A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence
Abstract
:1. Introduction
2. Methodology
2.1. Scopus Database Search Strategy
2.2. Textual Analytics Approach
2.3. Scholarly Literature Analysis on Nanocomposite Themes
2.4. Analysis of MAP and NET Files
2.5. Bibliometric Data Analysis and Visualization Report
3. Results and Discussions
3.1. Scopus Database Search Strategy
3.2. Textual Analytics Approach
3.3. Scholarly Literature Analysis on Nanocomposite Themes
3.4. Analysis of MAP and NET Files
3.5. Bibliometric Data Analysis and Visualization Report
3.5.1. Nanocomposites and Electrical Properties
3.5.2. Nanocomposites and Mechanical Behavior
3.5.3. Nanocomposites and Microstructure
4. State of the Art and Gaps Extracted from Results and Discussions
4.1. Insights from Section 3.1: Scopus Database Search Strategy
4.2. Insights from Section 3.2: Textual Analytics Approach
4.3. Insights from Section 3.3: Scholarly Literature Analysis on Nanocomposite Themes
4.4. Findings from Section 3.4: Analysis of MAP and NET Files
4.5. Findings from Section 3.5: Bibliometric Data Analysis and Visualization Report
4.5.1. Nanocomposites and Electrical Properties
4.5.2. Nanocomposites and Mechanical Behavior
4.5.3. Nanocomposites and Microstructure
5. Literature Revision Guided by Artificial Intelligence
5.1. Nanocomposites and Electrical Properties
5.1.1. Crosslinking Degree and Its Influence on XLPE/OMMT Nanocomposites
5.1.2. BaTiO3 Nanofillers in Polymer Blend Nanocomposites: A Study on PVDF/PMMA/BaTiO3
5.1.3. Enhancing Fatigue Life in Aluminum–Graphene Nanocomposites for Power Transmission
5.1.4. Water-Tree Aging in XLPE/OMMT Nanocomposites: The Role of Crosslinking Degree
5.1.5. Sn Doping Effects in CdO Nanocomposites: A Laser Ablation Study
5.1.6. ZnO/TiO2 Nanoparticles in PEO/CMC Nanocomposites: Implications for Flexible Optoelectronics
5.1.7. Partial Conclusions
5.2. Nanocomposites and Mechanical Behavior
5.2.1. Enhancement of WE43 Magnesium-Based Nanocomposites through Friction Stir Processing
5.2.2. Role of Crosslinking in XLPE/OMMT Nanocomposites
5.2.3. Al2O3 Reinforcement in Brass Matrix Nanocomposites
5.2.4. Zinc Oxide Nanoparticles in PLA/PCL Bionanocomposites
5.2.5. Aluminum Oxyhydroxide in Dental Nanocomposites
5.2.6. Partial Conclusions
5.3. Nanocomposites and Microstructure
5.3.1. Modulation of Electro-Optical Properties in PDLC Films Using MWCNT-Loaded Reticular Nanofiber Films
5.3.2. Enhancing Nanocomposites with Well-Crystallized Zinc Oxide Nanorods and Chitosan/PVP Polymers
5.3.3. High-Entropy Nanofibers Transforming the Energy Storage Performance of Polymer Composites
5.3.4. Surface Decoration of MnNiWO4 Nanostructures on Carbon Nanofiber for Photocatalytic Dye Removal
5.3.5. Synthesis and Characterization of ZnO:GO/rGO Composite Thin Films for Energy Harvesting
5.3.6. Promoting Cell Growth with Laser-Synthesized Magnesium Nanoparticles for Tissue Engineering
5.3.7. Enhancing Bio-Based PLA Composites with Graphene-Based Materials and Wheat Straw
5.3.8. Improving Carbon Foam with Multiwalled Carbon Nanotubes and Functionalized Nanodiamonds
5.3.9. Partial Conclusions
5.4. Results Overview
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscopy |
AI | Artificial Intelligence |
Al2O3 | Aluminum Oxide |
BET | Brunauer–Emmett–Teller theory |
BM | Ball Milling |
BM | Ball Milling |
CF | Carbon Fiber or Carbon Foam |
CP | Catalytic Performance |
CSV | Comma-Separated Values |
DE | Euclidean Distance |
DNA | Deoxyribonucleic Acid |
DOCTYPE | Document Type |
DOCX | Microsoft Word Document File Format |
DOI | Digital Object Identifier |
Dye | Organic compound used for coloring |
EC | Electrocatalyst |
EDS | Energy-Dispersive X-ray Spectroscopy |
EDX | Energy-Dispersive X-ray |
EM | Electron Microscopy |
EMI | Electromagnetic Interference |
ENR | Epoxidized Natural Rubber |
ENR | Epoxidized Natural Rubber |
FESS | Field Emission Scanning Electron Spectroscopy |
FT-IR or FTIR | Fourier Transform Infrared Spectroscopy |
H2O2 | Hydrogen Peroxide |
HN | Hybrid Nanocatalyst |
LDA | Latent Dirichlet Allocation |
LSBI | Link Strength Between Items |
LST | Low Shear Stress |
MAP file | Visualization file format used by VOSviewer |
MWCNT | Multiwalled Carbon Nanotube |
NaN | Not a Number |
NET file | Network file format used by VOSviewer |
NiO | Nickel Oxide |
NiWO4 | Nickel Tungstate |
NLP | Natural Language Processing |
NLTK | Natural Language Toolkit |
NMR | Nuclear Magnetic Resonance |
ORCID | Open Researcher and Contributor ID |
PA | Photocatalytic Activity |
PBAT | Polybutylene Adipate Co-terephthalate |
PBVS | Python Boosted Visualization of Similarities |
PMMA | Polymethyl Methacrylate |
PN | Polymer Nanocomposite |
PP | Polypropylene |
Pt | Platinum |
PU | Polyurethane |
R2 | Coefficient of Determination |
RIS | Research Information Systems File |
RMSE | Root Mean Squared Error |
ROS | Reactive Oxygen Species |
Scopus | A bibliographic database for academic research |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
TITLE-ABS-KEY | Search for terms only in Titles, Abstracts, and Keywords in the Scopus database |
TLS | Total Link Strength |
TXT | Text File |
UV | Ultraviolet |
UV–Vis | Ultraviolet–Visible Spectroscopy |
UV–Vis Analytical Spectroscopy | Ultraviolet–Visible Analytical Spectroscopy |
VL | Visible Light |
VOSviewer | Visualization of Similarities Viewer |
XLPE | Crosslinked Polyethylene |
XPS | X-ray Photoelectron Spectroscopy |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
ZnO | Zinc Oxide |
ZOId | Diameters of Zone of Inhibition |
ZOI | Zone of Inhibition |
References
- Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A Brief Review. Health Technol. 2020, 10, 51–59. [Google Scholar] [CrossRef]
- Rajani, A.; Chauhan, P.; Dave, P.Y. Nanocomposites: A New Tendency of Structure in Nanotechnology and Material Science. J. Nanosci. Technol. 2021, 7, 937–941. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Sai, M.S.; Shree, M.V. Nanocomposites: Introduction, Structure, Properties and Preparation Methods. In Current and Future Developments in Nanomaterials and Carbon Nanotubes; Singh, M., Rai, V.K., Rai, A., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; Volume 2, pp. 1–14. ISBN 978-981-5050-98-1. [Google Scholar]
- Fu, S.-Y.; Mai, Y.-W.; Du, S.-Y.; Hui, D. Preparation, Properties and Applications of Nanocomposites. Compos. Part B Eng. 2011, 42, 2091–2092. [Google Scholar] [CrossRef]
- Martínez, E.D.; Prado, A.; Gonzalez, M.; Anguiano, S.; Tosi, L.; Salazar Alarcón, L.; Pastoriza, H. Recent Advances on Nanocomposite Resists With Design Functionality for Lithographic Microfabrication. Front. Mater. 2021, 8, 629792. [Google Scholar] [CrossRef]
- Andritsch, T.; Fabiani, D.; Cherney, E.; Ramirez, I. Processing of Nanocomposites. In Dielectric Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Faulkner, J.M. Processing of Nanocomposites and Their Thermal and Rheological Characterization. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2019; p. 1763697. [Google Scholar] [CrossRef]
- Calebrese, C.; Hui, L.; Schadler, L.S.; Nelson, J.K. A Review on the Importance of Nanocomposite Processing to Enhance Electrical Insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 938–945. [Google Scholar] [CrossRef]
- Peponi, L.; Puglia, D.; Torre, L.; Valentini, L.; Kenny, J.M. Processing of Nanostructured Polymers and Advanced Polymeric Based Nanocomposites. Mater. Sci. Eng. R Rep. 2014, 85, 1–46. [Google Scholar] [CrossRef]
- Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M.R.; D’Arienzo, L.; Incarnato, L. Processing-Structure-Properties Relationships in PLA Nanocomposite Films. In Proceedings of the 29th International Conference of the Polymer-Processing-Society (PPS), Nuremberg, Germany, 15–19 July 2013; American Institute of Physics: College Park, MD, USA, 2014; pp. 308–311. [Google Scholar]
- Scaffaro, R.; Maio, A.; Gammino, M. Electrospun Polymeric Nanohybrids with Outstanding Pollutants Adsorption and Electroactivity for Water Treatment and Sensing Devices. Adv. Compos. Hybrid Mater. 2024, 7, 13. [Google Scholar] [CrossRef]
- Huang, S.; Liu, H.; Liao, K.; Hu, Q.; Guo, R.; Deng, K. Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 28952–28964. [Google Scholar] [CrossRef]
- Scaffaro, R.; Gammino, M.; Maio, A. Wet Electrospinning-Aided Self-Assembly of Multifunctional GO-CNT@PCL Core-Shell Nanocomposites with Spider Leg Bioinspired Hierarchical Architectures. Compos. Sci. Technol. 2022, 221, 109363. [Google Scholar] [CrossRef]
- Yu, L.; Hao, G.; Liang, Q.; Jiang, W. Fabrication of Magnetic Porous Silica Submicroparticles for Oil Removal from Water. Ind. Eng. Chem. Res. 2015, 54, 9440–9449. [Google Scholar] [CrossRef]
- Mohammadi, A.; Shojaei, A.; Khasraghi, S.S. Improvement of Nanosilica Effects on the Performance of Mechanically Processed Styrene-Butadiene Rubber by Rational Hybridization with Nanodiamond. Diam. Relat. Mater. 2022, 130, 109487. [Google Scholar] [CrossRef]
- Elbasuney, S.; El-Sayyad, G.S.; Tantawy, H.; Hashem, A.H. Promising Antimicrobial and Antibiofilm Activities of Reduced Graphene Oxide-Metal Oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) Nanocomposites. RSC Adv. 2021, 11, 25961–25975. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.M.; Saleh, A.A.; Ali, H.A.M.; Nabeel, A.I.; Fouad, R. Dual Function of New Nd(III) and Gd(III) Complexes for Cytotoxic and Optoelectronic Fields: Synthesis, Characterization, DFT Calculations, and PVA Composite Films. Appl. Organomet. Chem. 2023, 37, e7192. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Oliveira, G.E.; Anzai, T.; Richa, P.; Cosme, T.; Nele, M.; Rodrigues, C.H.M.; Soares, B.G.; Pinto, J.C. A Sensor for Acid Concentration Based on Cellulose Paper Sheets Modified with Polyaniline Nanoparticles. Macromol. Mater. Eng. 2009, 294, 739–748. [Google Scholar] [CrossRef]
- Araujo, R.T.; Ferreira, G.R.; Segura, T.; Souza, F.G., Jr.; Machado, F. An Experimental Study on the Synthesis of Poly(Vinyl Pivalate)-Based Magnetic Nanocomposites through Suspension Polymerization Process. Eur. Polym. J. 2015, 68, 441–459. [Google Scholar] [CrossRef]
- Péres, E.U.X.; Souza, F.G., Jr.; Silva, F.M.; Chaker, J.A.; Suarez, P.A.Z. Biopolyester from Ricinoleic Acid: Synthesis, Characterization and Its Use as Biopolymeric Matrix for Magnetic Nanocomposites. Ind. Crops Prod. 2014, 59, 260–267. [Google Scholar] [CrossRef]
- Gomes de Souza, F., Jr.; Nogueira Barradas, T.; de Freitas Caetano, V.; Becerra Lovera, A. Can Nanoparticles Improve Polyaniline Electrical Conductivity? 2021. Available online: https://www.qeios.com/read/17WBLJ.2 (accessed on 23 October 2023).
