Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin
Abstract
:1. Introduction
2. Nanoparticle Classification, Synthesis Methods, and Application
3. Flame-Retardant Mechanisms of Nanoparticles
4. Nanoparticles as Flame Retardants for UPR
4.1. Clay-Based
4.1.1. Ionic-Liquid-Functionalized Imogolite Nanotubes
4.1.2. Organic-Modified Montmorillonite with Methyl Dihydroxyethyl Hydrogenated Tallow Ammonium
4.2. Carbon-Based
4.2.1. Multi-Walled Carbon Nanotubes with Embedded Nickel Ferrite
4.2.2. Multi-Walled Carbon Nanotubes Coated with g-C3N4 Doped with Boron and Phosphorus
4.2.3. Pre-Expanded Graphite Container for Flame Retardants
4.3. Nanoscale Transition Metal Materials
4.3.1. Zinc(II) Oxide
4.3.2. Cuprous(I) Oxide
4.3.3. Nanorods Containing Nickel(II)
4.3.4. Titanium(IV) Oxide
4.3.5. Allylamine-Exfoliated Alpha Zirconium Phosphate
4.3.6. Ti3C2Tx (MXene) Nanosheets
4.3.7. Cu2O–TiO2–Graphene Oxide Dual Nanosheets
4.4. Layered Double Hydroxides (LDHs)
4.4.1. Dodecyl Sulfate Intercalated Magnesium Aluminum Nitrate LDH
4.4.2. Nickel Iron Nitrate LDH
4.5. Polyhedral Oligomeric Silsesquioxanes
4.5.1. POSS-Functionalized Graphene Oxide
4.5.2. POSS-Modified MMT
4.5.3. POSS-Modified Octamaleimide
4.6. Others
4.6.1. Nano-Active Modified Pumice
4.6.2. Boron Nitride Nanosheets
5. Environmental Impact of Nano Flame Retardants and Nanocomposites
5.1. Life Cycle Assessment
5.2. Effects on Human Health
5.3. Fire Hazard
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimian, A.C.; Bildea, C.S.; Kiss, A.A. Polyesters. In Applications in Design and Simulation of Sustainable Chemical Processes; Dimian, A.C., Bildea, C.S., Kiss, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 681–717. [Google Scholar]
- Dowbysz, A.; Samsonowicz, M.; Kukfisz, B. Modification of Glass/Polyester Laminates with Flame Retardants. Materials 2021, 14, 7901. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-L.; Li, Y.-M.; Hu, W.-J.; Hobson, J.; Wang, D.-Y. Strategic design unsaturated polyester resins composites with excellent flame retardancy and high tensile strength. Polym. Degrad. Stab. 2022, 206, 110190. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Gniazdowska, J. Application of Nanotechnology in Extinguishing Agents. Materials 2022, 15, 8876. [Google Scholar] [CrossRef]
- Trotta, F.; Mele, A. Nanomaterials: Classification and Properties. In Nanosponges; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–26. [Google Scholar]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Sel. 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Sridhar, R.; Ramakrishna, S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 2013, 3, e24281. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Dang, N.T.; Doan, L.; Nguyen, T.T. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes 2023, 11, 2617. [Google Scholar] [CrossRef]
- Liu, Z.; Nie, K.; Qu, X.; Li, X.; Li, B.; Yuan, Y.; Chong, S.; Liu, P.; Li, Y.; Yin, Z.; et al. General Bottom-Up Colloidal Synthesis of Nano-Monolayer Transition-Metal Dichalcogenides with High 1T′-Phase Purity. J. Am. Chem. Soc. 2022, 144, 4863–4873. [Google Scholar] [CrossRef]
- Dang-Bao, T.; Favier, I.; Gómez, M. Metal Nanoparticles in Polyols: Bottom-up and Top-down Syntheses and Catalytic Applications. In Nanoparticles in Catalysis; Philippot, K., Roucoux, A., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 99–122. [Google Scholar]
- Goutam, S.P.; Saxena, G.; Roy, D.; Yadav, A.K.; Bharagava, R.N. Green Synthesis of Nanoparticles and Their Applications in 743 Water and Wastewater Treatment. In Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management; Saxena, G., Bharagava, R.N., Eds.; Springer: Singapore, 2020; pp. 349–379. [Google Scholar]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Jie Ying, A.N.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- He, S.; Petkovich, N.D.; Liu, K.; Qian, Y.; Macosko, C.W.; Stein, A. Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer 2017, 110, 149–157. [Google Scholar] [CrossRef]
