; Schröder, M. Highly Porous and Robust Scandium-Based Metal–Organic Frameworks for Hydrogen Storage. Chem. Commun. 2011, 47, 8304–8306. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gualdrón, D.A.; Wang, T.C.; García-Holley, P.; Sawelewa, R.M.; Argueta, E.; Snurr, R.Q.; Hupp, J.T.; Yildirim, T.; Farha, O.K. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9, 33419–33428. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, R.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Adv. Mater. 2020, 32, 1907995. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M.C.; Islamoglu, T.; Stoddart, J.F.; Farha, O.K. Reticular Access to Highly Porous Acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141, 2900–2905. [Google Scholar] [CrossRef]
- Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Hydrogen Adsorption in Metal–Organic Frameworks: Cu-MOFs and Zn-MOFs Compared. Adv. Funct. Mater. 2006, 16, 520–524. [Google Scholar] [CrossRef]
- Yan, X.; Komarneni, S.; Zhang, Z.; Yan, Z. Extremely Enhanced CO2 Uptake by HKUST-1 Metal–Organic Framework via a Simple Chemical Treatment. Microporous Mesoporous Mater. 2014, 183, 69–73. [Google Scholar] [CrossRef]
- Lin, K.-S.; Adhikari, A.K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrog. Energy 2012, 37, 13865–13871. [Google Scholar] [CrossRef]
- Kim, J.; Shapiro, L.; Flynn, A. The Clinical Application of Mesenchymal Stem Cells and Cardiac Stem Cells as a Therapy for Cardiovascular Disease. Pharmacol. Ther. 2015, 151, 8–15. [Google Scholar] [CrossRef]
- Gygi, D.; Bloch, E.D.; Mason, J.A.; Hudson, M.R.; Gonzalez, M.I.; Siegelman, R.L.; Darwish, T.A.; Queen, W.L.; Brown, C.M.; Long, J.R. Hydrogen Storage in the Expanded Pore Metal–Organic Frameworks M2(Dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 2016, 28, 1128–1138. [Google Scholar] [CrossRef]
- Viditha, V.; Srilatha, K.; Himabindu, V. Hydrogen Storage Studies on Palladium-Doped Carbon Materials (AC, CB, CNMs) @ Metal–Organic Framework-5. Environ. Sci. Pollut. Res. 2016, 23, 9355–9363. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, D.E.; Jiang, H.Z.H.; Evans, H.A.; Chakraborty, R.; Furukawa, H.; Brown, C.M.; Head-Gordon, M.; Long, J.R. Ambient-Temperature Hydrogen Storage via Vanadium (II)-Dihydrogen Complexation in a Metal–Organic Framework. J. Am. Chem. Soc. 2021, 143, 6248–6256. [Google Scholar] [CrossRef] [PubMed]
Method | Type | Example Scheme |
---|---|---|
Hard templating | Silica template | Scheme 1. Schematic of the formation process of hollow carbon spheres. Reprinted with permission from [25]. Copyright 2018, MDPI. |
Polymer template | Scheme 2. Illustration of the synthesis route for hollow mesoporous carbon spheres. Reprinted with permission from [26]. Copyright 2018, Elsevier. | |
Metal template | Scheme 3. Schematic of the synthetic process for hollow carbon spheres. Reprinted with permission from [27]. Copyright 2019, Elsevier. | |
Soft templating | Emulsion template | Scheme 4. Synthesis scheme for carbon hollow particles. Reprinted with permission from [28]. Copyright 2010, Elsevier. |
Surfactant template | Scheme 5. Formation mechanism of Cu–C hybrid hollow spheres. Reprinted with permission from [29]. Copyright 2013, Elsevier. |
Materials | Temperature (°C) | Pressure (bar) | H2 Storage Capacity (wt%) | Ave. Particle Size (nm) | Ave. Pore Size (nm) | Total Pore Volume (cm3/g) | Surface Area (m2/g) | Reference | |
---|---|---|---|---|---|---|---|---|---|
1 | Pd-hollow carbon spheres | 40 | 24 | 0.36 | ~250 | n/a | 0.2514–0.9754 | 147–617 | [33] |
