Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Composition Design
3.2. Microstructure and Fracture Resistance
3.2.1. Microstructure
3.2.2. Fracture Resistance
3.3. Elastocaloric Performance
3.3.1. Adiabatic Temperature Change
3.3.2. Cyclic Stability
3.3.3. Temperature Dependence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yalew, S.G.; van Vliet, M.T.; Gernaat, D.E.; Ludwig, F.; Miara, A.; Park, C.; Byers, E.; De Cian, E.; Piontek, F.; Iyer, G.; et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 2020, 5, 794–802. [Google Scholar] [CrossRef]
- Gernaat, D.E.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate change impacts on renewable energy supply. Nat. Clim. Chang. 2021, 11, 119–125. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Xu, C.; Sun, Y.; Li, S.; Jiang, M.; Qin, G. Control of catalytic activity of nano-Au through tailoring the Fermi level of support. Small 2019, 15, 1901789. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Domanski, P.A. Review of alternative cooling technologies. Appl. Therm. Eng. 2014, 64, 252–262. [Google Scholar] [CrossRef]
- Ossmer, H.; Kohl, M. Elastocaloric cooling: Stretch to actively cool. Nat. Energy 2016, 1, 16159. [Google Scholar] [CrossRef]
- Tušek, J.; Engelbrecht, K.; Millán-Solsona, R.; Mañosa, L.; Vives, E.; Mikkelsen, L.P.; Pryds, N. The elastocaloric effect: A way to cool efficiently. Adv. Energy Mater. 2015, 5, 1500361. [Google Scholar] [CrossRef]
- Yan, H.L.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization. Acta Mater. 2021, 202, 112–123. [Google Scholar] [CrossRef]
- Cazorla, C. Novel mechanocaloric materials for solid-state cooling applications. Appl. Phys. Rev. 2019, 6, 041316. [Google Scholar] [CrossRef]
- Gael, S.; Giulia, L.; Gildas, C.; Jacques, J.; Laurent, L.; Atsuki, K. High-performance polymer-based regenerative elastocaloric cooler. Appl. Therm. Eng. 2023, 223, 120016. [Google Scholar] [CrossRef]
- Greibich, F.; Schwödiauer, R.; Mao, G.; Wirthl, D.; Drack, M.; Baumgartner, R.; Kogler, A.; Stadlbauer, J.; Bauer, S.; Arnold, N.; et al. Elastocaloric heat pump with specific cooling power of 20.9 W g-1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 2021, 6, 260–267. [Google Scholar] [CrossRef]
- Ossmer, H.; Lambrecht, F.; Gültig, M.; Chluba, C.; Quandt, E.; Kohl, M. Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater. 2014, 81, 9–20. [Google Scholar] [CrossRef]
- Pataky, G.J.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015, 96, 420–427. [Google Scholar] [CrossRef]
- Cui, J.; Wu, Y.; Muehlbauer, J.; Hwang, Y.; Radermacher, R.; Fackler, S.; Wuttig, M.; Takeuchi, I. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 2012, 101, 1175–1178. [Google Scholar] [CrossRef]
- Ahadi, A.; Sun, Q. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size. Appl. Phys. Lett. 2013, 103, 207–597. [Google Scholar] [CrossRef]
- Marcel, P.; Teresa, C.; Avadh, S.; Antoni, P. Caloric effects induced by uniform and non-uniform stress in shape-memory materials. Shape Mem. Superelasticity 2023, 9, 345–352. [Google Scholar] [CrossRef]
- Xu, S.; Huang, H.Y.; Xie, J.; Takekawa, S.; Xu, X.; Omori, T.; Kainuma, R. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy. APL Mater. 2016, 4, 106106. [Google Scholar] [CrossRef]
- Yuan, B.; Qian, M.; Zhang, X.; Imran, M.; Geng, L. Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu-Al-Mn microwires via cold-drawing. Int. J. Refrig. 2020, 114, 54–61. [Google Scholar] [CrossRef]
- Qian, S.; Geng, Y.; Wang, Y.; Pillsbury, T.E.; Hada, Y.; Yamaguchi, Y.; Fujimoto, K.; Hwang, Y.; Radermacher, R.; Cui, J.; et al. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150309. [Google Scholar] [CrossRef]
