Carbon-Based Functional Nanomaterials as Tools for Controlling the Kinetics of Tribochemical Reactions
Abstract
:1. Introduction
- Tribocatalysts convert the mechanical energy in the stream of electrons and/or photons, which provides additional energy to the molecules of reacting substances (lubricating additives).
- A chemical reaction can be started when the molecules of a reacting substance are supplied with energy equal to the activation energy Ea and energy is provided in a sufficiently large stream.
- Converting the mechanical energy introduced into the tribological system to the energy of hot electrons emitted by the solid surface to the lubricant layer;
- Transporting this energy inside the lubrication film and converting it into a form suitable for the chemical reaction’s initiation;
- Supporting the molecules of reactants (lubricating additives) with this energy and the chemical reaction’s initiation.
2. Methods
- Load (P): 5, 10, 30, 50 N;
- Sliding speed (v): 0.1 m/s;
- Sliding distance (s): 1000 m;
- Humidity: 25 ± 5% RH;
- Ambient temperature (T0): 25 ± 4 °C;
- Elements in contact: 100Cr6 steel balls and HS6-5-2C steel discs, with the latter uncoated or coated with a-C:H.
- Frequency of oscillation: 0.5 Hz;
- Load: 5 N;
- Stroke length: 40 mm;
- Maximum sliding speed: 0.28 m/s;
- Acceleration: 2 m/s2;
- Braking speed: 2 m/s2.
3. Materials
- PAO8—polyalphaolefin 8; a commercial product with a specific density of 833 kg/m3 and a kinematic viscosity at 100 °C of 7.8 mm2/s;
- ZDDP—zinc dialkyldithiophosphate with primary alkyl groups; a commercial product with a density of 1160 kg/m3 and a kinematic viscosity at 40 °C of 150 mm2/s, containing 9.0% by weight of Zn, 8.5% by weight of P, and 16.5% by weight of S;
- ASA—the commercial antistatic additive for jet fuels, consisting of a C/H/O/S polymer + polyamine + R-S03H stabilizer;
- CNT—carbon nanotubes; a high-purity (>85%) commercial product made by CARBON4nano; industrial grade single-walled, unmodified carbon nanotubes with an average diameter of 1.6 nm and a length of 5 µm; impurities with organic substituents containing O, Al, and Fe bonded with the carbon atoms;
- AuCNT—carbon nanotubes decorated by Au;
- C60—fullerenes; a high-purity (>99.9%) commercial product with a density of 1.65 g/cm3;
- Graphene—obtained from AGP Advanced Graphene Products; carbon content 99.8%; flake size (DLS method): average 500 nm, >90% with a diameter less than 800 nm; number of layers <10.
4. Results
4.1. TRB Test Results
4.2. Investigation of the Effect of a Solid Material on the ZDDP Kinetics of Triboreaction—TET Test Results
5. Discussion
5.1. The Load Influence on Linear Wear
5.2. The Influence of Carbon Nanostructures on the Kinetics of ZDDP’s Triboreaction during TRB Tests
- W = −7.832∑Zn + 25.707 for steel disc;
- W = 24.233∑Zn + 28.889 for DLC-covered disc;
- W = −4.5701(∑Znx∑Px∑S) + 19.173 for steel disc;
- W = 64.588(∑Znx∑Px∑S) + 47.637 for DLC-covered disc.
- The heterogeneity of the surface structure of the wear trace;
- The different values of coefficient of reactivity αiw described for various tested lubricants.
5.3. The Influence of CNT and ASA on Charge Flow through the Film during TET Tests
6. Conclusions
- Carbon-based nanostructures, i.e., CNTs, AuCNT, graphene, and fullerenes, are able to change the rate of chemical reactions of ZDDP during the tribological process;
- CNTs show the ability to catalyze tribochemical reactions of ZDDP, while graphene and fullerenes are not able to do so effectively;
- AuCNT takes the role of an inhibitor during ZDDP’s triboreaction;
- By discharging electric charges/energy, ASA, in cooperation with CNT and AuCNT, significantly reduces the rate of the ZDDP reaction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | coefficient (constant) for given mechanism of reactions |
αi | reactivity coefficient of tested reactants |
EoMe | normal potential of pin material (TET stand) (V) |
K | rate constant of reaction, which stimulates the observed process |
L | energy supplied from environment to the system (J) |
L0 | energy supplied from environment to the system—reference value (J) |
P | applied load |
R | gas constant |
R2 | coefficient of determination |
