Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrode Structuring in Single-Pulse Regime
3.2. Electrode Structuring in 40 MHz-Bursts Regime
3.2.1. Effect of Number of Pulses Per Burst on Hole Geometry
3.2.2. Ablation Model
3.2.3. Evolution of Processing Time with Number of Pulses per Bursts
3.3. Comparison of Laser Processing Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S.F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future Generations of Cathode Materials: An Automotive Industry Perspective. J. Mater. Chem. A 2015, 3, 6709–6732. [Google Scholar] [CrossRef]
- Pfleging, W. A Review of Laser Electrode Processing for Development and Manufacturing of Lithium-Ion Batteries. Nanophotonics 2018, 7, 549–573. [Google Scholar] [CrossRef]
- Habedank, J.B.; Endres, J.; Schmitz, P.; Zaeh, M.F.; Huber, H.P. Femtosecond Laser Structuring of Graphite Anodes for Improved Lithium-Ion Batteries: Ablation Characteristics and Process Design. J. Laser Appl. 2018, 30, 32205. [Google Scholar] [CrossRef]
- Usseglio-Viretta, F.L.E.; Mai, W.; Colclasure, A.M.; Doeff, M.; Yi, E.; Smith, K. Enabling Fast Charging of Lithium-Ion Batteries through Secondary-/Dual- Pore Network: Part I—Analytical Diffusion Model. Electrochim. Acta 2020, 342, 136034. [Google Scholar] [CrossRef]
- Lauro, S.N.; Burrow, J.N.; Mullins, C.B. Restructuring the Lithium-Ion Battery: A Perspective on Electrode Architectures. eScience 2023, 3, 100152. [Google Scholar] [CrossRef]
- Hung, C.-H.; Huynh, P.; Teo, K.; Cobb, C.L. Are Three-Dimensional Batteries Beneficial? Analyzing Historical Data to Elucidate Performance Advantages. ACS Energy Lett. 2023, 8, 296–305. [Google Scholar] [CrossRef]
- Chen, K.-H.; Namkoong, M.J.; Goel, V.; Yang, C.; Kazemiabnavi, S.; Mortuza, S.M.; Kazyak, E.; Mazumder, J.; Thornton, K.; Sakamoto, J.; et al. Efficient Fast-Charging of Lithium-Ion Batteries Enabled by Laser-Patterned Three-Dimensional Graphite Anode Architectures. J. Power Sources 2020, 471, 228475. [Google Scholar] [CrossRef]
- Meyer, A.; Zhu, P.; Smith, A.; Pfleging, W. Gaining a New Technological Readiness Level for Laser-Structured Electrodes in High-Capacity Lithium-Ion Pouch Cells. Batteries 2023, 9, 548. [Google Scholar] [CrossRef]
- Dunlap, N.; Sulas-Kern, D.B.; Weddle, P.J.; Usseglio-Viretta, F.; Walker, P.; Todd, P.; Boone, D.; Colclasure, A.M.; Smith, K.; Tremolet de Villers, B.J.; et al. Laser Ablation for Structuring Li-Ion Electrodes for Fast Charging and Its Impact on Material Properties, Rate Capability, Li Plating, and Wetting. J. Power Sources 2022, 537, 231464. [Google Scholar] [CrossRef]
- Habedank, J.B.; Kriegler, J.; Zaeh, M.F. Enhanced Fast Charging and Reduced Lithium-Plating by Laser-Structured Anodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2019, 166, A3940. [Google Scholar] [CrossRef]
- Pfleging, W.; Pröll, J. A New Approach for Rapid Electrolyte Wetting in Tape Cast Electrodes for Lithium-Ion Batteries. J. Mater. Chem. A 2014, 2, 14918–14926. [Google Scholar] [CrossRef]
- Meyer, A.; Sterzl, Y.; Pfleging, W. High Repetition Ultrafast Laser Ablation of Graphite and Silicon/Graphite Composite Electrodes for Lithium-Ion Batteries. J. Laser Appl. 2023, 35, 42036. [Google Scholar] [CrossRef]