- Souza, F.G., Jr.; Soares, B.G.; Dahmouche, K. Effect of Preparation Method on Nanoscopic Structure of Conductive SBS/PANI Blends: Study Using Small-angle X-ray Scattering. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 3069–3077. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Oliveira, G.E.; Lopes, M.C. Environmental Recovery by Magnetic Nanocomposites Based on Castor Oil—Chapter 22. In Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs—CRC Press Book; Recent Advances in Materials Sciences; Apple Academic Press, Inc.: Point Pleasant, NJ, USA, 2012; Volume 2, p. 370. ISBN 978-1-926895-16-1. [Google Scholar]
- Pal, K.; Aljabali, A.A.; Kralj, S.; Thomas, S.; Gomes de Souza, F. Graphene-Assembly Liquid Crystalline and Nanopolymer Hybridization: A Review on Switchable Device Implementations. Chemosphere 2021, 263, 128104. [Google Scholar] [CrossRef]
- Neves, J.S.; Souza, F.G., Jr.; Suarez, P.A.Z.; Umpierre, A.P.; Machado, F. In Situ Production of Polystyrene Magnetic Nanocomposites through a Batch Suspension Polymerization Process. Macromol. Mater. Eng. 2011, 296, 1107–1118. [Google Scholar] [CrossRef]
- Pereira, E.D.; Souza, F.G.; Santana, C.I.; Soares, D.Q.; Lemos, A.S.; Menezes, L.R. Influence of Magnetic Field on the Dissolution Profile of Cotrimoxazole Inserted into Poly(Lactic Acid-Co-Glycolic Acid) and Maghemite Nanocomposites. Polym. Eng. Sci. 2013, 53, 2308–2317. [Google Scholar] [CrossRef]
- Middea, A.; Spinelli, L.; Souza, F.G., Jr.; Neumann, R.; Fernandes, T.; Faulstich, F.R.L.; Gomes, O. Magnetic Polystyrene–Palygorskite Nanocomposite Obtained by Heterogeneous Phase Polymerization to Apply in the Treatment of Oily Waters. J. Appl. Polym. Sci. 2018, 135, 46162. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Ferreira, A.C.; Varela, A.; Oliveira, G.E.; Machado, F.; Pereira, E.D.; Fernandes, E.; Pinto, J.C.; Nele, M. Methodology for Determination of Magnetic Force of Polymeric Nanocomposites. Polym. Test. 2013, 32, 1466–1471. [Google Scholar] [CrossRef]
- Vargas, A.; Souza, F.G., Jr. Nanocomposites of Poly(L-Lactic Acid) and Maghemite for Drug Delivery of Caffeine. In Biomaterials Science—Processing, Properties, and Applications; Narayan, R., Bandyopadhyay, A., Bose, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 95–105. ISBN 978-1-118-14456-5. [Google Scholar]
- Neto, W.S.; Simões Dutra, G.V.; de Sousa Brito Neta, M.; Chaves, S.B.; Valadares, L.F.; Souza, F.G., Jr.; Machado, F. Nanodispersions of Magnetic Poly(Vinyl Pivalate) for Biomedical Applications: Synthesis and in Vitro Evaluation of Its Cytotoxicity in Cancer Cells. Mater. Today Commun. 2021, 27, 102333. [Google Scholar] [CrossRef]
- de Souza Junior, F.G.; Barradas, T.N.; Caetano, V.F.; Becerra, A. Nanoparticles Improving Polyaniline Electrical Conductivity: A Meta-Analysis Study. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2022, 2, 25–58. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Oliveira, G.E.; Rodrigues, C.H.M.; Soares, B.G.; Nele, M.; Pinto, J.C. Natural Brazilian Amazonic (Curauá) Fibers Modified with Polyaniline Nanoparticles. Macromol. Mater. Eng. 2009, 294, 484–491. [Google Scholar] [CrossRef]
- Varela, A.; Oliveira, G.; Souza, F.G., Jr.; Rodrigues, C.H.M.; Costa, M.A.S. New Petroleum Absorbers Based on Cardanol-Furfuraldehyde Magnetic Nanocomposites. Polym. Eng. Sci. 2013, 53, 44–51. [Google Scholar] [CrossRef]
- Grance, E.G.O.; Souza, F.G., Jr.; Varela, A.; Pereira, E.D.; Oliveira, G.E.; Rodrigues, C.H.M. New Petroleum Absorbers Based on lignin-CNSL-formol Magnetic Nanocomposites. J. Appl. Polym. Sci. 2012, 126, E305–E312. [Google Scholar] [CrossRef]
- Elias, E.; Sarathchandran, C.; Joseph, S.; Zachariah, A.K.; Thomas, J.; Devadasan, D.; Souza, F.G., Jr.; Thomas, S. Photoassisted Degradation of Rhodamine B Using Poly(Ε-caprolactone) Based Nanocomposites: Mechanistic and Kinetic Features. J. Appl. Polym. Sci. 2021, 138, 50612. [Google Scholar] [CrossRef]
- Asthana, N.; Pal, K.; Aljabali, A.A.A.; Tambuwala, M.M.; Souza, F.G., Jr.; Pandey, K. Polyvinyl Alcohol (PVA) Mixed Green–Clay and Aloe Vera Based Polymeric Membrane Optimization: Peel-off Mask Formulation for Skin Care Cosmeceuticals in Green Nanotechnology. J. Mol. Struct. 2020, 1229, 129592. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, D.; Freitas, R.; Soares, V.; Ferreira, L.; Ramon, J.; Oliveira, G.E. Praziquantel Release Systems Based on Poly(Butylene Succinate)/Polyethylene Glycol Nanocomposites. Curr. Appl. Polym. Sci. 2017, 1, 45–51. [Google Scholar] [CrossRef]
- de Souza Junior, F.G. Preface: Recent Trends in Natural Polymers, Bio-Composites and Bio-Nanocomposites. Abstr. Int. Conf. Meet. 2021, 1, 2. [Google Scholar]
- Ferreira, L.P.; Moreira, A.N.; Souza, F.G., Jr.; Pinto, J.C.C.d.S. Preparation of Nanocomposites Based on Poly(Butylene Succinate) and Montmorillonite Organoclay via in Situ Polymerization. Polímeros 2014, 24, 604–611. [Google Scholar] [CrossRef]
- da Paixão, C.P.S.; Júnior, F.G.S.; Lima, A.S. Production of Biopolymeric Energy Nanocomposite. Abstr. Int. Conf. Meet. 2021, 1, 6. [Google Scholar]
- Elias, E.; Chandran, N.; Souza, F.G.; Thomas, S. Others Segmental Dynamics, Morphology and Thermomechanical Properties of Electrospun Poly (ε-Caprolactone) Nanofibers in the Presence of an Interacting Filler. RSC Adv. 2016, 6, 21376–21386. [Google Scholar] [CrossRef]
- Neto, W.S.; Dutra, G.V.S.; Jensen, A.T.; Araújo, O.A.; Garg, V.; de Oliveira, A.C.; Valadares, L.F.; de Souza, F.G.; Machado, F. Superparamagnetic Nanoparticles Stabilized with Free-Radical Polymerizable Oleic Acid-Based Coating. J. Alloys Compd. 2018, 739, 1025–1036. [Google Scholar] [CrossRef]
- Péres, E.U.X.; Sousa, M.H.; Souza, F.G., Jr.; Machado, F.; Suarez, P.A.Z. Synthesis and Characterization of a New Biobased Poly(Urethane-Ester) from Ricinoleic Acid and Its Use as Biopolymeric Matrix for Magnetic Nanocomposites: Biopolymer as Matrix for Magnetic Nanocomposites. Eur. J. Lipid Sci. Technol. 2017, 119, 1600451. [Google Scholar] [CrossRef]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Rojas, O.J.; Montero, G.A.; Habibi, Y. Electrospun Nanocomposites from Polystyrene Loaded with Cellulose Nanowhiskers. J. Appl. Polym. Sci. 2009, 113, 927–935. [Google Scholar] [CrossRef]
- Yan, C.; Wang, J.; Kang, W.; Cui, M.; Wang, X.; Foo, C.Y.; Chee, K.J.; Lee, P.S. Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors. Adv. Mater. 2014, 26, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin Valorization: Lignin Nanoparticles as High-Value Bio-Additive for Multifunctional Nanocomposites. Biotechnol. Biofuels 2017, 10, 192. [Google Scholar] [CrossRef]
- Lively, B.T. Carbon Based Nanofiller-Polymer Composites: Quantitative Dispersion Characterization, Processing, and Properties. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 2013. [Google Scholar]
- Gibbons, L.J. Nanocomposite Dispersion: Quantifying the Structure-Function Relationship. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2011. [Google Scholar]
- Atalie, D.; Gideon, R.; Tesfaye, K.; Ma, P.-C. Nanocomposites: Homogenization and Kinematic Relations. In Mechanics of Nanomaterials and Polymer Nanocomposites; Abdellaoui, H., Sanjay, M.R., Siengchin, S., Eds.; Smart Nanomaterials Technology; Springer Nature: Singapore, 2023; pp. 213–257. ISBN 978-981-9923-51-9. [Google Scholar]
- Hassinger, I.; Li, X.; Zhao, H.; Xu, H.; Huang, Y.; Prasad, A.; Schadler, L.; Chen, W.; Catherine Brinson, L. Toward the Development of a Quantitative Tool for Predicting Dispersion of Nanocomposites under Non-Equilibrium Processing Conditions. J. Mater. Sci. 2016, 51, 4238–4249. [Google Scholar] [CrossRef]
- Aboelkheir, M.; Gomes, F.; Meiorin, C.; Galdino, T. Tenebrio Molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool. Materials 2022, 15, 5063. [Google Scholar] [CrossRef] [PubMed]
- Bedor, P.B.A.; Rondelli, P.; Filho, S.T.; Souza, F.G., Jr.; Leite, S.G.F. Production and Toxicological Evaluation of PBS-Urea Microspheres Targeting Bioremediation. J. Chem. Technol. Biotechnol. 2021, 96, 1842–1853. [Google Scholar] [CrossRef]
- Borges, G.R.; Aboelkheir, M.G.; de Souza Junior, F.G.; Waldhelm, K.C.; Kuster, R.M. Poly (Butylene Succinate) and Derivative Copolymer Filled with Dendranthema Grandiflora Biolarvicide Extract. Environ. Sci. Pollut. Res. 2020, 27, 23575–23585. [Google Scholar] [CrossRef]
- Ferreira, L.P.; Moreira, A.N.; Delazare, T.; Oliveira, G.E.; Souza, F.G., Jr. Petroleum Absorbers Based on CNSL, Furfural and Lignin—The Effect of the Chemical Similarity on the Interactions among Petroleum and Bioresins. Macromol. Symp. 2012, 319, 210–221. [Google Scholar] [CrossRef]
- Elias, E.; Costa, R.; Marques, F.; Oliveira, G.; Guo, Q.; Thomas, S.; Souza, F.G., Jr. Oil-Spill Cleanup: The Influence of Acetylated Curaua Fibers on the Oil-Removal Capability of Magnetic Composites. J. Appl. Polym. Sci. 2015, 132, 41732–41740. [Google Scholar] [CrossRef]
- da Silveira Maranhão, F.; Souza, F.G., Jr.; Thode, S.; Das, D.B.; Pereira, E.; Lima, N.; Carvalho, F.; Aboelkheir, M.; Costa, V.; Pal, K. Oil Spill Sorber Based on Extrinsically Magnetizable Porous Geopolymer. Materials 2021, 14, 5641. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.; Oliveira, G.E.; Toledo Filho, R.D.; Souza, F.G., Jr. Oil Spill Clean-Up Tool Based on Castor Oil and Coffee Grounds Magnetic Resins. Macromol. Symp. 2018, 380, 1800095. [Google Scholar] [CrossRef]
- Caetano, R.M.J.; Bedor, P.B.A.; de Jesus, E.F.O.; Leite, S.G.F.; Souza, F.G., Jr. Oil Biodegradation Systems Based on γ Irradiated Poly (Butylene Succinate). Macromol. Symp. 2018, 380, 1800123. [Google Scholar] [CrossRef]
- de Freitas Caetano, V.; Paula, P.S.T.A.; de Souza, F.G., Jr. Nanomaterials Improving CO2 Removal Efficiency in Membranes: A Systematic Review. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2022, 2, 3–24. [Google Scholar] [CrossRef]
- Maranhão, F.S.; de Souza Junior, F.G.; Filho, S.T.; de Oliveira Athayde, B.H.; de Carvalho, F.F.; Lino, A.; Malm, O. Magnetic Porous Geopolymer: A Cheaper and Efficient Environmental Tool for Heavy Metal Sorption. Macromol. Symp. 2021, 398, 2000182. [Google Scholar] [CrossRef]
- Varela, A.; Lopes, M.C.; Delazare, T.; Oliveira, G.E.; Souza, F.G., Jr. Magnetic and Green Resins Useful to Oil Spill Cleanup. In Oil: Production, Consumption and Environmental Impact; Xiu, S., Ed.; Nova Science Publishers: New York, NY, USA, 2012; p. 7. ISBN 978-1-61942-899-7. [Google Scholar]
- Maranhão, F.D.S.; Almeida, T.M.; de Souza, F.G.; Batista, D.; de Carvalho, F.F.; Pal, K.; Thomas, S. Geopolymer Microparticles as Up-and-Coming H2S Sorbers. Macromol. Symp. 2021, 398, 2000175. [Google Scholar] [CrossRef]
- Figueiredo, A.S.; Icart, L.P.; Marques, F.D.; Fernandes, E.R.; Ferreira, L.P.; Oliveira, G.E.; Souza, F.G. Extrinsically Magnetic Poly(Butylene Succinate): An up-and-Coming Petroleum Cleanup Tool. Sci. Total Environ. 2019, 647, 88–98. [Google Scholar] [CrossRef]
- Lopes, M.C.; Marques, F.; Souza, F.G., Jr.; Oliveira, G.E. Experimental Design Optimization of Castor Oil, Phthalic Anhydride, and Glycerin Magnetic Nanocomposites Useful as Oil Spill Cleanup Tool. Macromol. Symp. 2018, 380, 1800085. [Google Scholar] [CrossRef]
- Baldanza, V.A.R.; Souza, F.G.; Filho, S.T.; Franco, H.A.; Oliveira, G.E.; Caetano, R.M.J.; Hernandez, J.A.R.; Ferreira Leite, S.G.; Furtado Sousa, A.M.; Nazareth Silva, A.L. Controlled-Release Fertilizer Based on Poly(Butylene Succinate)/Urea/Clay and Its Effect on Lettuce Growth: Controlled-Release Fertilizer Based on Poly(Butylene Succinate)/Urea/Clay and Its Effect on Lettuce Growth. J. Appl. Polym. Sci. 2018, 135, e46858. [Google Scholar] [CrossRef]
- Nath, N.; Kumar, A.; Chakroborty, S.; Soren, S.; Barik, A.; Pal, K.; de Souza, F.G., Jr. Carbon Nanostructure Embedded Novel Sensor Implementation for Detection of Aromatic Volatile Organic Compounds: An Organized Review. ACS Omega 2023, 8, 4436–4452. [Google Scholar] [CrossRef]
- Bedor, P.B.A.; Caetano, R.M.J.; de Souza Júnior, F.G.; Leite, S.G.F. Advances and Perspectives in the Use of Polymers in the Environmental Area: A Specific Case of PBS in Bioremediation. Polímeros 2020, 30, e2020023. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Marins, J.A.; Rodrigues, C.H.M.; Pinto, J.C. A Magnetic Composite for Cleaning of Oil Spills on Water. Macromol. Mater. Eng. 2010, 295, 942–948. [Google Scholar] [CrossRef]