2 | Necklace-like hollow carbon nanospheres (CNS) | 0.89 | 60 | 5 | n/a | 594.32 | [30] | ||
3 | Ni-decorated hollow carbon spheres | 25 | 90 | 1.23 | 5100 | n/a | 0.31 | 28.6 | [34] |
4 | Hollow nitrogen-containing carbon spheres (N-HCS) | −196 | 80 | 1.03 | ~250 | 1.38–20 | 0.84 | 872 | [35] |
25 | 80 | 2.21 | |||||||
5 | Fe-nanoparticle–loaded hollow carbon spheres | 300 | 20 | 5.6 | 200–500 | ~90 | n/a | 160 | [36] |
6 | Metallic Mg ions diffused in hollow carbon nanospheres (HCNS) | 270 | 6.78 | 440–9800 | 28 | n/a | 1810 | [37] | |
370 | 7.85 | ||||||||
7 | Zeolite-like hollow carbon | −196 | 1 | 2.6 | ~5000 | 0.6–0.8 | ~2.41 | 3200 | [38] |
−196 | 20 | 8.33 |
Preparation Method | Types | Advantages | Drawbacks |
---|---|---|---|
|
|
|
|
Material | Definition | Advantages | wt% H2 | T (K) | P (bar) | Ref. |
---|---|---|---|---|---|---|
Activated carbon (AC) | Modified synthetic carbon consisting of high-surface-area amorphous carbon and graphite; fabricated through thermal or chemical procedures [67] | High specific surface area Mechanical and chemical stabilities Microporous structure Relatively low cost Feasible commercial scaling [68,69] | 0.1 | 298 | 10 | [70] |
2.02 | 77 | |||||
0.6 | 298 | 120 | [71] | |||
4 | 77 | |||||
0.85 | 77 | 100 | [72] | |||
1.2 | 298 | 200 | [73] | |||
2.7 | 500 | |||||
5.6 | 77 | 40 | ||||
1.09–2.05 | 298 | 0.00011 | [74] | |||
5 | 77 | 30–60 | [75] | |||
Carbon nanotubes (CNTs) | CNTs are macromolecules containing a hexagonal arrangement of hybridized carbon atoms, which may be formed by rolling up a single sheet of graphene to form single-walled nanotubes (SWNTs) or multiple sheets of graphene to form multiwalled nanotubes (MWNTs) [76] | Unique structure Narrow size distribution and pore volume High surface area High strength Good electrical conductivity Good mechanical and thermal properties Low density Chemical stability Special functional properties [77,78,79,80] | SWNT | |||
0.8 | 30 | [81] | ||||
1.73 | 77 | 100 | [82] | |||
4.77 | 323 | [83] | ||||
4.77 | 323 | [84] | ||||
MWNT | ||||||
0.2 | 298 | 100 | [85] | |||
0.54 | 77 | 10 | [86] | |||
1.7 | 298 | 120 | [87] | |||
2 | 0.05 | [88] | ||||
3.46 | 127.9 | [89] | ||||
3.8 | 425 | 30 | [90] | |||
Graphite nanofibers (GNFs) | GNFs are produced from the dissociation of carbon-containing gases over a catalyst surface (e.g., metal or alloy) through chemical deposition. The solid consists of very small graphite platelets of width 30–500 Å, stacked in a perfectly arranged conformation [91] | Herringbone structure High degree of defects (exhibits the best performance for hydrogen storage) Several pretreatment procedures: oxidative, reductive, and inert environments [92] | 1 | 300 | 20 | [93] |
1.2 | 77 | 20 | [94] | |||
3.3 | 298 | 48.3 | [95] | |||
4–6.5 | 298 | 121.6 | [96] | |||
1.3–7.5 | 298 | 100 | [97] | |||
10–15 | 300 | 121.16 | [98] | |||
7–10 (irreversible) | ||||||
20–30 (reversible) | ||||||
Graphene-based materials | Graphene is a monolayer while graphite is a multilayer of carbon atoms strongly bound in a hexagonal crystal lattice. This is a carbon allotrope in the sp2 hybridized form with a molecular bond length of 0.142 nm [99] | High specific surface area High mechanical strength High corrosive-environment resistance High thermal and electrical conductivities [100,101] Various oxygen-containing functional groups | 0.055 | 293 | 1.06 | [102] |
0.13 | ||||||
0.14 | 298 | 1 | [103] | |||
1.18 | 60 | |||||
2.2 | 298 | 100 | [104] | |||
3.3 | 323 | [105] | ||||
4.3 | 298 | 40 | [106] | |||