t | duration of combustion process (s) |
T | average temperature of reaction system (K). |
Acronyms
ASA | antistatic additive for jet fuels |
AuCNT | carbon nanotubes decorated by Au |
C60 | fullerene |
CNTs | carbon nanotubes |
PAO | polyalphaolefins |
TET | triboelectric tribometer |
TRB | Anton Paar tribometer |
ZDDP | zinc dialkyldithiophosphate |
References
- Yao, J.; Dong, J. Tribocatalysis reaction during antiwear synergism between borates and Sn(IV) compounds in boundary lubrication. Tribol. Int. 1996, 29, 429–432. [Google Scholar] [CrossRef]
- Meeks, E.; Ando, H.; Choul, C.P.; Dean, A.M.; Hodgson, D.; Koshi, M.; Lengyel, I.; Maas, U.; Naik, C.V.; Puduppakkam, K.V.; et al. New modeling approaches using detailed kinetics for advanced engines. In Proceedings of the Seventh International Conference on Modelling and Diagnostics for Advanced Engine Systems, Sapporo, Japan, 28–31 July 2008; Volume 56. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. A review of current understanding in tribochemical reactions involving lubricant additives. Friction 2023, 11, 489–512. [Google Scholar] [CrossRef]
- Clarizia, L.; Spasiano, D.; Di Somma, I.; Marotta, R.; Andreozzi, R.; Dionysiou, D.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. Int. J. Hydrogen Energy 2014, 39, 16812–16831. [Google Scholar] [CrossRef]
- Lim, N.; Lee, J.-S.; Byun, Y.T. Negatively-Doped Single-Walled Carbon Nanotubes Decorated with Carbon Dots for Highly Selective NO2 Detection. Nanomaterials 2020, 10, 2509. [Google Scholar] [CrossRef]
- Muratore, C.; Reed, A.; Bultman, J.; Ganguli, S.; Cola, B.; Voevodin, A. Nanoparticle decoration of carbon nanotubes by sputtering. Carbon 2013, 57, 274–281. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef]
- Brand, L.; Gierlings, M.; Hoffknecht, A.; Wagner, V.; Zweck, A. Kohlestoff-Nanorörchen: Potenzialeeinerneuen MaterialklassefürDeutschland. Zukünftige Technol. 2009, 79. [Google Scholar]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon Nanotubes—The Route Toward Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef]
- Andrews, R.; Jacques, D.; Qian, D.; Rantell, T. Multiwall Carbon Nanotubes: Synthesis and Application. Acc. Chem. Res. 2002, 35, 1008–1017. [Google Scholar] [CrossRef]
- Rahman, M.R.; Rashid, M.; Islam, M.; Akanda, M. Electrical and Chemical Properties of Graphene over Composite Materials: A Technical Review. Mater. Sci. Res. India 2019, 16, 142–163. [Google Scholar] [CrossRef]
- Adorinni, S.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Appl. Sci. 2021, 11, 2490. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, H.; He, Z.; Wang, T.; Xu, Y.; Zhou, M.; Huang, K. Acid–base bifunctional amphiphilic organic nanotubes as a catalyst for one-pot cascade reactions in water. New J. Chem. 2018, 42, 1368–1372. [Google Scholar] [CrossRef]
- Dzięgielewski, W.; Kowalczyk, J.; Kulczycki, A.; Madej, M.; Ozimina, D. Tribochemical Interactions between Carbon Nanotubes and ZDDP Antiwear Additive during Tribofilm Formation on Uncoated and DLC-Coated Steel. Materials 2020, 13, 2409. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, J.; Madej, M.; Dzięgielewski, W.; Kulczycki, A.; Żółty, M.; Ozimina, D. Tribochemical Interactions between Graphene and ZDDP in Friction Tests for Uncoated and W-DLC-Coated HS6-5-2C Steel. Materials 2021, 14, 3529. [Google Scholar] [CrossRef]
- La, D.D.; Truong, T.N.; Pham, T.Q.; Vo, H.T.; Tran, N.T.; Nguyen, T.A.; Nadda, A.K.; Nguyen, T.T.; Chang, S.W.; Chung, W.J.; et al. Scalable Fabrication of Modified Graphene Nanoplatelets as an Effective Additive for Engine Lubricant Oil. Nanomaterials 2020, 10, 877. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Kulczycki, A.; Madej, M.; Ozimina, D. Effect of ZDDP and fullerenes added to PAO 8 lubricant on tribological properties of the surface layer of steel bare steel and W-DLC coating. Tribologia 2022, 299, 19–32. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, Y.; Sun, J.; Hu, S.; Zhang, X.; Niu, D. The nature of interaction between Au and heteroatoms-doped carbon nanotubes: Size and electronic effects on CO2 electroreduction. Appl. Surf. Sci. 2023, 635, 157692. [Google Scholar] [CrossRef]