- Mincuzzi, G.; Bourtereau, A.; Gemini, L.; Parareda, S.; Rzepa, S.; Koukolíková, M.; Konopík, P.; Kling, R. Through the Forming Process of Femtosecond-Laser Nanotextured Sheets for Production of Complex 3D Parts. Appl. Sci. 2023, 13, 12500. [Google Scholar] [CrossRef]
- Yamada, M.; Soma, N.; Tsuta, M.; Nakamura, S.; Ando, N.; Matsumoto, F. Development of a Roll-to-Roll High-Speed Laser Micro Processing Machine for Preparing through-Holed Anodes and Cathodes of Lithium-Ion Batteries. Int. J. Extrem. Manuf. 2023, 5, 35004. [Google Scholar] [CrossRef]
- Tremolet de Villers, B.J.; Finegan, D. High Throughput Laser Processing for Enhanced Battery Performance and Manufacturing. In Proceedings of the Advanced Materials & Manufacturing Technologies Office (AMMTO), Washington, DC, USA, 16–18 May 2023. [Google Scholar]
- Hille, L.; Kriegler, J.; Oehler, A.; Chaja, M.; Wagner, S.; Zaeh, M.F. Picosecond Laser Structuring of Graphite Anodes—Ablation Characteristics and Process Scaling. J. Laser Appl. 2023, 35, 42054. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Jaeggi, B.; Foerster, D.J.; Kramer, T.; Remund, S. Influence of the Burst Mode onto the Specific Removal Rate for Metals and Semiconductors. J. Laser Appl. 2019, 31, 22203. [Google Scholar] [CrossRef]
- Park, J.; Hyeon, S.; Jeong, S.; Kim, H.-J. Performance Enhancement of Li-Ion Battery by Laser Structuring of Thick Electrode with Low Porosity. J. Ind. Eng. Chem. 2019, 70, 178–185. [Google Scholar] [CrossRef]
- Pröll, J.; Kim, H.; Piqué, A.; Seifert, H.J.; Pfleging, W. Laser-Printing and Femtosecond-Laser Structuring of LiMn2O4 Composite Cathodes for Li-Ion Microbatteries. J. Power Sources 2014, 255, 116–124. [Google Scholar] [CrossRef]
- Tsuda, T.; Ando, N.; Matsubara, K.; Tanabe, T.; Itagaki, K.; Soma, N.; Nakamura, S.; Hayashi, N.; Gunji, T.; Ohsaka, T.; et al. Improvement of High-Rate Charging/Discharging Performance of a Lithium Ion Battery Composed of Laminated LiFePO4 Cathodes/Graphite Anodes Having Porous Electrode Structures Fabricated with a Pico-Second Pulsed Laser. Electrochim. Acta 2018, 291, 267–277. [Google Scholar] [CrossRef]
- Kim, Y.; Drews, A.; Chandrasekaran, R.; Miller, T.; Sakamoto, J. Improving Li-Ion Battery Charge Rate Acceptance through Highly Ordered Hierarchical Electrode Design. Ionics 2018, 24, 2935–2943. [Google Scholar] [CrossRef]
- Schweighofer, L.; Eschelmüller, B.; Fröhlich, K.; Pfleging, W.; Pichler, F. Modelling and Optimisation of Laser-Structured Battery Electrodes. Nanomaterials 2022, 12, 1574. [Google Scholar] [CrossRef]
- Usseglio-Viretta, F.L.E.; Weddle, P.J.; Tremolet de Villers, B.J.; Dunlap, N.; Kern, D.; Smith, K.; Finegan, D.P. Optimizing Fast Charging and Wetting in Lithium-Ion Batteries with Optimal Microstructure Patterns Identified by Genetic Algorithm. J. Electrochem. Soc. 2023, 170, 120506. [Google Scholar] [CrossRef]
- Bae, C.-J.; Erdonmez, C.K.; Halloran, J.W.; Chiang, Y.-M. Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance. Adv. Mater. 2013, 25, 1254–1258. [Google Scholar] [CrossRef]
