Rice Husk, Brewer’s Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Raw Materials
2.3. Characterization of Solid Substrates
2.4. Enzymatic Activity
2.5. Solid-State Fermentation
2.5.1. Effect of Supplementation and Granulometry
2.5.2. Mixture Optimization by Experimental Design
2.5.3. Effect of Fermentation Time
2.6. Statistical Analysis
3. Results
3.1. Effect of Phosphorous and Nitrogen Supplementation
3.2. Effect of Substrate Particle Size
3.3. Optimization of Substrate Mixture
3.4. Effect of Fermentation Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global agriculture towards 2050. In Proceedings of the High Level Expert Forum—How to Feed the World 2050, Rome, Italy, 12–13 October 2009. [Google Scholar]
- United Nations Department of Economic and and Social Affairs. World Population Prospects 2022: Summary of Results; United Nations Department of Economic and and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Da Silva, L.M.R.; De Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; De Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Rodríguez-Padrón, D.; Luque, R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem. Soc. Rev. 2021, 50, 11191–11207. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew. Sust. Energ. Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef]
- Tsagaraki, E.; Karachaliou, E.; Delioglanis, I.; Kouzi, E. D2. 1 Bio-Based Products and Applications Potential; Bio-based Industries Consortium: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Implementation of the Circular Economy Action Plan; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Potential applications of brewery spent grain: Critical an overview. J. Environ. Chem. Eng. 2022, 10, 106951. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef]
- Dada, A.O.; Inyinbor, A.A.; Tokula, B.E.; Bello, O.S.; Pal, U. Preparation and characterization of rice husk activated carbon-supported zinc oxide nanocomposite (RHAC-ZnO-NC). Heliyon 2022, 8, e10167. [Google Scholar] [CrossRef]
- Asadi, H.; Ghorbani, M.; Rezaei-Rashti, M.; Abrishamkesh, S.; Amirahmadi, E.; Chengrong, C.; Gorji, M. Application of rice husk biochar for achieving sustainable agriculture and environment. Rice Sci. 2021, 28, 325–343. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Sustainability of wine production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current options in the valorisation of vine pruning residue for the production of biofuels, biopolymers, antioxidants, and bio-composites following the concept of biorefinery: A review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Martínez, J.D.; Montañez, J.; Contreras-Esquivel, J.C.; Balagurusamy, N.; Gadi, S.K.; Morales-Oyervides, L. Agroindustrial and food processing residues valorization for solid-state fermentation processes: A case for optimizing the co-production of hydrolytic enzymes. J. Environ. Manag. 2023, 347, 119067. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado, J.M. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr. Opin. Green Sustain. Chem. 2021, 27, 100407. [Google Scholar] [CrossRef]
- Leite, P.; Belo, I.; Salgado, J.M. Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Ind. Crops Prod. 2021, 172, 113990. [Google Scholar] [CrossRef]
- Pandey, A. Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Krishna, C. Solid-state fermentation systems—An overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.C.; Belo, I. Degradation of lignocellulosic matrix of oilseed cakes by solid-state fermentation: Fungi screening for enzymes production and antioxidants release. J. Sci. Food Agric. 2022, 102, 1550–1560. [Google Scholar] [CrossRef]
- Leite, P.; Belo, I.; Salgado, J.M. Enhancing antioxidants extraction from agro-industrial by-products by enzymatic treatment. Foods 2022, 11, 3715. [Google Scholar] [CrossRef]
- Panesar, R.; Kaur, S.; Panesar, P.S. Production of microbial pigments utilizing agro-industrial waste: A review. Curr. Opin. Food Sci. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Verduzco-Oliva, R.; Gutierrez-Uribe, J.A. Beyond enzyme production: Solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability 2020, 12, 495. [Google Scholar] [CrossRef]
- Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G. Identification of new natural sources of flavour and aroma metabolites from solid-state fermentation of agro-industrial by-products. Metabolites 2022, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Ideal feedstock and fermentation process improvements for the production of lignocellulolytic enzymes. Processes 2020, 9, 38. [Google Scholar] [CrossRef]
- Minic, Z.; Jouanin, L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 2006, 44, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, R.; Ruiz, R.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass—NREL/TP-510-42618. NREL Analytical Procedure; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Polizeli, M.d.L.T.d.M.; Rizzatti, A.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.d.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef]
- Global Markets for Enzymes in Industrial Applications. Available online: https://www.bccresearch.com/market-research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html (accessed on 20 December 2023).