- Noor, H.; Faraz, S.M.; Hanif, M.W.; Ishaq, M.; Zafar, A.; Riaz, S.; Naseem, S. ZnS nanoparticles-tailored electric, magnetic and mechanical properties of nanocomposites. Phys. B Condens. Matter 2023, 650, 414572. [Google Scholar] [CrossRef]
- Rahman, M.T.; Asadul Hoque, M.; Rahman, G.T.; Gafur, M.A.; Khan, R.A.; Hossain, M.K. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019, 13, 102264. [Google Scholar] [CrossRef]
- Kumar, S.; Dhawan, R.; Shukla, S.K. Flame Retardant Polymer Nanocomposites: An Overview. Macromol. Symp. 2023, 407, 2200089. [Google Scholar] [CrossRef]
- Shan, G.; Jin, W.; Chen, H.; Zhao, M.; Surampalli, R.; Ramakrishnan, A.; Zhang, T.; Tyagi Rajeshwar, D. Flame-Retardant Polymer Nanocomposites and Their Heat-Release Rates. J. Hazard. Toxic Radioact. Waste 2015, 19, 04015006. [Google Scholar] [CrossRef]
- Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yu, J.; Wang, S. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers 2021, 14, 82. [Google Scholar] [CrossRef]
- Kovačević, Z.; Flinčec Grgac, S.; Bischof, S. Progress in Biodegradable Flame Retardant Nano-Biocomposites. Polymers 2021, 13, 741. [Google Scholar] [CrossRef]
- Norouzi, M.; Zare, Y.; Kiany, P. Nanoparticles as Effective Flame Retardants for Natural and Synthetic Textile Polymers: Application, Mechanism, and Optimization. Polym. Rev. 2015, 55, 531–560. [Google Scholar] [CrossRef]
- Vahidi, G.; Bajwa, D.S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in traditional and nanosized flame retardants for polymers—A review. J. Appl. Polym. Sci. 2021, 138, 50050. [Google Scholar] [CrossRef]
- Vahabi, H.; Jouyandeh, M.; Parpaite, T.; Saeb, M.R.; Ramakrishna, S.; Mehrpouya, M.; Janbaz, S.; Darafsheh, A.; Mazur, T.; Brosse, N.; et al. Nanolignin in materials science and technology—Does flame retardancy matter? In Biopolymeric Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; Volume 230, pp. 515–559. [Google Scholar]
- Saba, N.; Jawaid, M.; Alrashed, M.M.; Alothman, O.Y. Oil palm waste based hybrid nanocomposites: Fire performance and structural analysis. J. Build. Eng. 2019, 25, 100829. [Google Scholar] [CrossRef]
- Yang, Y.; Díaz Palencia, J.L.; Wang, N.; Jiang, Y.; Wang, D.-Y. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules 2021, 26, 4670. [Google Scholar] [CrossRef] [PubMed]
- Vakhitova, L.N. Fire retardant nanocoating for wood protection. In Nanotechnology in Eco-Efficient Construction, 2nd ed.; Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 361–391. [Google Scholar]
- Kačíková, D.; Kubovský, I.; Eštoková, A.; Kačík, F.; Kmeťová, E.; Kováč, J.; Ďurkovič, J. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials 2021, 11, 3405. [Google Scholar] [CrossRef]
- Chaisaenrith, P.; Taksakulvith, P.; Pavasupree, S. Effect of nano titanium dioxide in intumescent fireproof coating on thermal performance and char morphology. Mater. Today Proc. 2021, 47, 3462–3467. [Google Scholar] [CrossRef]
- Mobaraki, M.; Karnik, S.; Li, Y.; Mills, D.K. Therapeutic Applications of Halloysite. Appl. Sci. 2022, 12, 87. [Google Scholar] [CrossRef]
- Zhu, T.; Guo, G.; Li, W.; Gao, M. Synergistic Flame Retardant Effect between Ionic Liquid-Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Unsaturated Polyester Resin. ACS Omega 2022, 7, 47601–47609. [Google Scholar] [CrossRef]
- Wan, M.; Shen, J.; Sun, C.; Gao, M.; Yue, L.; Wang, Y. Ionic liquid modified graphene oxide for enhanced flame retardancy and mechanical properties of epoxy resin. J. Appl. Polym. Sci. 2021, 138, 50757. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Ngo, T.D.; Bai, Y.; Tran, P. Experimental and numerical investigations on the thermal response of multilayer glass fibre/unsaturated polyester/organoclay composite. Fire Mater. 2016, 40, 1047–1069. [Google Scholar] [CrossRef]