- Pal, K.; Asthana, N.; Aljabali, A.A.; Bhardwaj, S.K.; Kralj, S.; Penkova, A.; Thomas, S.; Zaheer, T.; de Souza, F.G. A Critical Review on Multifunctional Smart Materials ‘Nanographene’ Emerging Avenue: Nano-Imaging and Biosensor Applications. Crit. Rev. Solid State Mater. Sci. 2021, 47, 691–707. [Google Scholar] [CrossRef]
- Mounika, B.; Ajayan, J.; Bhattacharya, S. 2.5 A/Mm/350 GHz Aggressively Scaled Gate Engineered Fe-Doped AlN/GaN Channel HEMT with Graded InGaN Backbarrier on SiC-Wafer for next Generation RF Power Electronics Applications. Mater. Sci. Eng. B 2024, 301, 117194. [Google Scholar] [CrossRef]
- Waheed, W.; Anwer, S.; Khan, M.U.; Sajjad, M.; Alazzam, A. 2D Ti3C2Tx-MXene Nanosheets and Graphene Oxide Based Highly Sensitive Humidity Sensor for Wearable and Flexible Electronics. Chem. Eng. J. 2024, 480, 147981. [Google Scholar] [CrossRef]
- Pradhan, S.; Yadavalli, V.K. A Dual Function Conductive Nano Ink for Printed Electronics Connections. Org. Electron. 2024, 124, 106959. [Google Scholar] [CrossRef]
- Li, R.; Song, P.; Ji, Z.; Zhou, H.; Xue, Y.; Kong, L.; Shen, X. Coaxial Core-Sheath Shaped Supercapacitor Based on Polypyrrole Functionalized Graphene/Carbon Nanotubes Hollow Fibers with Ultrahigh Length Specific Capacitance and Energy Density for Wearable Electronics. Appl. Surf. Sci. 2024, 649, 159188. [Google Scholar] [CrossRef]
- Kim, S.; Nawaz, F.; Lee, H.; Jeong, S.; Choi, C.; Jeon, I.; Lee, K. Development of Highly Sensitive and Solar Blind Surface Acoustic Wave UV-C Photodetector Based on the In2O3/Ta2O5 Nano-Heterojunction and Its Interface Electronics. Sens. Actuators Phys. 2024, 367, 115027. [Google Scholar] [CrossRef]
- Mugheri, A.Q.; Ali, K.; Sangah, A.A.; Daudpoto, M.R.; Laghari, M.Y.; Mugheri, A.A. Effort in Speeding up High-Performance, Stable, High-Rate Thin-Film Electronics Based for Ultra-Long Life with Enhanced Electrochemical Performance for next Generation Technology. J. Energy Storage 2024, 77, 109863. [Google Scholar] [CrossRef]
- Monakhov, K.Y. Implication of Counter-Cations for Polyoxometalate-Based Nano-Electronics. Comments Inorg. Chem. 2024, 44, 1–10. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, W.; Wang, X.; Hu, S.; Cui, P.; Fang, Y.; Li, Z.; Qi, F.; Cao, H.; Xu, H.; et al. Low-Temperature Packaging through Ag-Cu Supersaturated Solid Solution Nanoparticle Paste for High-Temperature Power Electronics. Mater. Lett. 2024, 357, 135675. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Jia, Q.; Zhang, H.; Wang, Y.; Li, D.; Zou, G.; Guo, F. Low-Temperature-Sintered Nano-Ag Film for Power Electronics Packaging. J. Electron. Mater. 2024, 53, 228–237. [Google Scholar] [CrossRef]
- Luo, R.; Hu, D.; Qian, C.; Liu, X.; Fan, X.; Zhang, G.; Fan, J. Molecular Dynamics Simulations on Mechanical Behaviors of Sintered Nanocopper in Power Electronics Packaging. Microelectron. Reliab. 2024, 152, 115284. [Google Scholar] [CrossRef]
- Zhu, W.; Feng, T.; Zhang, M.; Tan, J.; Wu, M. Surface Electronics Regulation and Enhanced Electrochemical Performance of Nitrogen-Doped Carbon Layer Encapsulated NiCo2S4 Nanosheets for Supercapacitors. Vacuum 2024, 220, 112729. [Google Scholar] [CrossRef]
- Sajjad, M.; Zhang, J.; Mao, Z.; Chen, Z. A Review on Iron-Nitride (Fe2N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives. J. Alloys Compd. 2024, 976, 172626. [Google Scholar] [CrossRef]
- Magar, H.S.; Mansour, A.M.; Hammad, A.B.A. Advancing Energy Storage and Supercapacitor Applications through the Development of Li+-Doped MgTiO3 Perovskite Nano-Ceramics. Sci. Rep. 2024, 14, 1849. [Google Scholar] [CrossRef]
- El Sayed, A.M. Boosting the Optical and Electrical Properties of PVA/Na-CMC Blend by Cr2O3 Nanoparticles for Photonic and Energy Storage Applications. J. Energy Storage 2024, 82, 110609. [Google Scholar] [CrossRef]
- Li, Q.; Yang, C.; Wang, S.; Zhou, M.; Xie, H.; Qiao, G.; Du, Y.; Li, C.; Wu, Y. Challenges and Strategies for Imidazolium Ionic Liquids as Novel Phase Change Materials for Low and Medium Temperature Thermal Energy Storage: A Critical Review. J. Mol. Liq. 2024, 395, 123812. [Google Scholar] [CrossRef]
- Sathishkumar, A.; Sundaram, P.; Cheralathan, M.; Kumar, P.G. Effect of Nano-Enhanced Phase Change Materials on Performance of Cool Thermal Energy Storage System: A Review. J. Energy Storage 2024, 78, 110079. [Google Scholar] [CrossRef]
- Rajamony, R.K.; Paw, J.K.S.; Pandey, A.K.; Tak, Y.C.; Pasupuleti, J.; Tiong, S.K.; Yusaf, T.; Samykano, M.; Sofiah, A.G.N.; Kalidasan, B.; et al. Energizing the Thermophysical Properties of Phase Change Material Using Carbon-Based Nano Additives for Sustainable Thermal Energy Storage Application in Photovoltaic Thermal Systems. Mater. Today Sustain. 2024, 25, 100658. [Google Scholar] [CrossRef]
- Mottakin, M.; Selvanathan, V.; Su’ait, M.S.; Razali, S.A.; Islam, M.A.; Ibrahim, M.A.; Muhammad, G.; Akhtaruzzaman, M. Enhancing Pseudocapacitive Energy Storage System Performance with Electrodeposited CuSx and CoSx Biphasic Transitional Metal Sulfide (TMS) Based Nanostructured Electrode on Nickel Foam. J. Phys. Chem. Solids 2024, 186, 111795. [Google Scholar] [CrossRef]
- Bhosale, M.; Baby, N.; Magdum, S.S.; Murugan, N.; Kim, Y.A.; Thangarasu, S.; Oh, T.-H. Hierarchical Nanoassembly of Ni3S2-MoS2 Interconnected with CeO2 as a Highly Remarkable Hybrid Electrocatalyst for Enhancing Water Oxidation and Energy Storage. J. Energy Storage 2024, 80, 110301. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Zhao, R.; Tang, X.; Zhang, S.; Zhang, Y.; Hu, J.; Shen, Z.; Jiang, Y.; Guo, X. High Energy Storage Density Obtained by Bi(Ni0.5Hf0.5)O3-Modified NBT-Based Ceramic at a Low Electric Field. Ceram. Int. 2024, 50, 5276–5284. [Google Scholar] [CrossRef]
- Zhou, J.; Dabaghian, M.; Wang, Y.; Sotzing, M.; LaChance, A.M.; Shen, K.; Gao, W.; Konstantinou, A.; Wu, C.; Hao, J.; et al. High-Temperature Dielectric Energy Storage Films with Self-Co-Assembled Hot-Electron Blocking Nanocoatings. Nano Energy 2024, 120, 109184. [Google Scholar] [CrossRef]
- Sun, J.; Yan, G.; Fang, B.; Zhao, X.; Zhang, S.; Lu, X.; Ding, J. Improving Energy Storage Performance of Barium Titanate-Based Ceramics by Doping MnO2. J. Energy Storage 2024, 78, 110007. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Kumaresan, G.; Arulprakasajothi, M.; Vellaiyan, S. Latent Heat Energy Storage Using Nanomaterials as a Heat Sink for the Prevention of Thermal Runaway: A Study in Conjugate Heat Dissipation. Int. Commun. Heat Mass Transf. 2024, 151, 107225. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, Z.; Zheng, P.; Zheng, X.; Zhou, J.; Liu, J.; Fan, Q.; Zheng, L.; Bai, W.; Zhang, Y. Multiphase Coexistence and High Energy Storage Performance in BKT-Based Lead-Free Relaxor Ferroelectric Ceramics. Appl. Mater. Today 2024, 37, 102097. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Zafar, H.K.; Javed, M.S.; Din, M.A.U.; Alarfaji, S.S.; Balkourani, G.; Sohail, M.; Tsiakaras, P.; Najam, T. Mxenes for Zn-Based Energy Storage Devices: Nano-Engineering and Machine Learning. Coord. Chem. Rev. 2024, 501, 215565. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, S.; Ying, H.; Liu, B.; Jia, W.; Xie, J.; Sun, Y. Preparation and Thermal Properties of Eutectic Phase Change Materials (EPCMs) with Nanographite Addition for Cold Thermal Energy Storage. Energy 2024, 290, 130148. [Google Scholar] [CrossRef]
- Farid, G.; Amade-Rovira, R.; Ma, Y.; Chaitoglou, S.; Ospina, R.; Bertran-Serra, E. Revolutionizing Energy Storage: Silicon Nanowires (SiNWs) Crafted through Metal-Assisted Chemical Etching. Arab. J. Chem. 2024, 17, 105631. [Google Scholar] [CrossRef]
- Shang, B.; Zhang, L.; Li, B.; Huo, Y. Thermal Energy Storage System Based on Nanoparticle Distribution Optimisation for Enhanced Heat Transfer. J. Energy Storage 2024, 80, 110075. [Google Scholar] [CrossRef]
- Kazaz, O.; Karimi, N.; Kumar, S.; Falcone, G.; Paul, M.C. Thermally Enhanced Nanocomposite Phase Change Material Slurry for Solar-Thermal Energy Storage. J. Energy Storage 2024, 78, 110110. [Google Scholar] [CrossRef]
- Kolavada, H.; Gajjar, P.N.; Gupta, S.K. Unraveling Quantum Capacitance in Supercapacitors: Energy Storage Applications. J. Energy Storage 2024, 81, 110354. [Google Scholar] [CrossRef]
- Grira, S.; Alkhedher, M.; Abu Khalifeh, H.; Ramadan, M.; Ghazal, M. Using Algae in Li-Ion Batteries: A Sustainable Pathway toward Greener Energy Storage. Bioresour. Technol. 2024, 394, 130225. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R.M.; EL-Sayad, N.; El-Gizawi, L.S.E.-D. Applying Nano Coatings on Buildings to Improve Thermal Performance & Energy Efficiency: A Simulation of a Health Care Building in Egypt. ISVS E-J. 2023, 10, 384–396. [Google Scholar]
- Saqib, A.; Pattar, S.; Karigar, C.S.; Sekhar, S. Caspase Activators: Phytochemicals with Apoptotic Properties Targeting Cancer, a Health Care Strategy to Combat This Disease. Indian J. Pharm. Educ. Res. 2020, 54, S43–S55. [Google Scholar] [CrossRef]
- Han, X.; Qin, Y.; Mei, C.; Jiao, F.; Khademolqorani, S.; Nooshin Banitaba, S. Current Trends and Future Perspectives of Stroke Management through Integrating Health Care Team and Nanodrug Delivery Strategy. Front. Cell. Neurosci. 2023, 17, 1266660. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Chen, B.-T.; Liu, Y.; Wang, Y.; Xing, L.; Wang, H.; Zhou, T.-J.; Jiang, H.-L. Engineered Stem Cell-Based Strategy: A New Paradigm of next-Generation Stem Cell Product in Regenerative Medicine. J. Control. Release 2024, 365, 981–1003. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, S.; Vijayakumar, S.; Rajendran, R. Functional Finishing of Health Care Cotton for Enhanced Efficiency of Antibacterial Activity by Chitosan and Herbal Nanocomposites. Acta Ecol. Sin. 2020, 40, 473–477. [Google Scholar] [CrossRef]
- Hoveidaei, A.H.; Sadat-Shojai, M.; Mosalamiaghili, S.; Salarikia, S.R.; Roghani-shahraki, H.; Ghaderpanah, R.; Ersi, M.H.; Conway, J.D. Nano-Hydroxyapatite Structures for Bone Regenerative Medicine: Cell-Material Interaction. Bone 2024, 179, 116956. [Google Scholar] [CrossRef] [PubMed]
- Moreddu, R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. Adv. Sci. 2024, 11, 2304110. [Google Scholar] [CrossRef]
- Mariyam, S.; Upadhyay, S.K.; Chakraborty, K.; Verma, K.K.; Duhan, J.S.; Muneer, S.; Meena, M.; Sharma, R.K.; Ghodake, G.; Seth, C.S. Nanotechnology, a Frontier in Agricultural Science, a Novel Approach in Abiotic Stress Management and Convergence with New Age Medicine—A Review. Sci. Total Environ. 2024, 912, 169097. [Google Scholar] [CrossRef]
- Zeng, C.; Evans, J.P.; Pearson, R.; Qu, P.; Zheng, Y.-M.; Robinson, R.T.; Hall-Stoodley, L.; Yount, J.; Pannu, S.; Mallampalli, R.K.; et al. Neutralizing Antibody against SARS-CoV-2 Spike in COVID-19 Patients, Health Care Workers, and Convalescent Plasma Donors. JCI Insight 2020, 5, e143213. [Google Scholar] [CrossRef]
- Prajwal, A.T.; Muddukrishna, B.S.; Vasantharaju, S.G. Pharma 4.0–Impact of the Internet of Things on Health Care. Int. J. Appl. Pharm. 2020, 12, 64–69. [Google Scholar] [CrossRef]
- Viola, M.; Migliorini, C.; Ziarelli, F.; Viel, S.; Cencetti, C.; Di Risola, D.; Mosca, L.; Masuelli, L.; Matricardi, P.; Di Meo, C. Polyacrylate–Cholesterol Amphiphilic Derivative: Formulation Development and Scale-up for Health Care Applications. J. Funct. Biomater. 2023, 14, 482. [Google Scholar] [CrossRef] [PubMed]
- Rajabathar, J.R.; Arunachalam, P.; AL-Lohedan, H.A.; Thankappan, R.; Appaturi, J.N.; Pulingam, T.; Mohammed Dahan, W. Polymer Surfactant (Triton-100) Assisted Low Cost Method for Preparing Silver and Graphene Oxide Modified Bi-MnOx Nanocomposite for Enhanced Sensor and Anti-Microbial Health Care Applications. J. Sol. Gel. Sci. Technol. 2021, 97, 638–650. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Z.; Li, J.; Liu, S. Research Progress on Nanotechnology of Traditional Chinese Medicine to Enhance the Therapeutic Effect of Osteoarthritis. Drug Deliv. Transl. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Pacheco, A.F.; Echeverri, D.; Orozco, J. Role of Electrochemical Nanobiosensors in Colorectal Cancer Precision Medicine. TrAC Trends Anal. Chem. 2024, 170, 117467. [Google Scholar] [CrossRef]
- Ejidike, I.P.; Ogunleye, O.; Bamigboye, M.O.; Ejidike, O.M.; Ata, A.; Eze, M.O.; Clayton, H.S.; Nwankwo, V.U.; Fatokun, J.O. Role of Nanotechnology in Medicine: Opportunities and Challenges. In Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2024; Volume Part F2070, pp. 353–375. ISBN 18635520. [Google Scholar]
- Zheng, M.; Liu, K.; Li, L.; Feng, C.; Wu, G. Traditional Chinese Medicine Inspired Dual-Drugs Loaded Inhalable Nano-Therapeutics Alleviated Idiopathic Pulmonary Fibrosis by Targeting Early Inflammation and Late Fibrosis. J. Nanobiotechnol. 2024, 22, 14. [Google Scholar] [CrossRef]