- Saldarriaga-Hernández, S.; Velasco-Ayala, C.; Flores, P.L.-I.; de Jesús Rostro-Alanis, M.; Parra-Saldivar, R.; Iqbal, H.M.; Carrillo-Nieves, D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int. J. Biol. Macromol. 2020, 161, 1099–1116. [Google Scholar] [CrossRef]
- Martínez, Á.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martínez, M.J.; Gutiérrez Suárez, A.; Río Andrade, J.C.d. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar] [PubMed]
- Dicko, M.; Ferrari, R.; Tangthirasunun, N.; Gautier, V.; Lalanne, C.; Lamari, F.; Silar, P. Lignin degradation and its use in signaling development by the coprophilous ascomycete Podospora anserina. J. Fungi 2020, 6, 278. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Ohara, A.; Nishide, T.G.; Albernaz, J.R.M.; Soares, M.H.; Sato, H.H. A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal. Agric. Biotechnol. 2015, 4, 199–207. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Bin, Y.; Hongzhang, C. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour. Technol. 2010, 101, 9114–9119. [Google Scholar] [CrossRef]
- Leite, P.; Silva, C.; Salgado, J.M.; Belo, I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crops Prod. 2019, 137, 315–322. [Google Scholar] [CrossRef]
- Moran-Aguilar, M.; Costa-Trigo, I.; Calderón-Santoyo, M.; Domínguez, J.; Aguilar-Uscanga, M. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem. Eng. J. 2021, 172, 108060. [Google Scholar] [CrossRef]
- Llimós, J.; Martínez-Avila, O.; Marti, E.; Corchado-Lopo, C.; Llenas, L.; Gea, T.; Ponsá, S. Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Convers. Biorefinery 2022, 12, 3921–3932. [Google Scholar] [CrossRef]
- Liguori, R.; Pennacchio, A.; Vandenberghe, L.P.d.S.; De Chiaro, A.; Birolo, L.; Soccol, C.R.; Faraco, V. Screening of fungal strains for cellulolytic and xylanolytic activities production and evaluation of brewers’ spent grain as substrate for enzyme production by selected fungi. Energies 2021, 14, 4443. [Google Scholar] [CrossRef]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuels Bioprod. Biorefining 2020, 14, 78–91. [Google Scholar] [CrossRef]
- da Silva Menezes, B.; Rossi, D.M.; Ayub, M.A.Z. Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World J. Microbiol. Biotechnol. 2017, 33, 58. [Google Scholar] [CrossRef]
- Gautam, S.; Bundela, P.; Pandey, A.; Khan, J.; Awasthi, M.; Sarsaiya, S. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int. 2011, 2011, 8. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, R.; Yang, X.; Wu, H.; Xu, D.; Tang, Z.; Shen, Q. Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 2011, 65, 717–725. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Z.-T.; Du, J.-H.; Wang, J. Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05. J. Ind. Microbiol. Biotechnol. 2008, 35, 703–711. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Rawat, R.; Chadha, B.S. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Antonie Van Leeuwenhoek 2014, 105, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Salihu, A.; Alam, M.Z. Xylanase production using soybean hulls: Effect of medium components. In Proceedings of the International Conference on Plant, Marine and Environmental Sciences, Kuala Lumpur, Malasia, 1–2 January 2015. [Google Scholar]