1 | 293 | 120 | ||||
5 | 77 | |||||
6.28 | 298 | 1.01 | [107] | |||
10.5 | 77 | 10 | [108] |
Carbon Material | Hydrogen Storage Mechanism |
---|---|
Activated carbon | Scheme 6. Schematic of hydrogen (a) physisorption and (b) chemisorption using activated carbon (AC). Reprinted with permission from [109]. Copyright 2007, Royal Society |
Carbon nanotube | Scheme 7. Mechanism of carbon nanotube (CNTs) for hydrogen storage. Reprinted with permission from [110]. Copyright 2020, MDPI |
Carbon nanofibrous | Scheme 8. Ultramicroporous carbon nanofibrous mats for hydrogen storage. Reprinted with permission from [111]. Copyright 2022, American Chemical Society |
Graphene | Scheme 9. (D) Reaction mechanism of hydrogen charging Ca/Graphene nanocomposite. Reprinted with permission from [112]. Copyright 2020, Intechopen |
MOF Synthesis Methods | MOF Powder-Shaping Methods |
---|---|
1. Microwave assisted method | 1. Uniaxial pressing |
2. Sonochemitry | 2. Coating |
3. Electrochemistry | 3. Foaming |
4. Mechanochemistry | 4. Templating |
5. Hydrothermal approach | 5. Casting |
6. Solvothermal approach | 6. Granulation |
7. Extrusion | |
8. Pulsed current processing |
MOF Materials Used for Hydrogen Storage at Low Temperature | ||||
---|---|---|---|---|
Material | Temperature (K) | Pressure (bar) | H2 Storage Capacity (wt%) | Reference |
Co-MOF | 77 | 1 | 1.62 | [132] |
MIL-53 | 77 | 60 | 1.92 | [129] |
MIL-101 (Cr)/ZTC | 77 | 1 | 2.55 | [130] |
CAU-1 | 70 | 1 | 4 | |
UBMOF-31 | 77 | 60 | 4.9 | [131] |
Fe-BTT | 77 | Low Pressure | 2.3 | [142] |
87 | 1.6 | |||
77 | 95 | 4.1 | ||
NOTT-400 | 77 | 1 | 2.14 | [143] |
20 | 3.84 | |||
NOTT-401 | 77 | 1 | 2.31 | |
20 | 4.44 | |||
NU-1101 | 77–160 | 100–5 | 9.1 | [144] |
NU-1102 | 77–160 | 100–5 | 9.6 | |
NU-1103 | 77–160 | 100–5 | 12.6 | |
NPF-200 | 77 | 100–5 | 8.7 | [145] |
NU-1500 | 77–160 | 100–5 | 8.2 | [146] |
NU-1501-Al | 77–160 | 100–5 | 14 | [133] |
MFU-4/Li | 77–160 | 100–5 | 9.4 | [134] |
MOF materials used for hydrogen storage at ambient temperature | ||||
Material | Temperature (K) | Pressure (bar) | H2 storage capacity (wt%) | Reference |
HKUST-1 | 298 | 65 | 0.35 | [147] |
Cu-BTC | 303 | 35 | 0.47 | [148] |
HKUST-1 | 303 | 35 | 0.47 | [149] |
CB/Pt/MOF-5 | 298 | 100 | 0.62 | [150] |
Zn2 (dobpdc)MOFs | 298 | 100 | 1.3 | [151] |
Mg2 (dobpdc)MOFs | 298 | 100 | 1.8 | |
Pd-CNMS/MOF-5 | 298 | 100 | 1.8 | [152] |
75 | 1.6 | |||
50 | 1.4 | |||
Be-BTB | 298 | 100 | 2.3 | [135] |
V2Cl2.8 | 298 | 100 | 1.64 | [153] |
NU-150I-Al | 296 | 100 | 2.9 | |
IRMOF-1 | 298 | 100 | 3 | [140] |
IRMOF-8 | 298 | 100 | 4 | [120] |
Property | Prospects | Consequences | |
---|---|---|---|
Material | |||
Hollow spheres |
|
| |
Carbon-based materials |
|
| |
Zeolites |
|
| |
MOFs |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.H.; Kim, M.P.; Park, C.H.; Tran, Q.N. Recent Developments in Materials for Physical Hydrogen Storage: A Review. Materials 2024, 17, 666. https://doi.org/10.3390/ma17030666
Le TH, Kim MP, Park CH, Tran QN. Recent Developments in Materials for Physical Hydrogen Storage: A Review. Materials. 2024; 17(3):666. https://doi.org/10.3390/ma17030666
Chicago/Turabian StyleLe, Thi Hoa, Minsoo P. Kim, Chan Ho Park, and Quang Nhat Tran. 2024. "Recent Developments in Materials for Physical Hydrogen Storage: A Review" Materials 17, no. 3: 666. https://doi.org/10.3390/ma17030666
APA StyleLe, T. H., Kim, M. P., Park, C. H., & Tran, Q. N. (2024). Recent Developments in Materials for Physical Hydrogen Storage: A Review. Materials, 17(3), 666. https://doi.org/10.3390/ma17030666