- Si, A.; Pal, K.; Kralj, S.; El-Sayyad, G.S.; de Souza, F.G.; Narayanan, T. Sustainable Preparation of Gold Nanoparticles via Green Chemistry Approach for Biogenic Applications. Mater. Today Chem. 2020, 17, 100327. [Google Scholar] [CrossRef]
- Brum, N.F.D.; Mussi, T.d.C.; de Azevedo, A.D.; Monteiro, S.G.; Souza, F.G., Jr. Physical-chemical characterization of reference drugs for the treatment of tuberculosis using fourier transform infrared spectroscopy (FTIR) and thermal analysis (TG/DTG & DSC). J. Biol. Pharm. Agric. Manag. 2021, 17, 963–975. [Google Scholar]
- Santos, J.F.; del Rocío Silva-Calpa, L.; de Souza, F.G.; Pal, K. Central Countries’ and Brazil’s Contributions to Nanotechnology. Curr. Nanomater. 2024, 9, 109–147. [Google Scholar] [CrossRef]
- Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices. Adv. Mater. 2016, 28, 7862–7898. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D.V.; Kagan, C.R.; Klimov, V.I.; Rogach, A.L.; Reiss, P.; Milliron, D.J.; et al. Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9, 1012–1057. [Google Scholar] [CrossRef]
- Bukvić, M.; Gajević, S.; Skulić, A.; Savić, S.; Ašonja, A.; Stojanović, B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants 2024, 12, 6. [Google Scholar] [CrossRef]
- Veličković, S.; Stojanović, B.; Babić, M.; Vencl, A.; Bobić, I.; Vadászné Bognár, G.; Vučetić, F. Parametric Optimization of the Aluminium Nanocomposites Wear Rate. J. Braz. Soc. Mech. Sci. Eng. 2018, 41, 19. [Google Scholar] [CrossRef]
- Santos, R.D.; Ferreira, S.R.; Santos, E.R.F.; Oliveira, G.E.; Silva, F.A.; Souza, F.G., Jr.; Toledo Filho, R.D. Effect of Alkaline Hornification in Sisal Fibers on the Mechanical Behaviour; Materials Research Forum LLC.: Millersville, PA, USA, 2018; pp. 449–456. [Google Scholar]
- Santos, R.D.; Ferreira, S.R.; Oliveira, G.E.; Silva, F.A.; Souza, F.G., Jr.; Filho, R.D.T. Influence of Alkaline Hornification Treatment Cycles on the Mechanical Behavior in Curaua Fibers. Macromol. Symp. 2018, 381, 1800096. [Google Scholar] [CrossRef]
- Souza, F.G.; Soares, B.G.; Siddaramaiah; Barra, G.M.O.; Herbst, M.H. Influence of Plasticizers (DOP and CNSL) on Mechanical and Electrical Properties of SBS/Polyaniline Blends. Polymer 2006, 47, 7548–7553. [Google Scholar] [CrossRef]
- da Silveira Maranhão, F.; de Souza Junior, F.G.; Soares, P.; Alcan, H.G.; Çelebi, O.; Bayrak, B.; Kaplan, G.; Aydın, A.C. Physico-Mechanical and Microstructural Properties of Waste Geopolymer Powder and Lime-Added Semi-Lightweight Geopolymer Concrete: Efficient Machine Learning Models. J. Build. Eng. 2023, 72, 106629. [Google Scholar] [CrossRef]
- Rocha Ferreira, S.; Rodrigues Sena Neto, A.; de Andrade Silva, F.; Gomes de Souza, F.; Dias Toledo Filho, R. The Influence of Carboxylated Styrene Butadiene Rubber Coating on the Mechanical Performance of Vegetable Fibers and on Their Interface with a Cement Matrix. Constr. Build. Mater. 2020, 262, 120770. [Google Scholar] [CrossRef]
- Loh, J.Y.; Yap, F.M.; Ong, W.-J. 2D/2D Heterojunction Interface: Engineering of 1T/2H MoS2 Coupled with Ti3C2T Heterostructured Electrocatalysts for pH-Universal Hydrogen Evolution. J. Mater. Sci. Technol. 2024, 179, 86–97. [Google Scholar] [CrossRef]
- Habes, A.; Derradji, M.; Mehelli, O.; Benaliouche, F.; Abdous, S.; Medjaouri, Y.; Abderrahim, N.C.; Fodil, H.; Kadi, M.E.A. Effective Attenuation of Electromagnetic Waves via Silane Surface Modified Zinc Oxide/Polybenzoxazine Nanocomposites for EMI Shielding Application. Mater. Today Commun. 2024, 38, 107608. [Google Scholar] [CrossRef]
- Tang, L.; Ruan, K.; Liu, X.; Tang, Y.; Zhang, Y.; Gu, J. Flexible and Robust Functionalized Boron Nitride/Poly(p-Phenylene Benzobisoxazole) Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation. Nano-Micro Lett. 2024, 16, 38. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, X.M.; Zeng, X.K.; Liu, M.; Jiang, X.; Leng, Y.X. Hard yet Tough and Self-Lubricating (CuNiTiNbCr)Cx High-Entropy Nanocomposite Films: Effects of Carbon Content on Structure and Properties. J. Mater. Sci. Technol. 2024, 173, 20–30. [Google Scholar] [CrossRef]
- Naseem, K.; Rehman, A.; Haider, S.; Akhtar, M.S. Inorganic Nanoparticles Fabricated Alginate Based Nanocomposites for the Treatment of Brilliant Blue Dye. J. Mol. Struct. 2024, 1298, 137055. [Google Scholar] [CrossRef]
- Li, W.; Bai, L.; Ming, K.; Zheng, S. Plasticity Dependence on Amorphous Continuity in Fe-SiOC Dual-phase Nanocomposites. J. Mater. Sci. Technol. 2024, 173, 80–85. [Google Scholar] [CrossRef]
- Xue, J.; Zhou, Y.; Qu, S.; Xiao, Y.; Bian, H.; Li, L.; Wang, C. Preparation and Characterization of Electrospun Cellulose Nanocrystals-Reinforced Trans-1,4-Polyisoprene Nanocomposite Elastomeric Fiber Membranes. Mater. Today Commun. 2024, 38, 107705. [Google Scholar] [CrossRef]
- Jafari Eskandari, M.; Araghchi, M.; Daneshmand, H.; Hadipour, A. Repeatable and Controllable Notch and Pre-Crack Sharpening via Continuous-Wave Laser for Fracture Toughness of Epoxy Resin/MWCNTs Nanocomposites: Fabrication, Preparation, and Characterization. Opt. Laser Technol. 2024, 170, 110272. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Li, Y.; Huang, X.; Li, Z.; Zhai, X.; Shi, J.; Zou, X.; Xiao, J.; Sun, Y.; et al. Sodium Alginate/Guar Gum Based Nanocomposite Film Incorporating β-Cyclodextrin/Persimmon Pectin-Stabilized Baobab Seed Oil Pickering Emulsion for Mushroom Preservation. Food Chem. 2024, 437, 137891. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.G., Jr.; Michel, R.C.; Soares, B.G. A Methodology for Studying the Dependence of Electrical Resistivity with Pressure in Conducting Composites. Polym. Test. 2005, 24, 998–1004. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Bhansali, S.; Pal, K.; da Silveira Maranhão, F.; Oliveira, M.S.; Valladão, V.S.; Brandão, D.; Bezerra, G.S. Advancements in Nanocomposites: An In-Depth Exploration of Microstructural, Electrical, and Mechanical Dynamics. Preprints 2024, 2024010091. [Google Scholar] [CrossRef]
- Hamada, H.M.; Shi, J.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T.; Kaplan, G. Application of Natural Fibres in Cement Concrete: A Critical Review. Mater. Today Commun. 2023, 17, 105833. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, B.G.; Mantovani, G.L.; Manjunath, A.; Somashekarappa, H.; Somashekar, R. Siddaramaiah Blends of Styrene Butadiene Styrene TRI Block Copolymer/Polyaniline-Characterization by WAXS. Polymer 2006, 47, 2163–2171. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, B.G.; Siddaramaiah; Manjunath, A.; Somashekar, R. Blends of Styrene–Butadiene–Styrene Tri-Block Copolymer/Polyaniline—Characterization by SAXS. Mater. Sci. Eng. A 2008, 476, 240–247. [Google Scholar] [CrossRef]
- Ferreira, S.R.; da Silva, A.M.; Souza, F.G., Jr.; Filho, R.D.T.; de Andrade Silva, F. Effect of Polyaniline and H2O2 Surface Modification on the Tensile Behavior and Chemical Properties of Coir Fibers. J. Biobased Mater. Bioenergy 2014, 8, 578–586. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Orlando, M.T.D.; Michel, R.C.; Pinto, J.C.; Cosme, T.; Oliveira, G.E. Effect of Pressure on the Structure and Electrical Conductivity of Cardanol–Furfural–Polyaniline Blends. J. Appl. Polym. Sci. 2011, 119, 2666–2673. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Pinto, J.C.; de Oliveira, G.E.; Soares, B.G. Evaluation of Electrical Properties of SBS/Pani Blends Plasticized with DOP and CNSL Using an Empirical Statistical Model. Polym. Test. 2007, 26, 720–728. [Google Scholar] [CrossRef]
- Si, A.; Kyzas, G.Z.; Pal, K.; Souza, F.G., Jr. Graphene Functionalized Hybrid Nanomaterials for Industrial-Scale Applications: A Systematic Review. J. Mol. Struct. 2021, 1239, 130518. [Google Scholar] [CrossRef]
- Siddaramaiah; Souza, F.G., Jr.; Soares, B.G.; Somashekar, R. Investigation on Microstructural Behavior of Styroflex/Polyaniline Blends by WAXS. J. Appl. Polym. Sci. 2012, 124, 5097–5105. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Marins, J.; Pinto, J.; de Oliveira, G.; Rodrigues, C.; Lima, L. Magnetic Field Sensor Based on a Maghemite/Polyaniline Hybrid Material. J. Mater. Sci. 2010, 45, 5012–5021. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Carlos Pinto, J.; Alves Garcia, F.; de Oliveira, G.E.; Bruno Tavares, M.I.; da Silva, A.M.; Daher Pereira, E. Modification of Coconut Fibers with Polyaniline for Manufacture of Pressure-Sensitive Devices. Polym. Eng. Sci. 2014, 54, 2887–2895. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Pinto, J.C.; Rodrigues, M.V.; Anzai, T.K.; Richa, P.; Melo, P.A.; Nele, M.; Oliveira, G.E.; Soares, B.G. New Polyaniline/Polycardanol Conductive Blends Characterized by FTIR, NIR, and XPS. Polym. Eng. Sci. 2008, 48, 1947–1952. [Google Scholar] [CrossRef]
- Veloso de Carvalho, F.; Pal, K.; Souza, F.G., Jr.; Dias Toledo Filho, R.; Moraes de Almeida, T.; Daher Pereira, E.; Thode Filho, S.; Galal Aboelkheir, M.; Corrêa Costa, V.; Barbosa de Lima, N.R.; et al. Polyaniline and Magnetite on Curaua Fibers for Molecular Interface Improvement with a Cement Matrix. J. Mol. Struct. 2021, 1233, 130101. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Almeida, M.; Soares, B.G.; Pinto, J.C. Preparation of a Semi-Conductive Thermoplastic Elastomer Vulcanizate Based on EVA and NBR Blends with Polyaniline. Polym. Test. 2007, 26, 692–697. [Google Scholar] [CrossRef]
- França, D.; Rebessi, A.C.; Camilo, F.F.; Souza, F.G., Jr.; Faez, R. Pressure Sensibility of Conductive Rubber Based on NBR- and Polypyrrole-Designed Materials. Front. Mater. 2019, 6, 189. [Google Scholar] [CrossRef]
- da Silveira Maranhão, F.; de Athayde, B.H.O.; da Motta, A.G.B.; de Souza, F.G., Jr. Production of Geopolymeric Microspheres by Reaction in Suspension Gelatin Medium. Abstr. Int. Conf. Meet. 2021, 1, 12. [Google Scholar]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, B.G.; Pinto, J.C. SBS/Polyaniline or Carbon Black System: Finding the Optimal Process and Molding Temperatures Through Experimental Design. Macromol. Mater. Eng. 2006, 291, 463–469. [Google Scholar] [CrossRef]
- Ferreira, L.P.; da Cunha, B.P.; Kuster, R.M.; Pinto, J.C.; Souza, M.N.; Souza, F.G., Jr. Synthesis and Chemical Modification of Poly(Butylene Succinate) with Rutin Useful to the Release of Silybin. Ind. Crops Prod. 2017, 97, 599–611. [Google Scholar] [CrossRef]
- Yeissel Becerra Lovera, A.; de Souza Junior, F.G. The Bio Components in the Vitrimers Reprocessability: A Meta- Analysis Study. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2022, 2, 101–117. [Google Scholar] [CrossRef]
- Soares, B.G.; Amorim, G.S.; Souza, F.G., Jr.; Oliveira, M.G.; da Silva, J.E.P. The in Situ Polymerization of Aniline in Nitrile Rubber. Synth. Met. 2006, 156, 91–98. [Google Scholar] [CrossRef]
- Lopes, E.S.; Domingos, E.; Neves, R.S.; Romão, W.; de Souza, K.R.; Valaski, R.; Archanjo, B.S.; Souza, F.G.; Silva, A.M.; Kuznetsov, A.; et al. The Role of Intermolecular Interactions in Polyaniline/Polyamide-6,6 Pressure-Sensitive Blends Studied by DFT and 1H NMR. Eur. Polym. J. 2016, 85, 588–604. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, B.G.; Silveira, F.; Renukappa, N.M.; Siddaramaiah, S. Dielectric Behavior of SBS/Polyaniline Thermally Processable Blends. Chem. Chem. Technol. 2018, 12, 441–446. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Soares, B.G.; Pinto, J.C. Electrical Surface Resistivity of Conductive Polymers—A Non-Gaussian Approach for Determination of Confidence Intervals. Eur. Polym. J. 2008, 44, 3908–3914. [Google Scholar] [CrossRef]
- Maranhão, F.d.S.; Galdino, T.; da Paixão, C.P.S.; Souza, F.G., Jr.; Das, D.B.; Thode, S.; Narayanan, T. Evaluation of the Electrical Conductivity of Geopolymers Loaded with Carbon Black. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2021, 1, 61–69. [Google Scholar] [CrossRef]
- da Silveira Maranhão, F.; da Paixão, C.P.S.; Thode Filho, S.; Das, D.B.; de Souza Junior, F.G. Reaction of Geopolymers in Acid Medium and Application of Polyaniline as a Conductor of Electricity. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2021, 1, 47–53. [Google Scholar] [CrossRef]
- Zhang, Z.; Ou, X.; Ma, L.; Li, C.; Yang, Z.; Duan, J. A Double Methylene Blue Labeled Single-Stranded DNA and Hairpin DNA Coupling Biosensor for the Detection of Fusarium oxysporum f. Sp. Cubense Race 4. Bioelectrochemistry 2024, 156, 108612. [Google Scholar] [CrossRef]