- Yu, X.; Wang, D.; Yuan, B.; Song, L.; Hu, Y. The effect of carbon nanotubes/NiFe2O4 on the thermal stability, combustion behavior and mechanical properties of unsaturated polyester resin. RSC Adv. 2016, 6, 96974–96983. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Yu, Y.; Chen, T.; Zhang, Q.; Li, C.; Jiang, J. Multi-walled carbon nanotubes encapsulated by graphitic carbon nitride with simultaneously co-doping of B and P and ammonium polyphosphate to improve flame retardancy of unsaturated polyester resins. Mater. Chem. Phys. 2022, 277, 125594. [Google Scholar] [CrossRef]
- Hu, W.-J.; Li, Y.-M.; Hu, S.-L.; Li, Y.-R.; Wang, D.-Y. The design of the nano-container to store the highly efficient flame retardants toward the enhancement of flame retardancy and smoke suppression for the unsaturated polyester resins. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130708. [Google Scholar] [CrossRef]
- Morgan, A.B. The Future of Flame Retardant Polymers—Unmet Needs and Likely New Approaches. Polym. Rev. 2019, 59, 25–54. [Google Scholar] [CrossRef]
- Morgan, A.B. A Review of Transition Metal-Based Flame Retardants: Transition Metal Oxide/Salts, and Complexes. In Fire and Polymers V; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2009; Volume 1013, pp. 312–328. [Google Scholar]
- Zhang, Y.; Lin, F.; Wu, Y.; Wang, S.; Liu, Z.; Song, L. A novel lanthanum-based phosphorus-containing flame retardant agent and its application in polylactic acid. J. Appl. Polym. Sci. 2023, 140, e53272. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, S.; Cheng, L.; Chen, W.; Zhou, Y.; Zou, B.; Han, L.; Xu, Z.; Yang, W.; Hu, Y.; et al. Synergistic effects of aryl diazonium modified Few-Layer black Phosphorus/Ultrafine rare earth yttrium oxide with enhancing flame retardancy and catalytic smoke toxicity suppression of epoxy resin. Appl. Surf. Sci. 2022, 571, 151356. [Google Scholar] [CrossRef]
- Chen, X.; Wan, M.; Gao, M.; Wang, Y.; Yi, D. Improved flame resistance properties of unsaturated polyester resin with TiO2-MXOY solid superacid. Chin. J. Chem. Eng. 2020, 28, 2474–2482. [Google Scholar] [CrossRef]
- Xiang, P.; Xu, J.; Li, B.; Liu, W.; Zhao, J.; Ke, Q.; Bi, S.; Chen, X. Synthesis of Transition Metal Complexes and Their Effects on Combustion Properties of Semi-Rigid Polyvinyl Chloride. Materials 2021, 14, 2634. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Wang, X.; Zhong, Y.; Zhang, L.; Wang, B.; Feng, X.; Sui, X.; Xu, H.; Chen, Z.; et al. Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polym. Adv. Technol. 2020, 31, 1194–1207. [Google Scholar] [CrossRef]
- Zhu, D.; Bi, Q.; Yin, G.-Z.; Jiang, Y.; Fu, W.; Wang, N.; Wang, D.-Y. Investigation of magnesium hydroxide functionalized by polydopamine/transition metal ions on flame retardancy of epoxy resin. J. Therm. Anal. Calorim. 2022, 147, 13301–13312. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, X.; Peng, Q.; Zheng, H.; Xue, F.; Li, P.; Xu, Z.; He, X. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy. Nanoscale Adv. 2021, 3, 5683–5693. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tian, X.; Liu, J. Unsaturated Polyester Resin Nanocomposites Containing ZnO Modified with Oleic Acid Activated by N,N′-Carbonyldiimidazole. Polymers 2018, 10, 362. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin. J. Hazard. Mater. 2017, 334, 39–48. [Google Scholar] [CrossRef]
- Li, Z.; Fu, T.; Lu, J.-H.; He, J.-H.; Li, W.-D.; Liu, B.-W.; Chen, L.; Wang, Y.-Z. Ultra-high fire-safety unsaturated polyesters enabled by self-assembled micro/nano rod from Schiff base, diphenylphosphinyl group and nickel (II) metal. Compos. B. Eng. 2022, 242, 110032. [Google Scholar] [CrossRef]