- Fei, X.; Ashley, B.; Xuejun, J.; Marcel, P.; Antoni, P. Giant elastic response and ultra-stable elastocaloric effect in tweed textured Fe-Pd single crystals. Acta Mater. 2021, 223, 117486. [Google Scholar] [CrossRef]
- Annaorazov, M.; Nikitin, S.; Tyurin, A.; Asatryan, K.; Dovletov, A.K. Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 1996, 79, 1689–1695. [Google Scholar] [CrossRef]
- Gràcia-Condal, A.; Stern-Taulats, E.; Planes, A.; Mañosa, L. Caloric response of Fe49Rh51 subjected to uniaxial load and magnetic field. Phys. Rev. Mater. 2018, 2, 084413. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Li, Z.; Yang, B.; Yan, H.; Zhao, X.; Zuo, L. Colossal elastocaloric effect in a <001>A oriented Ni49Mn33Ti18 polycrystalline alloy. Scr. Mater. 2023, 234, 115584. [Google Scholar] [CrossRef]
- Yan, H.L.; Wang, L.D.; Liu, H.X.; Huang, X.M.; Jia, N.; Li, Z.B.; Yang, B.; Zhang, Y.D.; Esling, C.; Zhao, X.; et al. Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies. Mater. Des. 2019, 184, 108180. [Google Scholar] [CrossRef]
- Cong, D.; Xiong, W.; Planes, A.; Ren, Y.; Mañosa, L.; Cao, P.; Nie, Z.; Sun, X.; Yang, Z.; Hong, X.; et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 2019, 122, 255703. [Google Scholar] [CrossRef] [PubMed]
- Luiz, A.R.J.; Marcelo, L.P.J.; Alexandre, F.F. Shape memory and elastocaloric properties of melt-spun NiMn-based Heusler alloys. J. Alloys Compd. 2023, 965, 171437. [Google Scholar] [CrossRef]
- Huang, X.M.; Zhao, Y.; Yan, H.L.; Tang, S.; Yang, Y.; Jia, N.; Yang, B.; Li, Z.; Zhang, Y.; Esling, C.; et al. A first-principle assisted framework for designing high elastocaloric Ni–Mn-based magnetic shape memory alloy. J. Mater. Sci. Technol. 2022, 134, 151–162. [Google Scholar] [CrossRef]
- Franziska, S.; Christian, L.; Philipp, K.; Stefan, R.; Niklas, S.; David, K.; Konrad, O.; Heiner, G.; Olena, V.; Stefan, B.; et al. Additive manufacturing of Ni-Mn-Sn shape memory Heusler alloy—Microstructure and magnetic properties from powder to printed parts. Materialia 2023, 29, 101783. [Google Scholar] [CrossRef]
- Anna, E.; Elena, P.; Eleonora, Y.; Irina, K.; Ekaterina, T.; Aida, T.; Nikita, S.; Anton, T.; Yuriy, C. Superelasticity and elastocaloric cooling capacity in stress-induced martensite aged [001]A-oriented Ni54Fe19Ga27 single crystals. Mater. Sci. Eng. A 2022, 855, 143855. [Google Scholar] [CrossRef]
- Villa, F.; Bestetti, E.; Frigerio, R.; Caimi, M.; Tomasi, C.; Passaretti, F.; Villa, E. Elastocaloric properties of polycrystalline samples of NiMnGaCu ferromagnetic shape memory alloy under compression: Effect of improvement of thermoelastic martensitic transformation. Materials 2022, 15, 7123. [Google Scholar] [CrossRef]
- Surikov, N.Y.; Panchenko, E.Y.; Timofeeva, E.E.; Tagiltsev, A.I.; Chumlyakov, Y.I. Orientation dependence of elastocaloric effect in Ni50Mn30Ga20 single crystals. J. Alloys Compd. 2021, 880, 160553. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, X. Recent developments on the cyclic stability in elastocaloric materials. Mater. Des. 2020, 195, 109030. [Google Scholar] [CrossRef]
- Tasaki, W.; Akiyama, Y.; Koyano, T.; Miyazaki, S.; Kim, H.Y. Martensitic transformation and shape memory effect of TiZrHf-based multicomponent alloys. J. Alloys Compd. 2023, 931, 167496. [Google Scholar] [CrossRef]
- Kong, L.; Wang, B.; Sun, S.; Gao, Z.; Meng, X. Elastocaloric effect induced by the strain glass behavior of Ti-18Zr-11Nb-3Sn alloy covering a wide temperature range. Mater. Lett. 2021, 308, 131083. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X.; Qian, M.; Wang, Z.; Li, A.; Chen, Z.; Imran, M.; Geng, L. Meso-scopically homogeneous superelastic transformation and related elastocaloric effect in a textured Ti-based shape memory alloy. Intermetallics 2024, 164, 108109. [Google Scholar] [CrossRef]