- Ke, C.; Wu, Y.; Song, Z.; Zheng, M.; Zhu, H.; Guo, H.; Sun, H.; Liu, M. A Novel Competitive Fluorescence Colorimetric Dual-Mode Immunosensor for Detecting Ochratoxin A Based on the Synergistically Enhanced Peroxidase-like Activity of AuAg NCs-SPCN Nanocomposite. Food Chem. 2024, 437, 137930. [Google Scholar] [CrossRef]
- Yu, Z.; Li, F.; Xiang, Q. Carbon Dots-Based Nanocomposites for Heterogeneous Photocatalysis. J. Mater. Sci. Technol. 2024, 175, 244–257. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Sun, Q.; Jiang, X.-P.; Wu, H.; Tian, B.-Z.; Wang, Z.-G.; Zheng, K.; Yang, L. Constructing Cell-Membrane-Mimic Grain Boundaries for High-Performance n-Type Ag2Se Using High-Dielectric-Constant TiO2. J. Mater. Sci. Technol. 2024, 179, 138–144. [Google Scholar] [CrossRef]
- Jia, T.; Hao, Y.; Qi, X.; Rao, Y.; Wang, L.; Ding, J.; Qu, Y.; Zhong, W. Interface Engineering and Impedance Matching Strategy to Develop Core@shell Urchin-like NiO/Ni@carbon Nanotubes Nanocomposites for Microwave Absorption. J. Mater. Sci. Technol. 2024, 176, 1–12. [Google Scholar] [CrossRef]
- Nason, C.A.F.; Vijaya Kumar Saroja, A.P.; Lu, Y.; Wei, R.; Han, Y.; Xu, Y. Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode. Nano-Micro Lett. 2024, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Song, X.T.; Fan, G.H.; Liu, Y.; Fan, R.H. MOF-Derived ZrO2/C- Polyvinylidene Fluoride Composite towards Negative Permittivity Regulation Mechanism. J. Mater. Sci. Technol. 2024, 179, 50–56. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite Determination in Food Using Electrochemical Sensor Based on Self-Assembled MWCNTs/AuNPs/Poly-Melamine Nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, H.; Ke, Q.; Chen, P.; Wang, S.; Rao, B.; Wu, G. Rational Construction of CoFe-S/rGO Composites with Enriched Sulfur Vacancies for High-Performance Supercapacitor. Appl. Surf. Sci. 2024, 648, 159063. [Google Scholar] [CrossRef]
- Rodrigues, C.H.M.; Toniato, M.; Souza, F.G., Jr.; Paes, H.R., Jr. A Influência Dos Parâmetros de Deposição Na Morfologia Dos Eletrólitos Para Células a Combustível de Óxido Sólido, à Base de Filmes de Zircônia: 8 Mol% Ítria Depositados Por Spray Pirólise. Cerâmica 2013, 59, 451–459. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Varela, A. Construção de Ferramenta de Aquisição e Inspeção de Dados Eletromecânicos Usando Python. Programar. Rev. Port. Programação 2012, 34, 32–38. [Google Scholar]
- Marinho, V.S.; Neves, M.A.F.S.; Pedrosa, M.S.; Souza, F.G., Jr. Efeito Do Meio Contínuo Na Incorporação de Material Magnético Em Resinas de Estirenodivinilbenzeno. Rev. Eletrônica Perspect. Ciênc. E Tecnol. 2018, 10, 110. [Google Scholar] [CrossRef]
- Picciani, P.H.S.; Souza, F.G., Jr.; Comerlato, N.M.; Soares, B.G. A Novel Material Based on Polyaniline Doped with [Cs][In(Dmit)2], (Cesium) [Bis(1,3-Dithiole-2-Thione-4,5-Dithiolato)Indium (III)]. Synth. Met. 2007, 157, 1074–1079. [Google Scholar] [CrossRef]
- Barbosa de Lima, N.R.; Souza, F.G., Jr.; Gaëlle Roullin, V.; Pal, K. Amphipathic Au-Sulfur-Poly (Ethylene Glycol)-b-Poly (Butylene Succinate) System Prepared by Interfacial Reaction as in-Silico Photosensitizer and Antineoplastic Carrier. J. Drug Deliv. Sci. Technol. 2021, 64, 102584. [Google Scholar] [CrossRef]
- Almeida Moraes, T.; Farrôco, M.J.; Pontes, K.; Fontes Bittencourt, M.; Guenter Soares, B.; Gomes Souza, F. An Optical-Magnetic Material as a Toxic Gas Filter and Sensing Device. RSC Adv. 2020, 10, 23233–23244. [Google Scholar] [CrossRef]
- Mussi, T.d.C.; Brum, N.F.D.; de Azevedo, A.D.; Monteiro, S.G.; Souza, F.G., Jr. Application of experimental design for poly(butylene succinate) synthesis and obtaining rifampicin-loaded microparticles. J. Biol. Pharm. Agric. Manag. 2021, 17, 1066–1076. [Google Scholar]
- Souza, F.G., Jr.; da Silva, A.M.; de Oliveira, G.E.; Costa, R.M.; Fernandes, E.R.; Pereira, E.D. Conducting and Magnetic Mango Fibers. Ind. Crops Prod. 2015, 68, 97–104. [Google Scholar] [CrossRef]
- Morgan, V.G.; Sum, A.K.; Wu, N.; Dante, A.; Gomes, A.M.S.; Ferreira, L.S.; Fernando, G.S.J.; Werneck, M.M.; Allil, R.C.S.B. Development of Experimental Device for Inductive Heating of Magnetic Nanoparticles. Meas. Sci. Technol. 2024, 35, 045602. [Google Scholar] [CrossRef]
- Pérez, A.I.; Materón, E.M.; Zanoni, M.V.B.; Moreira, J.C.; Farias, P.A.M.; Souza, F.G., Jr. Electrochemical Detection of Sotalol on a Magnetographite-Epoxy Electrode Using Magnetite Nanoparticles. Pramana 2020, 94, 114. [Google Scholar] [CrossRef]
- Picciani, P.H.S.; Soares, B.G.; Medeiros, E.S.; Souza, F.G., Jr.; Wood, D.F.; Orts, W.J.; Mattoso, L.H.C. Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling Using a Non Gaussian Approach. Macromol. Theory Simul. 2009, 18, 528–536. [Google Scholar] [CrossRef]
- Neto, W.S.; Dutra, G.V.S.; Valadares, L.F.; Souza, F.G.; Sousa, M.H.; Machado, F. Experimental Evaluation of the Miniemulsion Polymerization of Vinyl Pivalate: The Role of the Main Process Variables. Macromol. React. Eng. 2020, 15, 2000049. [Google Scholar] [CrossRef]
- Santiago, J.P.; de Campos Silva, P.; Marques, F.D.; Souza, F.G., Jr. Glycerin-Based Polyurethane Obtained by Inverse Emulsion: Comparison Between Magnetic Induction and Conventional Heating. Macromol. Symp. 2018, 380, 1800091. [Google Scholar] [CrossRef]
- Raji, V.; Pal, K.; Zaheer, T.; Kalarikkal, N.; Sabu, T.; de Souza, F.G.; Asiya, S.I. Gold Nanoparticles against Respiratory Diseases: Oncogenic and Viral Pathogens Review. Ther. Deliv. 2020, 11, 521. [Google Scholar] [CrossRef]
- Costa, R.M.D.D.; Hungerbühler, G.; Saraiva, T.; De Jong, G.; Moraes, R.S.; Furtado, E.G.; Silva, F.M.; Oliveira, G.E.D.; Ferreira, L.S.; Souza, F.G.D. Green Polyurethane Synthesis by Emulsion Technique: A Magnetic Composite for Oil Spill Removal. Polímeros 2017, 27, 273–279. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Sirelli, L.; Michel, R.C.; Soares, B.G.; Herbst, M.H. In Situ Polymerization of Aniline in the Presence of Carbon Black. J. Appl. Polym. Sci. 2006, 102, 535–541. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Anzai, T.K.; Melo, P.A., Jr.; Soares, B.G.; Nele, M.; Pinto, J.C. Influence of Reaction Media on Pressure Sensitivity of Polyanilines Doped with DBSA. J. Appl. Polym. Sci. 2008, 107, 2404–2413. [Google Scholar] [CrossRef]
- Elkodous, M.A.; El-Sayyad, G.S.; Mohamed, A.E.; Pal, K.; Asthana, N.; de Souza Junior, F.G.; Mosallam, F.M.; Gobara, M.; El-Batal, A.I. Layer-by-Layer Preparation and Characterization of Recyclable Nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci. Mater. Electron. 2019, 30, 8312–8328. [Google Scholar] [CrossRef]
- Siddaramaiah; Souza, F.G., Jr.; Soares, B.G.; Parameswara, P.; Somashekar, R. Microstructural Behaviors of Polyaniline/CB Composites by SAXS. J. Appl. Polym. Sci. 2010, 116, 673–679. [Google Scholar] [CrossRef]
- Bouider, B.; Haffad, S.; Bouakaz, B.S.; Berd, M.; Ouhnia, S.; Habi, A. MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light. J. Inorg. Organomet. Polym. Mater. 2023, 33, 4001–4011. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Richa, P.; de Siervo, A.; Oliveira, G.E.; Rodrigues, C.H.M.; Nele, M.; Pinto, J.C. New in Situ Blends of Polyaniline and Cardanol Bio-Resins. Macromol. Mater. Eng. 2008, 293, 675–683. [Google Scholar] [CrossRef]
- Elias, E.; Zachariah, A.K.; Sunil, M.A.; Bose, S.; Souza, F.G.; Thomas, S. Percolated Network Formation in Biocidal 3D Porous PCL/Clay Nanocomposite Scaffolds: Effect of Organic Modifier on Interfacial and Water Sorption Properties. RSC Adv. 2016, 6, 85107–85116. [Google Scholar] [CrossRef]
- Adedoja, O.S.; Sadiku, E.R.; Hamam, Y. Prospects of Hybrid Conjugated Polymers Loaded Graphene in Electrochemical Energy Storage Applications. J. Inorg. Organomet. Polym. Mater. 2023, 33, 3915–3934. [Google Scholar] [CrossRef]
- Souza, F.G., Jr.; Pinto, J.C.; Soares, B.G. SBS/Pani…DBSA Mixture Plasticized with DOP and NCLS—Effect of the Plasticizers on the Probability Density of Volume Resistivity Measurements. Eur. Polym. J. 2007, 43, 2007–2016. [Google Scholar] [CrossRef]
- Marques, F.D.; Nele de Souza, M.; Souza, F.G., Jr. Sealing System Activated by Magnetic Induction Polymerization. J. Appl. Polym. Sci. 2017, 134, 45549. [Google Scholar] [CrossRef]
- Pal, K.; Sajjadifar, S.; Abd Elkodous, M.; Alli, Y.A.; Gomes, F.; Jeevanandam, J.; Thomas, S.; Sigov, A. Soft, Self-Assembly Liquid Crystalline Nanocomposite for Superior Switching. Electron. Mater. Lett. 2018, 15, 84–101. [Google Scholar] [CrossRef]
- Moraes, R.; Gomes Souza, F., Jr.; Saez, V.; Silva, L.; Middea, A. Surface Modification of Magnetite with PBS Using a Ricinoleic-Toluene Diisocyanate Fragment as the Binder Structure. Macromol. Symp. 2021, 398, 2000193. [Google Scholar] [CrossRef]
- Aboelkheir, M.G.; Visconte, L.Y.; Oliveira, G.E.; Toledo Filho, R.D.; Souza, F.G. The Biodegradative Effect of Tenebrio Molitor Linnaeus Larvae on Vulcanized SBR and Tire Crumb. Sci. Total Environ. 2019, 649, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.G., Jr.; Sena, M.E.; Soares, B.G. Thermally Stable Conducting Composites Based on a Carbon Black-filled Polyoxadiazole Matrix. J. Appl. Polym. Sci. 2004, 93, 1631–1637. [Google Scholar] [CrossRef]
- Mello e Alvim, T.M.; Maranhão, F.D.S.; Batista, J.H.G.; Reales, O.A.M.; De Souza Júnior, F.G.; Toledo Filho, R.D. Effect of Magnetic Nanoparticles on Strength Development and Microstructural Properties of Cement Slurry. In Proceedings of the Offshore Technology Conference, Kuala Lumpur, Malaysia, 25 April 2022; OnePetro: Richardson, TX, USA, 2022. [Google Scholar]
- Deka, S.; Mozafari, F.; Mallick, A. A Comprehensive Experimental and Modeling Study of the Strain Rate- and Temperature-Dependent Deformation Behavior of Bio-Degradable Mg-CeO2 Nanocomposites. Compos. Part Appl. Sci. Manuf. 2024, 177, 107936. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, S.; Chen, Y.; Qin, X.; Wang, K.; Zhu, Q.; Liu, Y. Application of Ag/Tannic Acid-FeIII Nanocomposite as Multifunctional Bacteriostatic to Enhance the Performance of Chitosan/Gelatin/Polyvinyl Alcohol Complex Films. Food Hydrocoll. 2024, 147, 109302. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Zhu, Y.; Gao, W. Design of Ultrahigh-Response Gas Sensor Based on Pd-WO3/WS2 Ternary Nanocomposites for Ultrafast Hydrogen Detection. Sens. Actuators B Chem. 2024, 401, 134991. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, A.; Lou, L.; Bi, Z.; Kou, J.; Sun, W.; Li, W.; Guo, D.; Li, X. Effect of Hyperfine Structure on Crystallization, Microstructure and Magnetic Properties of Amorphous Nd9Fe85B6 Alloy. J. Alloys Compd. 2024, 976, 172991. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Zhou, X.; Fu, H.; Surjadi, J.U.; Qu, S.; Song, X.; Fan, R.; Lu, Y. Hierarchical Crystalline–Amorphous Nanocomposites with High Strength and Large Deformability Enabled by Elemental Diffusion. J. Mater. Sci. Technol. 2024, 171, 150–161. [Google Scholar] [CrossRef]
- Staab, F.; Yang, Y.; Foya, E.; Bruder, E.; Zingsem, B.; Adabifiroozjaei, E.; Nasiou, D.; Skokov, K.; Koch, D.; Farle, M.; et al. Influence of Amorphous Phase on Coercivity in SmCo5-Cu Nanocomposites. Scr. Mater. 2024, 240, 115808. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Y.; Xiang, L.; Qi, X.; Wang, L.; Ding, J.; Qu, Y.; Xu, J.; Zhong, W. Interface and Magnetic-Dielectric Synergy Strategy to Develop Fe3O4-Fe2CO3/Multi-Walled Carbon Nanotubes/Reduced Graphene Oxide Mixed-Dimensional Multicomponent Nanocomposites for Microwave Absorption. Mater. Res. Bull. 2024, 171, 112631. [Google Scholar] [CrossRef]
- Lu, L.; Wen, T.; Li, W.; Wen, Q.; Yu, Z.; Tao, S.; Yang, J.; Wang, Y.; Luan, X.; Xiong, X.; et al. Single-Source-Precursor Synthesis of Dense Monolithic SiC/(Ti0.25Zr0.25Hf0.25Ta0.25)C Ceramic Nanocomposite with Excellent High-Temperature Oxidation Resistance. J. Eur. Ceram. Soc. 2024, 44, 595–609. [Google Scholar] [CrossRef]
- Liu, H.; Xie, J.; Zhao, J.; Wang, R.; Qi, Y.; Sun, S. Temperature and Photo Sensitive PVDF-g-PNIPAAm/BN@PDA-Ag Nanocomposite Membranes with Superior Wasterwater Separation and Light-Cleaning Capabilities. Sep. Purif. Technol. 2024, 331, 125692. [Google Scholar] [CrossRef]
- Cunha, S.R.d.S.; Souza, F.G., Jr. Adsorbent Biopolymers Based on Couroupita Guianensis. Abstr. Int. Conf. Meet. AICM 2021, 1, 4. [Google Scholar] [CrossRef]
- Silva, G.B.; da Silveira Maranhão, F.; de Souza, F.G.; Pal, K.; Middea, A.; Lima, R.C.; Machado, S.L.; Feitosa, S.B.H.; de Araújo, K.V.; do Nascimento Peçanha, T. Artificial Chrysocolla with Catalyst Nanomodified with Copper and Zinc. Top. Catal. 2023, 67, 86–102. [Google Scholar] [CrossRef]