- Nemani, V.P.; Harris, S.J.; Smith, K.C. Design of Bi-Tortuous, Anisotropic Graphite Anodes for Fast Ion-Transport in Li-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1415. [Google Scholar] [CrossRef]
- Goel, V.; Chen, K.-H.; Dasgupta, N.P.; Thornton, K. Optimization of Laser-Patterned Electrode Architectures for Fast Charging of Li-Ion Batteries Using Simulations Parameterized by Machine Learning. Energy Storage Mater. 2023, 57, 44–58. [Google Scholar] [CrossRef]
- Park, J.; Song, H.; Jang, I.; Lee, J.; Um, J.; Bae, S.; Kim, J.; Jeong, S.; Kim, H.-J. Three-Dimensionalization via Control of Laser-Structuring Parameters for High Energy and High Power Lithium-Ion Battery under Various Operating Conditions. J. Energy Chem. 2022, 64, 93–102. [Google Scholar] [CrossRef]
- Liu, J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Sikora, A.; Grojo, D.; Sentis, M. Wavelength Scaling of Silicon Laser Ablation in Picosecond Regime. J. Appl. Phys. 2017, 122, 045702. [Google Scholar] [CrossRef]
- Di Niso, F.; Gaudiuso, C.; Sibillano, T.; Mezzapesa, F.P.; Ancona, A.; Lugarà, P.M. Role of Heat Accumulation on the Incubation Effect in Multi-Shot Laser Ablation of Stainless Steel at High Repetition Rates. Opt. Express 2014, 22, 12200. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids. Appl. Phys. A Mater. Sci. Process. 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Lopez, J.; Niane, S.; Bonamis, G.; Audouard, E.; Hönninger, C.; Mottay, E.; Manek-Hönninger, I. New Possibilities with Femtosecond GHz-Burst Laser Processing. In Proceedings of the SPIE, San Francisco, CA, USA, 22 January–28 February 2022; Volume 11988, p. 1198806. [Google Scholar]
- Kriegler, J.; Hille, L.; Stock, S.; Kraft, L.; Hagemeister, J.; Habedank, J.B.; Jossen, A.; Zaeh, M.F. Enhanced Performance and Lifetime of Lithium-Ion Batteries by Laser Structuring of Graphite Anodes. Appl. Energy 2021, 303, 117693. [Google Scholar] [CrossRef]
- Kraft, L.; Habedank, J.B.; Frank, A.; Rheinfeld, A.; Jossen, A. Modeling and Simulation of Pore Morphology Modifications Using Laser-Structured Graphite Anodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2020, 167, 13506. [Google Scholar] [CrossRef]
- Metzner, D.; Lickschat, P.; Weißmantel, S. Laser Micromachining of Silicon and Cemented Tungsten Carbide Using Picosecond Laser Pulses in Burst Mode: Ablation Mechanisms and Heat Accumulation. Appl. Phys. A 2019, 125, 462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, A.; Gemini, L.; Faucon, M.; Mincuzzi, G. Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring. Materials 2024, 17, 881. https://doi.org/10.3390/ma17040881
Sikora A, Gemini L, Faucon M, Mincuzzi G. Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring. Materials. 2024; 17(4):881. https://doi.org/10.3390/ma17040881
Chicago/Turabian StyleSikora, Aurélien, Laura Gemini, Marc Faucon, and Girolamo Mincuzzi. 2024. "Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring" Materials 17, no. 4: 881. https://doi.org/10.3390/ma17040881
APA StyleSikora, A., Gemini, L., Faucon, M., & Mincuzzi, G. (2024). Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring. Materials, 17(4), 881. https://doi.org/10.3390/ma17040881