- Rodríguez, M.D.; Paiva, I.M.A.; Castrillo, M.L.; Zapata, P.D.; Villalba, L.L. KH2PO4 improves cellulase production of Irpex lacteus and Pycnoporus sanguineus. J. King Saud. Univ. Sci. 2019, 31, 434–444. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.A. Application of solid-state fermentation to food industry—A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Srivastava, N.; Mohammad, A.; Pal, D.B.; Srivastava, M.; Alshahrani, M.Y.; Ahmad, I.; Singh, R.; Mishra, P.; Yoon, T.; Gupta, V.K. Enhancement of fungal cellulase production using pretreated orange peel waste and its application in improved bioconversion of rice husk under the influence of nickel cobaltite nanoparticles. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Sonia, K.; Chadha, B.; Saini, H. Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation. Bioresour. Technol. 2005, 96, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- da Silva Menezes, B.; Rossi, D.M.; Squina, F.; Ayub, M.A.Z. Comparative production of xylanase and the liberation of xylooligosaccharides from lignocellulosic biomass by Aspergillus brasiliensis BLf1 and recombinant Aspergillus nidulans XynC A773. Int. J. Food Sci. Technol. 2018, 53, 2110–2118. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, N.; Outeiriño, D.; Torrado Agrasar, A.; Domínguez, J. Vine trimming shoots as substrate for ferulic acid esterases production. Appl. Biochem. Biotechnol. 2017, 181, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Bajar, S.; Devi, A.; Bishnoi, N.R. Adding value to agro-industrial waste for cellulase and xylanase production via solid-state bioconversion. Biomass Convers. Biorefinery 2021, 13, 7481–7490. [Google Scholar] [CrossRef]
- Ramamoorthy, N.K.; Sambavi, T.; Renganathan, S. A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 2019, 83, 148–158. [Google Scholar] [CrossRef]
- Puligundla, P.; Mok, C. Recent advances in biotechnological valorization of brewers’ spent grain. Food Sci. Biotechnol. 2021, 30, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Singh, B. Rice husk ash. In Waste and Supplementary Cementitious Materials in Concrete; Siddique, R., Cachim, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 417–460. [Google Scholar]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.; González, L. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Sousa, D.F.M.A.C. Bioprocessing of Main Agro-Industrial Wastes of Portugal for Protein Enrichment and Lignocellulolytic Enzymes Production. Master Dissertation, Universidade do Minho, Braga, Portugal, 2016. [Google Scholar]
- Shata, H.M.A.H.; El-Deen, A.M.N.; Nawwar, G.A.M.; Farid, M.A.F. Xylanase production by mixed culture using crude hemicellulose from rice straw black liquor and peat moss as an inert support. J. Appl. Biol. Chem. 2014, 57, 313–320. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, N.; Oliveira, F.; Pérez-Bibbins, B.; Belo, I.; Torrado Agrasar, A.; Domínguez, J.M. Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor. Appl. Biochem. Biotechnol. 2014, 173, 803–825. [Google Scholar] [CrossRef]
- Morán-Aguilar, M.; Calderón-Santoyo, M.; Domínguez, J.; Aguilar-Uscanga, M. Optimization of cellulase and xylanase production by Aspergillus niger CECT 2700 using brewery spent grain based on Taguchi design. Biomass Convers Biorefinery 2023, 13, 7983–7991. [Google Scholar] [CrossRef]
- Leite, P.; Salgado, J.M.; Venâncio, A.; Domínguez, J.M.; Belo, I. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 2016, 214, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Casas-Godoy, L.; González-Escobar, J.L.; Mathis, A.G.; Barrera-Martínez, I. Revalorization of untreated Brewer’s spent grain: Novel and versatile feedstock to produce cellulases, lipases, and yeast biomass in a biorefinery approach. Biomass Convers. Biorefinery 2023, 13, 1659–1670. [Google Scholar] [CrossRef]
- Suganthi, R.; Benazir, J.; Santhi, R.; Ramesh Kumar, V.; Hari, A.; Meenakshi, N.; Nidhiya, K.; Kavitha, G.; Lakshmi, R. Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 2011, 3, 1756–1763. [Google Scholar]
- Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J.M.; Belo, I. Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J. Agric. Food Chem. 2015, 63, 9306–9314. [Google Scholar] [CrossRef]
- Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J.M.; Belo, I. Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Convers. Biorefinery 2014, 4, 201–209. [Google Scholar] [CrossRef]
Parameter (%) | BSG | RH | VST |
Ashes | 2.6 ± 0.2 a | 12.6 ± 0.3 b | 2.7 ± 0.1 a |
Protein | 15.4 ± 1.2 a | 2.5 ± 0.1 b | 3.4 ± 0.1 c |
Total lipids | 5.3 ± 0.6 a | 0.4 ± 0.3 b | 0.3 ± 0.1 b |
Klason lignin | 6.6 ± 3.6 a | 25.1 ± 6.8 b | 21.0 ± 0.2 b |
Cellulose | 40.9 ± 1.1 a | 37.1 ± 0.1 a | 39.7 ± 0.1 a |
Hemicellulose | 14.9 ± 0.4 a | 19.8 ± 1.3 b | 22.7 ± 0.1 b |
Minerals (g/Kg) | BSG | RH | VST |
Barium (Ba) | 0.01 | 0.01 | 0.04 |
Calcium (Ca) | 0.62 | 2.69 | 7.77 |
Copper (Cu) | 0.01 | 0.01 | 0.03 |
Iron (Fe) | 0.10 | 0.08 | 0.06 |
Potassium (K) | 1.80 | 0.96 | 3.02 |
Magnesium (Mg) | 0.57 | 2.18 | 0.84 |
Manganese (Mn) | 0.08 | 0.04 | 0.04 |
Sodium (Na) | 1.52 | 1.02 | 0.18 |
Phosphorus (P) | 0.68 | 6.63 | 0.97 |
Strontium (Sr) | 0.00 | 0.01 | 0.02 |
Zinc (Zn) | 0.11 | 0.08 | 0.03 |
BY-PRODUCT (% W/W) | ENZYMATIC ACTIVITY (U/G) | ||||||
---|---|---|---|---|---|---|---|
RUNS | BSG | VST | RH | Xylanase | Endo-1,4-β-Glucanase | β-Glucosidase | Amylase |
1 | 100 | 0 | 0 | 616 | 174 | 368 | 243 |
2 | 0 | 100 | 0 | 206 | 167 | 65 | 48 |
3 | 0 | 0 | 100 | 116 | 28 | 39 | 107 |
4 | 50 | 50 | 0 | 333 | 204 | 148 | 134 |
5 | 50 | 0 | 50 | 533 | 145 | 221 | 231 |
6 | 0 | 50 | 50 | 247 | 123 | 77 | 48 |
7 | 33.3 | 33.3 | 33.3 | 405 | 159 | 193 | 171 |
8 | 33.3 | 33.3 | 33.3 | 380 | 96 | 191 | 171 |
9 | 33.3 | 33.3 | 33.3 | 396 | 117 | 189 | 189 |
Parameter | Regression Coefficients | Xylanase | Endo-1,4-β-Glucanase | β-Glucosidase | Amylase |
---|---|---|---|---|---|
BSG | x1 | 615.3 | 189.1 | 362.8 | 237.7 |
VSTs | x2 | 206.0 | 175.0 | 62.7 | 43.7 |
RH | x3 | 115.4 | 40.0 | 71.2 | 102.7 |
BSG·VST | x1x2 | −305.8 ** | - | - | 41.9 |
BSG·RH | x1x3 | 677.4 *** | - | - | 311.9 * |
VSTs·RH | x2x3 | 350.0 ** | - | - | −32.1 |
Model (SS) | 19,5548.0 | 16,936.7 | 73,008.5 | 38,621.4 | |
Total error (SS) | 353.9 | 4418.5 | 7305.6 | 1631.5 | |
R2 | 1.00 | 0.79 | 0.91 | 0.96 | |
p-value | 0.0003 | 0.0089 | 0.0008 | 0.0267 |
Xylanase | Endo-1,4-β-Glucanase | β-Glucosidase | Amylase | |
---|---|---|---|---|
Predicted value (U/g) | 627 | 189 | 363 | 263 |
Optimal substrate | 87% BSG + 13% RH | 100% BSG | 100% BSG | 72% BSG + 28% RH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, A.; Mota, A.C.; Pereira, A.S.; Fernandes, A.M.; Lopes, M.; Belo, I. Rice Husk, Brewer’s Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production. Materials 2024, 17, 935. https://doi.org/10.3390/ma17040935
Guimarães A, Mota AC, Pereira AS, Fernandes AM, Lopes M, Belo I. Rice Husk, Brewer’s Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production. Materials. 2024; 17(4):935. https://doi.org/10.3390/ma17040935
Chicago/Turabian StyleGuimarães, Ana, Ana C. Mota, Ana S. Pereira, Ana M. Fernandes, Marlene Lopes, and Isabel Belo. 2024. "Rice Husk, Brewer’s Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production" Materials 17, no. 4: 935. https://doi.org/10.3390/ma17040935
APA StyleGuimarães, A., Mota, A. C., Pereira, A. S., Fernandes, A. M., Lopes, M., & Belo, I. (2024). Rice Husk, Brewer’s Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production. Materials, 17(4), 935. https://doi.org/10.3390/ma17040935