- Zatorski, W.; Sałasińska, K. Combustibility studies of unsaturated polyester resins modified by nanoparticles. Polimery 2016, 61, 815–823. [Google Scholar] [CrossRef]
- Pichaimani, P.; Arumugam, H.; Gopalakrishnan, D.; Krishnasam, B.; Muthukaruppan, A. Partially Exfoliated α-ZrP Reinforced Unsaturated Polyester Nanocomposites by Simultaneous Co-polymerization and Brønsted Acid–Base Strategy. J. Inorg. Organomet. Polym. Mat. 2020, 30, 4095–4105. [Google Scholar] [CrossRef]
- Hai, Y.; Jiang, S.; Zhou, C.; Sun, P.; Huang, Y.; Niu, S. Fire-safe unsaturated polyester resin nanocomposites based on MAX and MXene: A comparative investigation of their properties and mechanism of fire retardancy. Dalton Trans. 2020, 49, 5803–5814. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kan, Y.; Yu, X.; Liu, J.; Song, L.; Hu, Y. In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: Towards reducing fire hazards of unsaturated polyester resin. J. Hazard. Mater. 2016, 320, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C.A.; O’Hare, D. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2014, 2, 10996–11016. [Google Scholar] [CrossRef]
- Kaul, P.; Joel Samson, A.; Enoch, I.; Selvakumar, P. Synergistic effect of LDH on thermal and flame retardant properties of unsaturated polyester nano-composite containing TXP. Adv. Mater. Proc. 2017, 2, 351–356. [Google Scholar] [CrossRef]
- Chu, F.; Hou, Y.; Liu, L.; Qiu, S.; Cai, W.; Xu, Z.; Song, L.; Hu, W. Hierarchical Structure: An effective Strategy to Enhance the Mechanical Performance and Fire Safety of Unsaturated Polyester Resin. ACS Appl. Mater. Interfaces 2019, 11, 29436–29447. [Google Scholar] [CrossRef]
- Joshi, M. The impact of nanotechnology on polyesters, polyamides and other textiles. In Polyesters and Polyamides; Deopura, B.L., Alagirusamy, R., Joshi, M., Gupta, B., Eds.; Woodhead Publishing: Sawston, UK, 2008; pp. 354–415. [Google Scholar]
- Divakaran, N.; Kale, M.B.; Senthil, T.; Mubarak, S.; Dhamodharan, D.; Wu, L.; Wang, J. Novel Unsaturated Polyester Nanocomposites via Hybrid 3D POSS-Modified Graphene Oxide Reinforcement: Electro-Technical Application Perspective. Nanomaterials 2020, 10, 260. [Google Scholar] [CrossRef]
- Divakaran, N.; Kale, M.B.; Dhamodharan, D.; Mubarak, S.; Wu, L.; Wang, J. Effect of POSS-Modified Montmorillonite on Thermal, Mechanical, and Electrical Properties of Unsaturated Polyester Nanocomposites. Polymers 2020, 12, 2031. [Google Scholar] [CrossRef]
- Jothibasu, S.; Chandramohan, A.; Kumar, A.A.; Alagar, M. Polyhedral oligomeric silsesquioxane (POSS) reinforced-unsaturated polyester hybrid nanocomposites: Thermal, thermomechanical and morphological properties. J. Macromol. Sci. A 2018, 55, 433–439. [Google Scholar] [CrossRef]
- Dowbysz, A.; Samsonowicz, M.; Kukfisz, B. Recent Advances in Bio-Based Additive Flame Retardants for Thermosetting Resins. Int. J. Environ. Res. Public Health 2022, 19, 4828. [Google Scholar] [CrossRef] [PubMed]
- Rakhman, A.; Diharjo, K.; Raharjo, W.W.; Suryanti, V.; Kaleg, S. Improvement of Fire Resistance and Mechanical Properties of Glass Fiber Reinforced Plastic (GFRP) Composite Prepared from Combination of Active Nano Filler of Modified Pumice and Commercial Active Fillers. Polymers 2023, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mu, X.; Cai, W.; Song, L.; Ma, C.; Hu, Y. Constructing phosphorus, nitrogen, silicon-co-contained boron nitride nanosheets to reinforce flame retardant properties of unsaturated polyester resin. Compos. Part A Appl. Sci. Manuf. 2018, 109, 546–554. [Google Scholar] [CrossRef]
