Microstructural and Textural Evolution of Cold-Drawn Mg–Gd Wires during Annealing Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructures and Mechanical Properties
3.2. Textural Examinations
4. Discussion
4.1. Annealed Microstructures
4.2. Textural Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg alloys for orthopedic implants—A review. J. Magnes. Alloys 2021, 614, 88–95. [Google Scholar] [CrossRef]
- Bryła, K.; Horky, J. Magnesium alloys processed by severe plastic deformation (SPD) for biomedical applications: An overview. Mater. Trans. 2023, 64, 1709–1723. [Google Scholar] [CrossRef]
- Savaedi, Z.; Motallebi, R.; Mirzadeh, H.; Aghdam, R.M.; Mahmudi, R. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101058. [Google Scholar] [CrossRef]
- Wang, S.W.; Du, C.G.; Shen, X.; Wu, X.; Ouyang, S.H.; Tan, J.; She, J.; Tang, A.T.; Chen, X.H.; Pan, F.S. Rational design, synthesis and prospect of biodegradable magnesium alloy vascular stents. J. Magnes. Alloys 2023, 11, 3012–3037. [Google Scholar] [CrossRef]
- Ali, W.; Li, M.; Tillmann, L.; Mayer, T.; González, C.; LLorca, J.; Kopp, A. Bioabsorbable WE43 Mg alloy wires modified by continuous plasma-electrolytic oxidation for implant applications. Part I: Processing, microstructure and mechanical properties. Biomater. Adv. 2023, 146, 213314. [Google Scholar] [CrossRef] [PubMed]
- Barrettb, C.D.; Imandoust, A.; El Kadiri, H. The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening. Scr. Mater. 2018, 146, 46–50. [Google Scholar] [CrossRef]
- Sisodia, S.; Jananandhan, S.; Pakki, V.K.; Konkati, C.; Chauhan, A. Towards reducing tension-compression yield and cyclic asymmetry in pure magnesium and magnesium-aluminum alloy with cerium addition. Mater. Sci. Eng. A 2023, 886, 145672. [Google Scholar] [CrossRef]
- Al-Samman, T.; Li, X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 2011, 528, 3809–3822. [Google Scholar] [CrossRef]
- Hort, N.; Huang, Y.; Fechner, D.; Störmer, M.; Blawert, C.; Witte, F.; Vogt, C.; Drücker, H.; Willumeit, R.; Kainer, K.U.; et al. Magnesium alloys as implant materials—Principles of property design for Mg-RE alloys. Acta Biomater. 2010, 6, 1714–1725. [Google Scholar] [CrossRef]
- Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834–1842. [Google Scholar] [CrossRef]
- Sun, L.X.; Bai, J.; Xue, F. Evolutions of microstructure and texture of Mg-Gd alloy wires processed by cold drawing. J. Mater. Res. Technol. 2022, 21, 3961–3969. [Google Scholar] [CrossRef]
- Yang, P.; Meng, L.; Mao, W.M.; Cai, Q.W. Improvement of formability of magnesium alloys by pass interval annealing during rolling. J. Mater. Heat Treat 2005, 26, 34–38. [Google Scholar]
- Sanjari, M.; Farzadfar, S.F.; Sakai, T.; Utsunomiya, H.; Essadiqi, E.; Jung, I.-H.; Yue, S. Microstructure and texture evolution of Mg-Zn-Ce magnesium alloys sheets and associated restoration mechanisms during annealing. Mater. Sci. Eng. A 2013, 561, 191–202. [Google Scholar] [CrossRef]
- Wendt, J.; Kainer, K.U.; Arruebarrena, G.; Hantzsche, K.; Bohlen, J.; Letzig, D. On the microstructure and texture development of magnesium alloy ZEK100 during rolling. Magnes. Technol. 2009, 289–293. [Google Scholar]
- Mackenzie, L.W.F.; Pekguleryuz, M.O. The recrystallization and texture of magnesium-zinc-cerium alloys. Scr. Mater. 2008, 59, 665–668. [Google Scholar] [CrossRef]
- Farzadfar, S.A.; Martin, É.; Sanjari, M.; Essadiqi, E.; Yue, S. Texture weakening and static recrystallization in rolled Mg-2.9Y and Mg-2.9Zn solid solution alloys. J. Mater. Sci. 2012, 47, 5488–5500. [Google Scholar] [CrossRef]
- Sun, L.X.; Bai, J.; Yin, L.L.; Gan, Y.W.; Xue, F.; Chu, C.L.; Yan, J.L.; Wan, X.F.; Ding, H.Y.; Zhou, G.H. Effect of annealing on the microstructures and properties of cold drawn Mg alloy wires. Mater. Sci. Eng. A 2015, 645, 181–187. [Google Scholar] [CrossRef]
- Meng, J.; Sun, L.X.; Zhang, Y.; Xue, F.; Chu, C.L.; Bai, J. Evolution of Recrystallized Grain and Texture of Cold-Drawn Pure Mg Wire and Their Effect on Mechanical Properties. Materials 2020, 13, 427. [Google Scholar] [CrossRef]
- ASTM E112-96; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2004.