- Almeida, T.; Pal, K.; Souza, F.G., Jr. Bibliometric Analysis of the Hot Theme “Phytosynthesized Nanoparticles”. Arch. Biomed. Eng. Biotechnol. 2020, 4, 5. [Google Scholar] [CrossRef]
- Gomes Souza, F.; Pal, K.; Ampah, J.D.; Dantas, M.C.; Araújo, A.; Maranhão, F.; Domingues, P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. Materials 2023, 16, 1175. [Google Scholar] [CrossRef] [PubMed]
- Barradas, T.N.; de Souza Junior, F.G. Chitosan-Based Films for Wound Healing Applications: A Meta- Analysis to Access the Impact on Wound Closure Rate. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2022, 2, 83–99. [Google Scholar] [CrossRef]
- da Costa, V.C.; de Souza Junior, F.G.; Sousa, L.d.C.; Pal, K.; Filho, R.D.T. Core-Shell System Based on Gelatin and Poly(Vinyl Alcohol) (PVA) for Concrete Self-Healing Applications: Synthesis, Characterization, and Optimization. Macromol. Symp. 2021, 398, 2000194. [Google Scholar] [CrossRef]
- Costa, R.C.D.; Pereira, E.D.; Silva, F.M.; Jesus, E.O.D.; Souza, F.G. Drug Micro-Carriers Based on Polymers and Their Sterilization. Chem. Chem. Technol. 2018, 12, 473–487. [Google Scholar] [CrossRef]
- Pereira, E.D.; de Souza Junior, F.G.; Pinto, J.C.; Filho, S.T.; Pal, K.; dos Santos Pyrrho, A.; da Costa, R.C.; da Cunha, B.P.; da Silveira Maranhão, F.; de Almeida, T.M. Evaluation of Hyperthermic Potential and Acute Toxicity of PLGA-PEG/Magnetite Microspheres Loaded with Oxaliplatin Using Mice as a Test System. Macromol. React. Eng. 2023, 17, 2300005. [Google Scholar] [CrossRef]
- Santos, R.D.; Thomas, S.; Ferreira, S.R.; Silva, F.A.; Combariza, M.Y.; Tirado, C.B.; Serrano, S.A.O.; Souza, F.G.; Oliveira, G.E.; Toledo Filho, R.D. Molecular Grafting of Nanoparticles onto Sisal Fibers—Adhesion to Cementitious Matrices and Novel Functionalities. J. Mol. Struct. 2021, 1234, 130171. [Google Scholar] [CrossRef]
- Peña Icart, L.; Fernandes dos Santos, E.; Agüero Luztonó, L.; Zaldívar Silva, D.; Andrade, L.; Lopes Dias, M.; Trambaioli da Rocha e Lima, L.M.; Souza, F.G., Jr. Paclitaxel-Loaded PLA/PEG/Magnetite Anticancer and Hyperthermic Agent Prepared From Materials Obtained by the Ugi’s Multicomponent Reaction. Macromol. Symp. 2018, 380, 1800094. [Google Scholar] [CrossRef]
- Icart, L.P.; Souza, F.G., Jr.; Lima, L.M.T.R. Polymeric Microparticle Systems for Modified Release of Glucagon-like-Peptide-1 Receptor Agonists. J. Microencapsul. 2021, 38, 249–261. [Google Scholar] [CrossRef]
- Saez, V.; Cerruti, R.; Ramón, J.A.; Santos, E.R.F.; Silva, D.Z.; Pinto, J.C.; Souza, F.G., Jr. Quantification of Oxaliplatin Encapsulated into PLGA Microspheres by TGA. Macromol. Symp. 2016, 368, 116–121. [Google Scholar] [CrossRef]
- Pal, K.; Kyzas, G.Z.; Kralj, S.; Souza, F.G., Jr. Sunlight Sterilized, Recyclable and Super Hydrophobic Anti-COVID Laser-Induced Graphene Mask Formulation for Indelible Usability. J. Mol. Struct. 2021, 1233, 130100. [Google Scholar] [CrossRef] [PubMed]
- Icart, L.P.; Souza, F.G.; Lima, L.M. Sustained Release and Pharmacologic Effects of Human Glucagon-like Peptide-1 and Liraglutide from Polymeric Microparticles. J. Microencapsul. 2019, 36, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Ramon, J.; Saez, V.; Souza, F.G., Jr.; Pinto, J.; Nele, M. Synthesis and Characterization of PEG-PBS Copolymers to Obtain Microspheres With Different Naproxen Release Profiles. Macromol. Symp. 2018, 380, 1800065. [Google Scholar] [CrossRef]
- Ferreira, G.; Segura, T.; Souza, F.G., Jr.; Umpierre, A.P.; Machado, F. Synthesis of Poly(Vinyl Acetate)-Based Magnetic Polymer Microparticles. Eur. Polym. J. 2012, 48, 2050–2069. [Google Scholar] [CrossRef]
- Aboelkheir, M.G.; Lima Junior, J.G.; Toledo Filho, R.D.; Souza, F.G., Jr.; dos Santos Siqueira, C.Y. Thermo-Oxidative Degradation of Vulcanized SBR: A Comparison between Ultraviolet (UV) and Microwave as Recovery Techniques. J. Polym. Res. 2021, 28, 141. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, K.S.; Dip, T.M.; Chowdhury, M.F.M.; Debnath, S.R.; Hasan, S.M.d.M.; Sakib, M.d.S.; Saha, T.; Padhye, R.; Houshyar, S. A Review on Nanomaterial-Based Additive Manufacturing: Dynamics in Properties, Prospects, and Challenges. Prog. Addit. Manuf. 2023, 1–28. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Tay, A. Advances in Techniques to Characterize Cell-Nanomaterial Interactions (CNI). Nano Today 2024, 55, 102149. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Lian, Y.; Sun, X.; Wang, M.; Sun, M. Advances of the Functionalized Covalent Organic Frameworks for Sample Preparation in Food Field. Food Chem. 2023, 405, 134818. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, X.; Ma, L.; Shi, Y.; Zhang, D.; Qu, K. Analytical Methods for Assessing Antimicrobial Activity of Nanomaterials in Complex Media: Advances, Challenges, and Perspectives. J. Nanobiotechnol. 2023, 21, 97. [Google Scholar] [CrossRef]
- Farhoudi, L.; Fobian, S.-F.; Oei, A.L.; Amin, M.; Jaafari, M.R.; ten Hagen, T.L. Applications of Biomimetic Nanoparticles in Breast Cancer as a Blueprint for Improved Next-Generation Cervical Cancer Therapy. Nano Today 2023, 53, 102032. [Google Scholar] [CrossRef]
- Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-Derived Carbon Nanomaterials for Sensor Applications. J. Pharm. Biomed. Anal. 2023, 222, 115102. [Google Scholar] [CrossRef] [PubMed]
- Herdiana, Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers 2023, 15, 3485. [Google Scholar] [CrossRef] [PubMed]
- Harish, V.; Ansari, M.M.; Tewari, D.; Yadav, A.B.; Sharma, N.; Bawarig, S.; García-Betancourt, M.-L.; Karatutlu, A.; Bechelany, M.; Barhoum, A. Cutting-Edge Advances in Tailoring Size, Shape, and Functionality of Nanoparticles and Nanostructures: A Review. J. Taiwan Inst. Chem. Eng. 2023, 149, 105010. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Yu, C.-Y.; Ku, C.-A.; Chung, C.-K. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef] [PubMed]
- Achi, F.; Attar, A.M.; Lahcen, A.A. Electrochemical Nanobiosensors for the Detection of Cancer Biomarkers in Real Samples: Trends and Challenges. TrAC Trends Anal. Chem. 2023, 170, 117423. [Google Scholar] [CrossRef]
- Fondaj, D.; Arduino, I.; Lopedota, A.A.; Denora, N.; Iacobazzi, R.M. Exploring the Microfluidic Production of Biomimetic Hybrid Nanoparticles and Their Pharmaceutical Applications. Pharmaceutics 2023, 15, 1953. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Alkhursani, S.A.; Alqahtani, H.A.; El-damhougy, T.K.; Madani, M. Gold Nanoparticles in Microelectronics Advancements and Biomedical Applications. Mater. Sci. Eng. B 2024, 301, 117191. [Google Scholar] [CrossRef]
- Fabio, S.; Pankaj, K.S.; Kazem, S.; Michela, M.; Demetrio, L.; Michael, A.M. High Throughput Microscopy and Single Cell Phenotypic Image-Based Analysis in Toxicology and Drug Discovery. Biochem. Pharmacol. 2023, 216, 115770. [Google Scholar]
- Chao, Y.-W.; Lee, Y.-L.; Tseng, C.-S.; Wang, L.U.-H.; Hsia, K.-C.; Chen, H.; Fustin, J.-M.; Azeem, S.; Chang, T.-T.; Chen, C.-Y.; et al. Improved CaP Nanoparticles for Nucleic Acid and Protein Delivery to Neural Primary Cultures and Stem Cells. ACS Nano 2024, 18, 4822–4839. [Google Scholar] [CrossRef]
- Gimondi, S.; Ferreira, H.; Reis, R.L.; Neves, N.M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS Nano 2023, 17, 14205–14228. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, T.; Tian, B.; Li, J.; Liu, Y.; Wu, Z.; Jin, X.; Wang, C.; Wang, C.; Gu, B. Recent Advances in SERS-Based Immunochromatographic Assay for Pathogenic Microorganism Diagnosis: A Review. Anal. Chim. Acta 2023, 1286, 341931. [Google Scholar] [CrossRef]
- Silva-Neto, H.A.; Arantes, I.V.; Ferreira, A.L.; do Nascimento, G.H.; Meloni, G.N.; de Araujo, W.R.; Paixão, T.R.; Coltro, W.K. Recent Advances on Paper-Based Microfluidic Devices for Bioanalysis. TrAC Trends Anal. Chem. 2023, 158, 116893. [Google Scholar] [CrossRef]
- Devi, L.; Kushwaha, P.; Ansari, T.M.; Kumar, A.; Rao, A. Recent Trends in Biologically Synthesized Metal Nanoparticles and Their Biomedical Applications: A Review. Biol. Trace Elem. Res. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Tang, X.; Wang, D.; Zhang, J.; Zhao, L.; Gao, J.; He, H.; Dramou, P. Research Progress of Sensors Based on Molecularly Imprinted Polymers in Analytical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2023, 235, 115659. [Google Scholar] [CrossRef] [PubMed]
- Barrias, S.; Ibáñez, J.; Fernandes, J.R.; Martins-Lopes, P. The Role of DNA-Based Biosensors in Species Identification for Food Authenticity Assessment. Trends Food Sci. Technol. 2024, 145, 104350. [Google Scholar] [CrossRef]
- Kianipour, S.; Ansari, M.; Farhadian, N.; Moradi, S.; Shahlaei, M. A Molecular Dynamics Study on Using of Naturally Occurring Polymers for Structural Stabilization of Erythropoietin at High Temperature. J. Biomol. Struct. Dyn. 2022, 40, 9042–9052. [Google Scholar] [CrossRef]
- Noman, A.B.M.A.; Chowdhury, E.U.K. American and European Policies in Nanotechnology Patents and Human Rights Related Issues. Online J. Model. New Eur. 2015, 17, 68–92. [Google Scholar]
- Chang, S.-J.; Liou, N.-H.; Cherng, J.-H.; Liu, C.-C.; Chiu, Y.-C.; Fang, T.-J.; Hsu, M.-L. Application of Refractable Nanocomposite on Cell Based Therapy in Central Nervous System. Int. J. Nanotechnol. 2013, 10, 891–904. [Google Scholar] [CrossRef]
- Rezabakhsh, A.; Sokullu, E.; Rahbarghazi, R. Applications, Challenges and Prospects of Mesenchymal Stem Cell Exosomes in Regenerative Medicine. Stem Cell Res. Ther. 2021, 12, 521. [Google Scholar] [CrossRef]
- Fu, Q.; Song, L.; Li, J.; Yi, B.; Huang, Y.; Zhang, Z.; Xin, Z.; Zhu, J. Biodegradable Nano Black Phosphorus Based SDF1-α Delivery System Ameliorates Erectile Dysfunction in a Cavernous Nerve Injury Rat Model by Recruiting Endogenous Stem/Progenitor Cells. J. Nanobiotechnol. 2023, 21, 487. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Schulte, P.A. Biomarkers of Susceptibility: State of the Art and Implications for Occupational Exposure to Engineered Nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Vance, S.; Zeidan, E.; Henrich, V.C.; Sandros, M.G. Comparative Analysis of Human Growth Hormone in Serum Using SPRi, Nano-SPRi and ELISA Assays. J. Vis. Exp. 2016, 2016, 53508. [Google Scholar] [CrossRef]
- Chen, G.; Peijnenburg, W.J.G.M.; Kovalishyn, V.; Vijver, M.G. Development of Nanostructure-Activity Relationships Assisting the Nanomaterial Hazard Categorization for Risk Assessment and Regulatory Decision-Making. RSC Adv. 2016, 6, 52227–52235. [Google Scholar] [CrossRef]
- Ferrari, A. Developments in the Debate on Nanoethics: Traditional Approaches and the Need for New Kinds of Analysis. NanoEthics 2010, 4, 27–52. [Google Scholar] [CrossRef]
- Kermisch, C. Do New Ethical Issues Arise at Each Stage of Nanotechnological Development? NanoEthics 2012, 6, 29–37. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ahmadi, L. Ethical Considerations of Nanobiotechnology. J. Biomater. Tissue Eng. 2013, 3, 335–352. [Google Scholar] [CrossRef]
- Tarţǎu, L.; Lupuşoru, R.V.; Melnig, V. Experimental Researches on the Effects of Nano-Vesicles Encapsulating Dexketoprofen in a Visceral Pain Model in Mice. Ann. Rom. Soc. Cell Biol. 2010, 15, 202–206. [Google Scholar]
- Tarţǎu, L.; Chiriac, A.; Niţǎ, L.; Melnig, V. Experimental Researches on the Effects of Acetaminophen Vesicles Carrier in a Cutaneous Pain Model in Mice. Ann. Rom. Soc. Cell Biol. 2009, 14, 87–92. [Google Scholar]
- Tartau, L.; Lupusoru, R.V.; Andritoiu, C.; Melnig, V. Experimental Researches on the Effects of Tramadol Soft Matter Vesicles in Nociceptive Processes in Mice. Ann. Rom. Soc. Cell Biol. 2011, 16, 194–198. [Google Scholar]
- Bontems, V.K. How to Accommodate to the Invisible? The “halo” of “Nano”. NanoEthics 2011, 5, 175–183. [Google Scholar] [CrossRef]
- Gilbert, F.; Dodds, S. Is There a Moral Obligation to Develop Brain Implants Involving NanoBionic Technologies? Ethical Issues for Clinical Trials. NanoEthics 2014, 8, 49–56. [Google Scholar] [CrossRef]
- Bragazzi, N.L. Nanomedicine: Insights from a Bibliometrics-Based Analysis of Emerging Publishing and Research Trends. Med. Lith. 2019, 55, 785. [Google Scholar] [CrossRef]
- Shubhika, K. Nanotechnology and Medicine—The Upside and the Downside. Int. J. Drug Dev. Res. 2013, 5, 1–10. [Google Scholar]
- Mishra, N.K.; Jahan, N.; Baba, M.H. Nanotechnology Powered COVID-19 Pandemic Management: Medical Ethics Review. JK Pract. 2022, 27, S223–S229. [Google Scholar]
- Baran, A. Nanotechnology: Legal and Ethical Issues. Eng. Manag. Prod. Serv. 2016, 8, 47–54. [Google Scholar] [CrossRef]