- Xiang, H.Y.; Guo, Y.X.; Zhao, X.; Li, Z.; Yang, B.; Jia, N.; Yan, H.L.; Zuo, L. Large low-stress elastocaloric effect in Ti-Zr-Cr-Sn. Scr. Mater. 2024, 244, 116002. [Google Scholar] [CrossRef]
- Ramezannejad, A.; Xu, W.; Xiao, W.L.; Fox, K.; Liang, D.; Qian, M. New insights into nickel-free superelastic titanium alloys for biomedical applications. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100783. [Google Scholar] [CrossRef]
- Biesiekierski, A.; Wang, J.; Gepreel, M.A.H.; Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef]
- Miyazaki, S. My experience with Ti–Ni-based and Ti-based shape memory alloys. Shape Mem. Superelasticity 2017, 3, 279–314. [Google Scholar] [CrossRef]
- Kim, H.Y.; Nakai, K.; Fu, J.; Miyazaki, S. Effect of Al addition on superelastic properties of Ti–Zr–Nb-based alloys. Funct. Mater. Lett. 2017, 10, 1740002. [Google Scholar] [CrossRef]
- Lucia, I.; Kilian, B.; Andreas, F.; Kurt, E. Long life elastocaloric regenerator operating under compression. Appl. Therm. Eng. 2021, 202, 117838. [Google Scholar] [CrossRef]
- Feng, X.Q.; Sun, Q. Shakedown analysis of shape memory alloy structures. Int. J. Plast. 2007, 23, 183–206. [Google Scholar] [CrossRef]
- Fu, J.; Yamamoto, A.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015, 17, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S. Effect of annealing temperature on microstructure and shape memory characteristics of Ti–22Nb–6Zr (at%) biomedical alloy. Mater. Trans. 2006, 47, 505–512. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Sato, Y.; Kim, H.Y.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater. 2012, 60, 2437–2447. [Google Scholar] [CrossRef]
- Xue, P.; Li, Y.; Li, K.; Zhang, D.; Zhou, C. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 50, 179–186. [Google Scholar] [CrossRef] [PubMed]
- López-Medina, M.; Hernández-Navarro, F.; Flores-Zúñiga, H.; Soto-Parra, D.E. Reversible elastocaloric effect related to B2–R transformation in Ni50.5Ti49.5 alloy. J. Appl. Phys. 2021, 129, 115104. [Google Scholar] [CrossRef]
- Koch, J.A.; Herman, J.A.; White, T.J. Elastocaloric effect in amorphous polymer networks undergoing mechanotropic phase transitions. Phys. Rev. Mater. 2021, 5, L062401. [Google Scholar] [CrossRef]
- Hongyang, L.; Peng, H.; Kai, H.; Qiao, L.; Qingping, S. Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling. Scr. Mater. 2022, 226, 115227. [Google Scholar] [CrossRef]
- Pengfei, D.; Fan, Y.; Yumei, Z.; Lei, D.; Jianbo, P.; Lei, Z.; Xiangdong, D.; Jun, S.; Sheng, D.; Turab, L.; et al. Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy. Acta Mater. 2022, 229, 117802. [Google Scholar] [CrossRef]
- Fatemeh, K.; Shiva, M.; Keyvan, S.; Nasrin Taheri, A.; Mohammad, P.; Mohammad Javad, A.; Mohammad, E. Investigating the elastocaloric effect of the NiTi fabricated by laser powder bed fusion: Effect of the building orientation. Materialia 2023, 30, 101817. [Google Scholar] [CrossRef]
- Lu, N.H.; Chen, C.H. Compressive stress-induced martensitic transformation and elastocaloric effect in Cu-Al-Mn single-crystal alloy. Mater. Sci. Eng. A 2022, 840, 142945. [Google Scholar] [CrossRef]
- Lu, B.; Song, M.; Zhou, Z.; Liu, W.; Wang, B.; Lu, S.; Wu, C.; Yang, L.; Liu, J. Reducing mechanical hysteresis via tuning the microstructural orientations in Heusler-type Ni44.8Mn36.9In13.3Co5.0 elastocaloric alloys. J. Alloys Compd. 2019, 785, 1023–1029. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Zhang, Z.; Meng, X.; Cheng, T.; Qin, G.; Li, S. Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolution. J. Mater. Sci. Technol. 2023, 166, 234–240. [Google Scholar] [CrossRef]