- Carroccio, S.C.; Scarfato, P.; Bruno, E.; Aprea, P.; Dintcheva, N.T.; Filippone, G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics—A review of life-cycle assessment studies. J. Clean. Prod. 2022, 335, 130322. [Google Scholar] [CrossRef]
- Penloglou, G.; Basna, A.; Pavlou, A.; Kiparissides, C. Techno-Economic Considerations on Nanocellulose’s Future Progress: A Short Review. Processes 2023, 11, 2312. [Google Scholar] [CrossRef]
- Martínez, G.; Merinero, M.; Pérez-Aranda, M.; Pérez-Soriano, E.M.; Ortiz, T.; Villamor, E.; Begines, B.; Alcudia, A. Environmental Impact of Nanoparticles’ Application as an Emerging Technology: A Review. Materials 2021, 14, 166. [Google Scholar] [CrossRef]
- Chomiak, M. Reuse of polyester-glass laminate waste in polymer composites. J. Achiev. Mater. Manuf. Eng. 2021, 107, 49–58. [Google Scholar] [CrossRef]
- Dowbysz, A.; Samsonowicz, M.; Kukfisz, B. Zastosowanie zasady 3R w kontekście postępowania z odpadami laminatów poliestrowo-szklanych. In Nauka i Przemysł—Lubelskie Spotkania Studenckie; Kołodyńska, D., Ed.; Wydawnictwo UMCS: Lublin, Poland, 2023; pp. 309–312. [Google Scholar]
- Wagner, A.; Eldawud, R.; White, A.; Agarwal, S.; Stueckle, T.A.; Sierros, K.A.; Rojanasakul, Y.; Gupta, R.K.; Dinu, C.Z. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.; Mansour, M.K.; Sayed El Ahl, R.M.H.; El Hamaky, A.M.A.; Oraby, N.H. Toxic and beneficial effects of carbon nanomaterials on human and animal health. In Carbon Nanomaterials for Agri-Food and Environmental Applications; Abd-Elsalam, K.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 535–555. [Google Scholar]
- Naz, S.; Gul, A.; Zia, M. Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnol. 2020, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Minghui, F.; Ran, S.; Yuxue, J.; Minjia, S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Front. Bioeng. Biotechnol. 2023, 11, 1183592. [Google Scholar] [CrossRef] [PubMed]
- Kura, A.U.; Ain, N.M.; Hussein, M.Z.; Fakurazi, S.; Hussein-Al-Ali, S.H. Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson’s disease model. Int. J. Mol. Sci. 2014, 15, 5916–5927. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Yang, C.; Huang, B.; Huang, Z.; Huang, L.; Zhang, X.; Zhao, C. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles. Int. J. Nanomed. 2017, 12, 7183–7195. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, R.; Li, C.; Lu, C.; Yang, G.; Wang, F.; Nie, J.; Ma, C.; Gao, M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur. Polym. J. 2021, 143, 21. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sayes, C.M. A toxicological profile of silica nanoparticles. Toxicol. Res. 2022, 11, 565–582. [Google Scholar] [CrossRef]
- Stoudmann, N.; Schmutz, M.; Hirsch, C.; Nowack, B.; Som, C. Human hazard potential of nanocellulose: Quantitative insights from the literature. Nanotoxicology 2020, 14, 1241–1257. [Google Scholar] [CrossRef]
- Azhagurajan, A.; Selvakumar, N. Impact of nano particles on safety and environment for fireworks chemicals. Process Saf. Environ. Prot. 2014, 92, 732–738. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowbysz, A.; Samsonowicz, M.; Kukfisz, B.; Koperniak, P. Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. Materials 2024, 17, 852. https://doi.org/10.3390/ma17040852
Dowbysz A, Samsonowicz M, Kukfisz B, Koperniak P. Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. Materials. 2024; 17(4):852. https://doi.org/10.3390/ma17040852
Chicago/Turabian StyleDowbysz, Adriana, Mariola Samsonowicz, Bożena Kukfisz, and Piotr Koperniak. 2024. "Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin" Materials 17, no. 4: 852. https://doi.org/10.3390/ma17040852
APA StyleDowbysz, A., Samsonowicz, M., Kukfisz, B., & Koperniak, P. (2024). Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. Materials, 17(4), 852. https://doi.org/10.3390/ma17040852