- Patra, D.; Haribabu, E.; McComas, K.A. Perceptions of Nano Ethics among Practitioners in a Developing Country: A Case of India. NanoEthics 2010, 4, 67–75. [Google Scholar] [CrossRef]
- Patra, D. Responsible Development of Nanoscience and Nanotechnology: Contextualizing Socio-Technical Integration into the Nanofabrication Laboratories in the USA. NanoEthics 2011, 5, 143–157. [Google Scholar] [CrossRef]
- Kraftl, P.; Lynch, I.; Jarman, P.; Menzel, A.; Walker, A.; Till, R.; Hadfield-Hill, S. So You’re Literally Taking the Piss?! Critically Analysing and Accounting for Ethics (and Risk) in Interdisciplinary Research on Children and Plastics. Child. Geogr. 2021; ahead of print. [Google Scholar] [CrossRef]
- Fages, V.; Albe, V. Social Issues in Nanoscience and Nanotechnology Master’s Degrees: The Socio-Political Stakes of Curricular Choices. Cult. Stud. Sci. Educ. 2015, 10, 419–435. [Google Scholar] [CrossRef]
- Boancă, M.; Popa, E.G.; Lupuşoru, R.V.; Poroch, V.; Mititelu-Tarţău, L.; Lupuşoru, C.E. The Effects of Magnesium Nanovesicle Formulations on Spatial Memory Performance in Mice. Rev. Med. Chir. Soc. Med. Nat. Iasi 2014, 118, 847–853. [Google Scholar]
- Tarţǎu, L.; Lupuşoru, C.E.; Melnig, V. The Effects of Variation in Ketoprofen Soft Matter Vesicles Dosage on Mice Cutaneous Nociceptive Reactivity. Ann. Rom. Soc. Cell Biol. 2010, 15, 207–211. [Google Scholar]
- Çapar, N.; Polat, İ.; Yola, B.B.; Atar, N.; Yola, M.L. A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for Zearalenone Determination. Microchim. Acta 2023, 190, 262. [Google Scholar] [CrossRef]
- Lochab, A.; Jindal, K.; Chowdhuri, A.; Tomar, M.; Saxena, R. Conductive Polymer Based MWCNTs Nanocomposite as Electrochemical Sensing Platform to Detect Chloramphenicol. Synth. Met. 2023, 297, 117397. [Google Scholar] [CrossRef]
- Slekiene, N.; Snitka, V. Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors 2023, 11, 218. [Google Scholar] [CrossRef]
- Salikhov, R.B.; Zilberg, R.A.; Bulysheva, E.O.; Ostaltsova, A.D.; Salikhov, T.R.; Teres, Y.B. Nanocomposite Thin-Film Structures Based on a Polyelectrolyte Complex of Chitosan and Chitosan Succinamide with SWCNT. Lett. Mater. 2023, 13, 132–137. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, Y.; Li, J.; Li, L.; Wang, X. AI for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS). ACS Nano 2023, 17, 9763–9792. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, Y.; Qi, Y.; Xu, Z.; Li, Y.; Wang, Y. From Prediction to Design: Recent Advances in Machine Learning for the Study of 2D Materials. Nano Energy 2023, 118, 108965. [Google Scholar] [CrossRef]
- Wan, X.; Li, Z.; Yu, W.; Wang, A.; Ke, X.; Guo, H.; Su, J.; Li, L.; Gui, Q.; Zhao, S.; et al. Machine Learning Paves the Way for High Entropy Compounds Exploration: Challenges, Progress, and Outlook. Adv. Mater. 2023, 2305192. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Bufton, J.; Hickman, R.J.; Aspuru-Guzik, A.; Bannigan, P.; Allen, C. Revolutionizing Drug Formulation Development: The Increasing Impact of Machine Learning. Adv. Drug Deliv. Rev. 2023, 202, 115108. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, H.; You, H.W.; Umapathi, M.; Ravikumar, K.K.; Mishra, S. Strategies of Artificial Intelligence Tools in the Domain of Nanomedicine. J. Drug Deliv. Sci. Technol. 2023, 91, 105157. [Google Scholar]
- Williamson, E.M.; Brutchey, R.L. Using Data-Driven Learning to Predict and Control the Outcomes of Inorganic Materials Synthesis. Inorg. Chem. 2023, 62, 16251–16262. [Google Scholar] [CrossRef] [PubMed]
- Sim, H.; Choi, D.; Kim, C.O. A Data Mining Approach to the Causal Analysis of Product Faults in Multi-Stage PCB Manufacturing. Int. J. Precis. Eng. Manuf. 2014, 15, 1563–1573. [Google Scholar] [CrossRef]
- Zha, X. Application of Data Mining in Preparation of Nanometer Nickel Oxide. Acad. J. Manuf. Eng. 2020, 18, 217–223. [Google Scholar]
- Yang, Y.; Lin, T.; Weng, X.L.; Darr, J.A.; Wang, X.Z. Data Flow Modeling, Data Mining and QSAR in High-Throughput Discovery of Functional Nanomaterials. Comput. Chem. Eng. 2011, 35, 671–678. [Google Scholar] [CrossRef]
- Wu, H.; Song, B.; Sun, Y.; Huang, Z.; Wei, Y.; Liao, S. Data mining technology in novel method for synthesis of sodium aluminium carbonate hydroxide. Huagong Xuebao J. Chem. Ind. Eng. China 2006, 57, 1236–1241. [Google Scholar]
- Steinberger, D.; Issa, I.; Strobl, R.; Imrich, P.J.; Kiener, D.; Sandfeld, S. Data-Mining of in-Situ TEM Experiments: Towards Understanding Nanoscale Fracture. Comput. Mater. Sci. 2023, 216, 111830. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, B.; Hou, Z.-L.; Lu, M.-M.; Cao, W.-Q.; Ba, C.; Fang, X.-Y.; Cao, M.-S. High-Temperature Permittivity and Data-Mining of Silicon Dioxide at GHz Band. Chin. Phys. Lett. 2012, 29, 027701. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X. Information Flow Modeling and Data Mining in High-Throughput Discovery of Functional Nanomaterials. Comput. Aided Chem. Eng. 2009, 26, 135–140. [Google Scholar] [CrossRef]
- Allmer, J.; Naumann, B.; Markert, C.; Zhang, M.; Hippler, M. Mass Spectrometric Genomic Data Mining: Novel Insights into Bioenergetic Pathways in Chlamydomonas Reinhardtii. Proteomics 2006, 6, 6207–6220. [Google Scholar] [CrossRef]
- Vieira, M.D.C.; Vieira, S.A.G.; Skupien, J.A.; Boeck, C.R. Nanoencapsulation of Unsaturated Omega-3 Fatty Acids as Protection against Oxidation: A Systematic Review and Data-Mining. Crit. Rev. Food Sci. Nutr. 2022, 62, 4356–4370. [Google Scholar] [CrossRef]
- Somen, D.; Shankar, C. Parameter Selection in Non-Traditional Machining Processes Using a Data Mining Approach. Decis. Sci. Lett. 2015, 4, 211–226. [Google Scholar] [CrossRef]
- Ma, S.; Song, B.; Liao, S.; Huang, Z.; Yuan, A. Synthesis of Nano-Lamellar KZnPO4 via Solid-State Reaction and Its Data Mining Technology. Integr. Ferroelectr. 2013, 147, 78–84. [Google Scholar] [CrossRef]
- Jiang, Q.-Y.; Liao, S.; Wang, J.-S.; Guan, Y.-S.; Luo, F.; Zhang, K.-F. Synthesis of zinc carbonate nano-crystals with a novel method and data mining. Guocheng Gongcheng Xuebao Chin. J. Process Eng. 2005, 5, 82–85. [Google Scholar]
- Wang, C.; Geng, H.; Sun, R.; Song, H. Technological Potential Analysis and Vacant Technology Forecasting in the Graphene Field Based on the Patent Data Mining. Resour. Policy 2022, 77, 102636. [Google Scholar] [CrossRef]
- Pereira, E.D.; de Souza, F.G.; Pal, K.; da Silveira Maranhão, F.; Filho, R.D.T.; Hasparyk, N.P.; de Melo Monteiro, V.; Dantas, M.C.N.; Rodrigues, J.G.P. Oligo(Butylene-Succinate) and Nanocatalyst Effect Prediction: Could a Neural Network Determine the Lowest Melting Temperature of This Phase-Changing Material Better than a Classic Approach? Top. Catal. 2022, 65, 1984–1993. [Google Scholar] [CrossRef]
- Costa, V.C.; Gomes, F.; Thomas, S.; Toledo, R.D.; Sousa, L.d.C.; Thode, S.; de Carvalho, F.V.; da Silveira Maranhão, F.; Aboelkheir, M.G.; de Lima, N.R.B.; et al. Nanotechnology in Concrete: A Bibliometric Review. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2021, 1, 100–113. [Google Scholar] [CrossRef]
- Delfino, C.S.C.; AI, P.C.; Souza, F.G., Jr. The Use of Biosensor as a New Trend in Cancer: Bibliometric Analysis from 2007 to 2017. Res. Dev. Mater. Sci. 2018, 7, 133. [Google Scholar] [CrossRef]
- Jaber, F.; Abbad, M. A Realistic Evaluation of the Dark Side of Data in the Digital Ecosystem. J. Inf. Sci. 2023, 01655515231205499. [Google Scholar] [CrossRef]
- Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.S.; Alamoodi, A.H.; Bai, J.; Salhi, A. A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Inf. Fusion 2023, 96, 156–191. [Google Scholar] [CrossRef]
- Chen, Y. Analyzing the Design of Intelligent English Translation and Teaching Model in Colleges Using Data Mining. Soft Comput. 2023, 27, 14497–14513. [Google Scholar] [CrossRef]
- Nadhan, A.S.; Jacob, I.J. Enhancing Healthcare Security in the Digital Era: Safeguarding Medical Images with Lightweight Cryptographic Techniques in IoT Healthcare Applications. Biomed. Signal Process. Control 2024, 88, 105511. [Google Scholar] [CrossRef]
- Ahmed, A.; Xi, R.; Hou, M.; Shah, S.A.; Hameed, S. Harnessing Big Data Analytics for Healthcare: A Comprehensive Review of Frameworks, Implications, Applications, and Impacts. IEEE Access 2023, 11, 112891–112928. [Google Scholar] [CrossRef]
- Bediako, G. The Application of Big Data Analytics in Improving eCommerce Processes. The Retail Sector User Experience. 2023. Available online: https://www.theseus.fi/handle/10024/812302 (accessed on 23 October 2023).
- Aminizadeh, S.; Heidari, A.; Toumaj, S.; Darbandi, M.; Navimipour, N.J.; Rezaei, M.; Talebi, S.; Azad, P.; Unal, M. The Applications of Machine Learning Techniques in Medical Data Processing Based on Distributed Computing and the Internet of Things. Comput. Methods Programs Biomed. 2023, 241, 107745. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, P.; He, W.; Zhang, G.; Wei, H.; Zhao, B. A New Prediction System Based on Self-Growth Belief Rule Base with Interpretability Constraints. Comput. Mater. Contin. 2023, 75, 3761–3780. [Google Scholar] [CrossRef]
- Van Der Donckt, J.; Van Der Donckt, J.; Deprost, E.; Vandenbussche, N.; Rademaker, M.; Vandewiele, G.; Van Hoecke, S. Do Not Sleep on Traditional Machine Learning: Simple and Interpretable Techniques Are Competitive to Deep Learning for Sleep Scoring. Biomed. Signal Process. Control 2023, 81, 104429. [Google Scholar] [CrossRef]
- Garrett, B.L.; Rudin, C. Interpretable Algorithmic Forensics. Proc. Natl. Acad. Sci. USA 2023, 120, e2301842120. [Google Scholar] [CrossRef]
- Allen, G.I.; Gan, L.; Zheng, L. Interpretable Machine Learning for Discovery: Statistical Challenges and Opportunities. Annu. Rev. Stat. Appl. 2024, 11. [Google Scholar] [CrossRef]
- Nguyen, A.-P.; Moreno, D.L.; Le-Bel, N.; Rodríguez Martínez, M. MonoNet: Enhancing Interpretability in Neural Networks via Monotonic Features. Bioinforma. Adv. 2023, 3, vbad016. [Google Scholar] [CrossRef]
- Arun, A.; Guo, Z.; Sung, S.; Lapkin, A.A. Reaction Impurity Prediction Using a Data Mining Approach. Chem. Methods 2023, 3, e202200062. [Google Scholar] [CrossRef]
- Boruah, A.N.; Biswas, S.K.; Bandyopadhyay, S. Transparent Rule Generator Random Forest (TRG-RF): An Interpretable Random Forest. Evol. Syst. 2023, 14, 69–83. [Google Scholar] [CrossRef]
- Weng, J.; Lindvall, R.; Zhuang, K.; Ståhl, J.-E.; Ding, H.; Zhou, J. A Machine Learning Based Approach for Determining the Stress-Strain Relation of Grey Cast Iron from Nanoindentation. Mech. Mater. 2020, 148, 103522. [Google Scholar] [CrossRef]
- Koumoulos, E.; Konstantopoulos, G.; Charitidis, C. Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites. Fibers 2020, 8, 3. [Google Scholar] [CrossRef]
- Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Classification of Mechanism of Reinforcement in the Fiber-Matrix Interface: Application of Machine Learning on Nanoindentation Data. Mater. Des. 2020, 192, 108705. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Paraskevoudis, K.; Charitidis, C.A. Constituents Phase Reconstruction through Applied Machine Learning in Nanoindentation Mapping Data of Mortar Surface. J. Compos. Sci. 2019, 3, 63. [Google Scholar] [CrossRef]
- Gautham, S.; Sasmal, S. Constitutive Relations of Nanoscale Hydration Products Present in Engineered Cementitious Composites from Machine Learning Assisted Experimental Nanoindentation. J. Build. Eng. 2023, 75, 106912. [Google Scholar] [CrossRef]
- Vranjes-Wessely, S.; Misch, D.; Kiener, D.; Cordill, M.J.; Frese, N.; Beyer, A.; Horsfield, B.; Wang, C.; Sachsenhofer, R.F. High-Speed Nanoindentation Mapping of Organic Matter-Rich Rocks: A Critical Evaluation by Correlative Imaging and Machine Learning Data Analysis. Int. J. Coal Geol. 2021, 247, 103847. [Google Scholar] [CrossRef]
- Puchi-Cabrera, E.S.; Rossi, E.; Sansonetti, G.; Sebastiani, M.; Bemporad, E. Machine Learning Aided Nanoindentation: A Review of the Current State and Future Perspectives. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101091. [Google Scholar] [CrossRef]
- Dhal, A.; Sankar Haridas, R.; Agrawal, P.; Gupta, S.; Mishra, R.S. Mapping Hierarchical and Heterogeneous Micromechanics of a Transformative High Entropy Alloy by Nanoindentation and Machine Learning Augmented Clustering. Mater. Des. 2023, 230, 111957. [Google Scholar] [CrossRef]