- Bechtold, C.; Chluba, C.; Lima de Miranda, R.; Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 2012, 101, 091903. [Google Scholar] [CrossRef]
- Panchenko, E.; Tokhmetova, A.; Surikov, N.; Eftifeeva, A.; Tagiltsev, A.; Timofeeva, E.; Chumlyakov, Y.; Gerstein, G.; Maier, H.J. Temperature dependence of martensite variant reorientation in stress-induced martensite aged Ni49Fe18Ga27Co6 single crystals. Scr. Mater. 2021, 194, 113618. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Torrens-Serra, J.; Chumlyakov, Y.; Cesari, E. Superelastic behavior and elastocaloric effect in a Ni51.5Fe21.5Ga27.0 ferromagnetic shape memory single crystal under compression. Mater. Sci. Eng. A 2021, 833, 142362. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Li, S.; Niu, Y.; Yin, T.; Song, C.; Lang, R.; Cong, D.; Li, S.; Wang, Y.D. Enhanced cyclability of superelasticity and elastocaloric effect in Cu and B co-doped Co-Ni-Ga shape memory alloys. J. Alloys Compd. 2022, 918, 165633. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Wang, L.; Pan, S.; Zhang, J.; Liu, X.; Wang, C. Development of boron-microalloyed Co–V–Al–Fe shape memory alloys. Intermetallics 2023, 157, 107889. [Google Scholar] [CrossRef]
- Navarro-García, J.D.; Camarillo-Garcia, J.P.; Alvarado-Hernández, F.; Llamazares, J.L.S.; Flores-Zúñiga, H. Elastocaloric and magnetocaloric effects linked to the martensitic transformation in bulk Ni55Fe11Mn7Ga27 alloys produced by arc melting and spark plasma sintering. Metals 2022, 12, 273. [Google Scholar] [CrossRef]
- Sarı, U.; Kırındı, T. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater. Charact. 2008, 59, 920–929. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Chi, M.; Yang, S.; Wang, C.; Liu, X.; Zheng, S. Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu–Al–Mn–Ti shape memory alloys. Mater. Sci. Eng. B 2018, 236–237, 10–17. [Google Scholar] [CrossRef]
- Porenta, L.; Trojer, J.; Brojan, M.; Tušek, J. Experimental investigation of buckling stability of superelastic Ni-Ti tubes under cyclic compressive loading: Towards defining functionally stable tubes for elastocaloric cooling. Int. J. Solids Struct. 2022, 256, 111948. [Google Scholar] [CrossRef]
- Zhu, X.; Qian, M.; Zhang, X.; Zhong, S.; Jia, Z.; Zhang, R.; Li, A.; Geng, L. Superelasticity and elastocaloric effect in a textured Ti-Nb-Zr-Ta alloy with narrow stress hysteresis. J. Alloys Compd. 2023, 956, 170291. [Google Scholar] [CrossRef]
- Assunta, B.; Luca, C.; Adriana, G.; Claudia, M. A comparison between different materials with elastocaloric effect for a rotary cooling prototype. Appl. Therm. Eng. 2023, 235, 121344. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, B.-H.; Xiang, H.-Y.; Gao, S.; Guo, Y.-X.; Yang, J.-H.; Zou, N.-F.; Zhao, X.; Li, Z.; Yang, B.; Jia, N.; et al. Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy. Materials 2024, 17, 885. https://doi.org/10.3390/ma17040885
Lv B-H, Xiang H-Y, Gao S, Guo Y-X, Yang J-H, Zou N-F, Zhao X, Li Z, Yang B, Jia N, et al. Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy. Materials. 2024; 17(4):885. https://doi.org/10.3390/ma17040885
Chicago/Turabian StyleLv, Bang-He, Hua-You Xiang, Shang Gao, Yan-Xin Guo, Jin-Han Yang, Nai-Fu Zou, Xiaoli Zhao, Zongbin Li, Bo Yang, Nan Jia, and et al. 2024. "Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy" Materials 17, no. 4: 885. https://doi.org/10.3390/ma17040885
APA StyleLv, B. -H., Xiang, H. -Y., Gao, S., Guo, Y. -X., Yang, J. -H., Zou, N. -F., Zhao, X., Li, Z., Yang, B., Jia, N., Yan, H. -L., & Zuo, L. (2024). Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy. Materials, 17(4), 885. https://doi.org/10.3390/ma17040885