- Sun, H.F.; Chao, H.Y.; Wang, E.D. Microstructure stability of cold drawn AZ31 magnesium alloy during annealing process. Trans. Nonferrous Met. Soc. China 2011, 21, s215–s221. [Google Scholar] [CrossRef]
- Aalipour, Z.; Zarei-Hanzaki, A.; Moshiri, A.; Abedi, H.R.; Waryoba, D.; Kisko, A.; Karjalainen, L.P. Strain dependency of dynamic recrystallization during thermomechanical processing of Mg-Gd-Y-Zn-Zr alloy. J. Mater. Res. Technol. 2022, 18, 591–598. [Google Scholar] [CrossRef]
- Rezaei, A.; Mahmudi, R.; Logé, R.E. Superplastic behavior of a fine-grained Mg-Gd-Y-Ag alloy processed by equal channel angular pressing. J. Magnes. Alloys. 2023, 11, 3815–3828. [Google Scholar] [CrossRef]
- Wang, Q.D.; Lin, J.B.; Peng, L.M.; Chen, Y.J. Influence of cyclic extrusion and compression on the mechanical property of Mg alloy ZK60. Acta Metall. Sin. 2008, 44, 55–58. [Google Scholar]
- Biswas, S.; Beausir, B.; Toth, L.S.; Suwas, S. Evolution of texture and microstructure during hot torsion of a magnesium alloy. Acta Mater. 2013, 61, 5263–5277. [Google Scholar] [CrossRef]
- Pérez-Prado, M.T.; Ruano, O.A. Texture evolution during annealing of magnesium AZ31 alloy. Scr. Mater. 2002, 46, 149–155. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.Y.; Yang, X.D.; Li, Y.L. Static recrystallization and precipitation behavior of forged and annealed Mg-8.7Gd-4.18Y-0.42Zr magnesium alloy. Mater. Today Commun. 2023, 34, 105106. [Google Scholar] [CrossRef]
- Perez-Prado, M.T.; Ruano, O.A. Texture evolution during grain growth in annealed MG AZ61 alloy. Scr. Mater. 2003, 48, 59–64. [Google Scholar] [CrossRef]
Annealing Parameters | Statistical Results of Measured Grain Intercepts | Ultimate Accumulative Drawing True Strain after Annealing/% | ||
---|---|---|---|---|
Mean /μm | Standard Deviation SD | Coefficient of Variation CV | ||
350 °C/30 min | 3.8 | 1.33 | 0.35 | 131 |
375 °C/30 min | 9.4 | 3.20 | 0.34 | 144 |
400 °C/30 min | 18.8 | 8.22 | 0.44 | 144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Bai, J.; Xue, F.; Yan, K. Microstructural and Textural Evolution of Cold-Drawn Mg–Gd Wires during Annealing Treatment. Materials 2024, 17, 683. https://doi.org/10.3390/ma17030683
Sun L, Bai J, Xue F, Yan K. Microstructural and Textural Evolution of Cold-Drawn Mg–Gd Wires during Annealing Treatment. Materials. 2024; 17(3):683. https://doi.org/10.3390/ma17030683
Chicago/Turabian StyleSun, Liuxia, Jing Bai, Feng Xue, and Kai Yan. 2024. "Microstructural and Textural Evolution of Cold-Drawn Mg–Gd Wires during Annealing Treatment" Materials 17, no. 3: 683. https://doi.org/10.3390/ma17030683
APA StyleSun, L., Bai, J., Xue, F., & Yan, K. (2024). Microstructural and Textural Evolution of Cold-Drawn Mg–Gd Wires during Annealing Treatment. Materials, 17(3), 683. https://doi.org/10.3390/ma17030683