- Conley, K.; Karttunen, A.J. Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks. J. Phys. Chem. C 2022, 126, 17266–17274. [Google Scholar] [CrossRef]
- Płaza, S.; Margielewski, L.; Celichowski, G. Wstęp do Tribologii i Tribochemia, 1st ed.; Wróblewska, H., Ed.; University of Lodz: Lodz, Poland, 2005. [Google Scholar]
- Gosvami, N.; Lahouij, I.; Ma, J.; Carpick, R. Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy. Tribol. Int. 2020, 143, 106075. [Google Scholar] [CrossRef]
- Dorgham, A.; Parsaeian, P.; Azam, A.; Wang, C.; Morina, A.; Neville, A. Single-asperity study of the reaction kinetics of P-based triboreactive films. Tribol. Int. 2019, 133, 288–296. [Google Scholar] [CrossRef]
- Fujita, H.; Glovnea, R.P.; Spikes, H.A. Study of Zinc Dialkydithiophosphate Antiwear Film Formation and Removal Processes, Part I: Experimental. Tribol. Trans. 2005, 48, 558–566. [Google Scholar] [CrossRef]
- Bulgarevich, S.B.; Boiko, M.V.; Kolesnikov, V.I.; Feizova, V.A. Thermodynamic and kinetic analyses of probable chemical reactions in the tribocontact zone and the effect of heavy pressure on evolution of adsorption processes. J. Frict. Wear 2011, 32, 301–309. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A. Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by In-Operando Formation of Nanocarbon Films. ACS Nano 2021, 15, 18865–18879. [Google Scholar] [CrossRef]
Base Lubricant | Antiwear/EP Additive; Concentration 1.5 wt.% | Carbon Nanostructures; Concentration 0.005 wt.% | Lubricant Description |
---|---|---|---|
PAO 8 | - | - | PAO |
ZDDP | - | PAO + ZDDP | |
ZDDP | CNT | PAO + ZDDP + CNT | |
ZDDP | CNT + ASA | PAO + ZDDP + CNT + ASA | |
ZDDP | Graphene | PAO + ZDDP + Graphene | |
ZDDP | Fullerene | PAO + ZDDP + Fullerene | |
ZDDP | AuCNT | PAO + ZDDP + AuCNT | |
ZDDP | AuCNT + ASA | PAO + ZDDP + AuCNT + ASA | |
- | AuCNT | PAO + AuCNT |
Disc Surface | Lubricant | Linear Wear (10 N/800 m) (μm) |
---|---|---|
TRB 100Cr6 | PAO + ZDDP | 8 |
PAO + ZDDP + CNT | 1 | |
PAO + ZDDP + Graphene | 30 | |
PAO + ZDDP + Fullerene | 17 | |
PAO + ZDDP + AuCNT | 9 | |
PAO + ZDDP + AuCNT + ASA | 17 |
Lubricant | Voltage (U) (μV) |
---|---|
PEEK—Dural (normal potential −1.1) | |
PAO | 250 |
PAO + ZDDP + CNT | 633 |
PAO + ZDDP + CNT+ ASA | 1264 |
PAO + ZDDP | 836 |
PAO + ZDDP + ASA | 1174 |
PAO + ASA | 239 |
PEEK—Al. (normal potential = −1.33) | |
PAO | 1200 |
PAO + ZDDP + CNT | 652 |
PAO + ZDDP + CNT+ ASA | 1283 |
PEEK—Cu (normal potential = +0.34) | |
PAO | 4 |
PAO + ZDDP + CNT | 250 |
PAO + ZDDP + CNT+ ASA | 50 |
Lubricant | Experimentally Obtained Exponential Function |
---|---|
PAO | |
PAO + ZDDP + CNT | |
PAO + ZDDP + CNT + ASA |
Disc Surface | Lubricant | Linear Wear (μm) | ∑Zn (wt.%) | (∑Znx∑Px∑S) (wt.%)/(∑Px∑S) (wt.%) |
---|---|---|---|---|
TRB 100Cr6 | PAO + ZDDP | 7 | 2.66 | 2.778/1.46 |
PAO + ZDDP + CNT | 2 | 2.75 | 3.673/1.33 | |
PAO + ZDDP + Graphene | 29 | 0.91 | 0.054/0.06 | |
PAO + ZDDP + Fullerene | 17 | 1.34 | 0.725/0.54 | |
PAO + ZDDP + AuCNT | 10 | 1.432 | 0.123/0.086 | |
PAO + ZDDP + AuCNT + ASA | 17 | 0.515 | 0.107/0.207 | |
TRB DLC | PAO + ZDDP | 55 | 0.72 | 0 |
PAO + ZDDP + CNT | 75 | 1.87 | 0.424 | |
PAO + ZDDP + Graphene | 50 | 1.01 | 0.032 | |
PAO + ZDDP + Fullerene | 40 | 0.71 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozimina, D.; Kulczycki, A.; Janas, D.; Desaniuk, T.; Deliś, M. Carbon-Based Functional Nanomaterials as Tools for Controlling the Kinetics of Tribochemical Reactions. Materials 2024, 17, 785. https://doi.org/10.3390/ma17040785
Ozimina D, Kulczycki A, Janas D, Desaniuk T, Deliś M. Carbon-Based Functional Nanomaterials as Tools for Controlling the Kinetics of Tribochemical Reactions. Materials. 2024; 17(4):785. https://doi.org/10.3390/ma17040785
Chicago/Turabian StyleOzimina, Dariusz, Andrzej Kulczycki, Dawid Janas, Tomasz Desaniuk, and Maciej Deliś. 2024. "Carbon-Based Functional Nanomaterials as Tools for Controlling the Kinetics of Tribochemical Reactions" Materials 17, no. 4: 785. https://doi.org/10.3390/ma17040785
APA StyleOzimina, D., Kulczycki, A., Janas, D., Desaniuk, T., & Deliś, M. (2024). Carbon-Based Functional Nanomaterials as Tools for Controlling the Kinetics of Tribochemical Reactions. Materials, 17(4), 785. https://doi.org/10.3390/ma17040785