- Hintsala, E.D.; Becker, B.R.; Stadnick, B.; Hangen, U.; Sau, M.; Mara, N.; Stauffer, D.D. Mechanical Spectroscopy: Machine Learning and High Speed Nanoindentation for High Throughput Material Evaluation. Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2023, 29, 774–775. [Google Scholar] [CrossRef] [PubMed]
- Laxmikant Vajire, S.; Prashant Singh, A.; Kumar Saini, D.; Kumar Mukhopadhyay, A.; Singh, K.; Mishra, D. Novel Machine Learning-Based Prediction Approach for Nanoindentation Load-Deformation in a Thin Film: Applications to Electronic Industries. Comput. Ind. Eng. 2022, 174, 108824. [Google Scholar] [CrossRef]
- Ge, G.; Rovaris, F.; Lanzoni, D.; Barbisan, L.; Tang, X.; Miglio, L.; Marzegalli, A.; Scalise, E.; Montalenti, F. Silicon Phase Transitions in Nanoindentation: Advanced Molecular Dynamics Simulations with Machine Learning Phase Recognition. Acta Mater. 2024, 263, 119465. [Google Scholar] [CrossRef]
- Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Testing Novel Portland Cement Formulations with Carbon Nanotubes and Intrinsic Properties Revelation: Nanoindentation Analysis with Machine Learning on Microstructure Identification. Nanomaterials 2020, 10, 645. [Google Scholar] [CrossRef]
- Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; et al. Emerging Application of Nanorobotics and Artificial Intelligence to Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem. Neurosci. 2021, 12, 1835–1853. [Google Scholar] [CrossRef]
- Cavalcanti, A.; Freitas, R.A., Jr.; Kretly, L.C. Nanorobotics Control Design: A Practical Approach Tutorial. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, UT, USA, 28 September–2 October 2004; American Society of Mechanical Engineers: New York, NY, USA, 2004; Volume 2A, pp. 95–104. [Google Scholar]
- Parmar, D.R.; Soni, J.P.; Patel, A.D.; Sen, D.J. Nanorobotics in Advances in Pharmaceutical Sciences. Int. J. Drug Dev. Res. 2010, 2, 247–256. [Google Scholar]
- Ali, A.; Qasim, M.; Dilawar, M.U.; Khan, Z.F.; Jadoon, Y.K.; Faiz, T. Nanorobotics: Next Level of Military Technology. In Proceedings of the 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Estrela, V.V.; Intorne, A.C.; Batista, K.K.S.; Deshpande, A.; Sroufer, R.; Lopes, R.T.; Shi, F.; Yin, S.; Lin, Y.-D. Nanotechnology, Internet of Nanothings and Nanorobotics in Healthcare-Nano for All. In Intelligent Healthcare Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 259–278. ISBN 978-100095432-6. [Google Scholar]
- Rai, A.; Shah, K.; Dewangan, H.K. Review on the Artificial Intelligence-Based Nanorobotics Targeted Drug Delivery System for Brain-Specific Targeting. Curr. Pharm. Des. 2023, 29, 3519–3531. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, P.; Xue, T.; Ge, Y.; Ai, S.; Sheng, Y.; Wu, R.; Xu, L.; Tang, K.; Wen, Y. A Novel Graphene-like Titanium Carbide MXene/Au–Ag Nanoshuttles Bifunctional Nanosensor for Electrochemical and SERS Intelligent Analysis of Ultra-Trace Carbendazim Coupled with Machine Learning. Ceram. Int. 2021, 47, 173–184. [Google Scholar] [CrossRef]
- Leong, S.X.; Leong, Y.X.; Koh, C.S.L.; Tan, E.X.; Nguyen, L.B.T.; Chen, J.R.T.; Chong, C.; Pang, D.W.C.; Sim, H.Y.F.; Liang, X.; et al. Emerging Nanosensor Platforms and Machine Learning Strategies toward Rapid, Point-of-Need Small-Molecule Metabolite Detection and Monitoring. Chem. Sci. 2022, 13, 11009–11029. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Xu, L.; Liu, Z.; Xiong, Y.; Zhou, W.; Yao, H.; Wen, Y.; Geng, X.; Wu, R. Intelligent Analysis of Carbendazim in Agricultural Products Based on a ZSHPC/MWCNT/SPE Portable Nanosensor Combined with Machine Learning Methods. Anal. Methods 2023, 15, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-L.; Jiang, L.; Shi, Q.-L.; Mo, Z.-H. Machine-Learning-Assisted SERS Nanosensor Platform toward Chemical Fingerprinting of Baijiu Flavors. Microchim. Acta 2023, 190, 207. [Google Scholar] [CrossRef] [PubMed]
- Tonezzer, M.; Bazzanella, N.; Gasperi, F.; Biasioli, F. Nanosensor Based on Thermal Gradient and Machine Learning for the Detection of Methanol Adulteration in Alcoholic Beverages and Methanol Poisoning. Sensors 2022, 22, 5554. [Google Scholar] [CrossRef]
- Gomez, J.T.; Kuestner, A.; Simonjan, J.; Unluturk, B.D.; Dressler, F. Nanosensor Location Estimation in the Human Circulatory System Using Machine Learning. IEEE Trans. Nanotechnol. 2022, 21, 663–673. [Google Scholar] [CrossRef]
- Kim, J.Y.; Koh, E.H.; Yang, J.-Y.; Mun, C.; Lee, S.; Lee, H.; Kim, J.; Park, S.-G.; Kang, M.; Kim, D.-H.; et al. 3D Plasmonic Gold Nanopocket Structure for SERS Machine Learning-Based Microplastic Detection. Adv. Funct. Mater. 2024, 34, 2307584. [Google Scholar] [CrossRef]
- Zhang, H.; Su, R.; Queylat, B.; Kim, T.; Lucadamo, G.; Howland, W.; Couet, A. 3D Reconstruction and Interconnectivity Quantification of the Nano-Porosity in the Oxide Layer of Corroded Zr Alloys. Corros. Sci. 2024, 226, 111630. [Google Scholar] [CrossRef]
- Kim, J.-W.; Beom, J.-S.; Lee, H.-S.; Kim, N.-S. A Compact Model for Interface-Type Self-Rectifying Resistive Memory With Experiment Verification. IEEE Access 2024, 12, 5081–5091. [Google Scholar] [CrossRef]
- Čanađija, M.; Košmerl, V.; Zlatić, M.; Vrtovšnik, D.; Munjas, N. A Computational Framework for Nanotrusses: Input Convex Neural Networks Approach. Eur. J. Mech. A/Solids 2024, 103, 105195. [Google Scholar] [CrossRef]
- Sahnoune Chaouche, M.; Al-Mohair, H.K.; Askar, S.; Abdullaeva, B.S.; Hussien, N.A.; Alawadi, A.H. A Micromechanical Nested Machine Learning Model for Characterizing Materials Behaviors of Bulk Metallic Glasses. J. Non-Cryst. Solids 2024, 625, 122733. [Google Scholar] [CrossRef]
- Yan, J.; Li, Q.; Duan, S. A Simplified Current Feature Extraction and Deployment Method for DC Series Arc Fault Detection. IEEE Trans. Ind. Electron. 2024, 71, 625–634. [Google Scholar] [CrossRef]
- Ren, P.; Xue, Y.; Jing, L.; Zhang, L.; Wang, R.; Ji, Z. A Strong Physical Unclonable Function with Machine Learning Immunity for Internet of Things Application. Sci. China Inf. Sci. 2024, 67, 112404. [Google Scholar] [CrossRef]
- Liu, Y.; He, C.; Fang, J.; Zhou, J.; Shang, K.; Pu, X.; Qian, L.; Yang, T. A Tri-Modal Tactile Sensor Based on Porous Ionic Hydrogel for Decoupled Sensing of Temperature and Pressure. Mater. Today Phys. 2024, 41, 101331. [Google Scholar] [CrossRef]
- Klepp, G. Adsorbed Gas Storage Digital Twin. JOM 2024, 76, 951–957. [Google Scholar] [CrossRef]
- Moreira, M.; Hillenkamp, M.; Rodrigues, V.; Ugarte, D. Ag Surface Segregation in Sub-10-Nm Bimetallic AuAg Nanoparticles Quantified by STEM-EDS and Machine Learning: Implications for Fine-Tuning Physicochemical Properties for Plasmonics and Catalysis Applications. ACS Appl. Nano Mater. 2024, 7, 1369–1378. [Google Scholar] [CrossRef]
- Prasanna, K.M.; Shukla, A.; Tamizharasu, K.; Ganatra, A.; Shelke, A.; Metwally, A.S.M.; Aftab, S. AI-Driven Electro Chromic Materials and Devices for Nanofabrication in Machine Learning Integrated Environments. Opt. Quantum Electron. 2024, 56, 15. [Google Scholar] [CrossRef]
- Wang, X.; Yan, C.; Ondry, J.C.; Bodiwala, V.; Ercius, P.; Alivisatos, A.P. An Artificial Intelligence’s Interpretation of Complex High-Resolution in Situ Transmission Electron Microscopy Data. Matter 2024, 7, 175–190. [Google Scholar] [CrossRef]
- Kong, Y.; Li, Z.; Liu, Q.; Song, J.; Zhu, Y.; Lin, J.; Song, L.; Li, X. Artificial Neural Network-Facilitated V2C MNs-Based Colorimetric/Fluorescence Dual-Channel Biosensor for Highly Sensitive Detection of AFB1 in Peanut. Talanta 2024, 266, 125056. [Google Scholar] [CrossRef]
- Zhao, Z.; Naha, A.; Ganguli, S.; Sekretareva, A. Automated Analysis of Nano-Impact Single-Entity Electrochemistry Signals Using Unsupervised Machine Learning and Template Matching. Adv. Intell. Syst. 2024, 6, 2300424. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, H.; Xu, J.; Mu, H.; Qi, D. BACNN: Multi-Scale Feature Fusion-Based Bilinear Attention Convolutional Neural Network for Wood NIR Classification. J. For. Res. 2024, 35, 4. [Google Scholar] [CrossRef]
- Yuan, X.; Gu, L.; Wei, Z.; Ding, W.; Ma, Q.; Guo, J. Bootstrap Sampling Style Ensemble Neural Network for Inverse Design of Optical Nanoantennas. Opt. Commun. 2024, 557, 130296. [Google Scholar] [CrossRef]
- Baraheni, M.; Soudmand, B.H.; Amini, S.; Bayat, M.; Ebrahimi, A. Burr Constitution Analysis in Ultrasonic-Assisted Drilling of CFRP/Nano-Graphene via Experimental and Data-Driven Methodologies. J. Reinf. Plast. Compos. 2024, 07316844231225593. [Google Scholar] [CrossRef]
- He, C.; Cheng, S.; Zheng, R.; Liu, J. Delay-and-Sum Beamforming Based Spatial Mapping for Multi-Source Sound Localization. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Zishan, M.A.O.; Shihab, H.M.; Islam, S.S.; Riya, M.A.; Rahman, G.M.; Noor, J. Dense Neural Network Based Arrhythmia Classification on Low-Cost and Low-Compute Micro-Controller. Expert Syst. Appl. 2024, 239, 122560. [Google Scholar] [CrossRef]
- Amor, N.; Tayyab Noman, M.; Petru, M.; Sebastian, N.; Balram, D. Design and Optimization of Machinability of ZnO Embedded-Glass Fiber Reinforced Polymer Composites with a Modified White Shark Optimizer. Expert Syst. Appl. 2024, 237, 121474. [Google Scholar] [CrossRef]
- Balusamy, B.; Dhanaraj, R.K.; Seetharaman, T.; Sharma, V.; Shankar, A.; Viriyasitavat, W. Design Control and Management of Intelligent and Autonomous Nanorobots with Artificial Intelligence for Prevention and Monitoring of Blood Related Diseases. Eng. Appl. Artif. Intell. 2024, 131, 107798. [Google Scholar] [CrossRef]
- Premachandran, S.; Dhinakaran, A.K.; Das, S.; Venkatakrishnan, K.; Tan, B.; Sharma, M. Detection of Lung Cancer Metastasis from Blood Using L-MISC Nanosensor: Targeting Circulating Metastatic Cues for Improved Diagnosis. Biosens. Bioelectron. 2024, 243, 115782. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Xing, B.; Liu, J. Dynamic Analysis of GPLs Reinforced Microcapsules Subjected to Moving Micro/Nanoparticles Using Mathematical Modeling and Deep-Neural Networks. Meas. J. Int. Meas. Confed. 2024, 225, 113940. [Google Scholar] [CrossRef]
- Lee, S.; Jue, M.; Lee, K.; Paulson, B.; Oh, J.; Cho, M.; Kim, J.K. Early-Stage Diagnosis of Bladder Cancer Using Surface-Enhanced Raman Spectroscopy Combined with Machine Learning Algorithms in a Rat Model. Biosens. Bioelectron. 2024, 246, 115915. [Google Scholar] [CrossRef]
- Mobki, H.; Mihandoost, S.; Aliasghary, M.; Ouakad, H.M. Effective Machine Learning Pull-in Instability Estimation of an Electrostatically Nano Actuator under the Influences of Intermolecular Forces. Int. J. Inf. Technol. Singap. 2024, 16, 237–243. [Google Scholar] [CrossRef]
- Ramkumar, G.; Tamilselvi, M.; D Sundarsingh Jebaseelan, S.; Mohanavel, V.; Kamyab, H.; Anitha, G.; Thandaiah Prabu, R.; Rajasimman, M. Enhanced Machine Learning for Nanomaterial Identification of Photo Thermal Hydrogen Production. Int. J. Hydrogen Energy 2024, 52, 696–708. [Google Scholar] [CrossRef]
- Ganesh, S.; Premachandran, S.; Venkatakrishnan, K.; Tan, B. Enhancing the Cancer Metastasis Diagnosis: Ultrasensitive Nano Sensors Exploiting Cancer Stem Cell Associated DNA Methylation as a Liquid Biopsy Marker. Sens. Actuators B Chem. 2024, 403, 135206. [Google Scholar] [CrossRef]
- Ferrante, G.S.; Vasconcelos Nakamura, L.H.; Sampaio, S.; Filho, G.P.R.; Meneguette, R.I. Evaluating YOLO Architectures for Detecting Road Killed Endangered Brazilian Animals. Sci. Rep. 2024, 14, 1353. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, P.T.; Bulmer, D.; Peak, D. Evaluation of Two Miniaturized FT-NIR Spectrometers for Rapid Soil Property Analysis. Soil Sci. Soc. Am. J. 2024, 88, 126–135. [Google Scholar] [CrossRef]
- Yadav, N.; Mudgal, D.; Mishra, A.; Shukla, S.; Malik, T.; Mishra, V. Harnessing Fluorescent Carbon Quantum Dots from Natural Resource for Advancing Sweat Latent Fingerprint Recognition with Machine Learning Algorithms for Enhanced Human Identification. PLoS ONE 2024, 19, e0296270. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Sun, J.; Howes, A.; Dawson, M.R.; Toussaint, K.C.; Shao, C. Hybrid Physics-Guided Data-Driven Modeling for Generalizable Geometric Accuracy Prediction and Improvement in Two-Photon Lithography. J. Manuf. Process. 2024, 110, 202–210. [Google Scholar] [CrossRef]
- Rostami, J.; Rasekhi Sahneh, A.; Sedighardekani, R.; Latifinowsoud, M.; Rostami, R.; Kaltaei, A.; Sanaei Ataabadi, H.; Bahrami, N.; Mahmoudy, S.A.; Khandel, O. Influence of Phase Change Material and Nano Silica Aerogel Aggregates on the Characteristics of Cementitious Composite: An Experimental and Predictive Study. J. Build. Eng. 2024, 82, 108148. [Google Scholar] [CrossRef]
- Aly, A.M.; Lee, S.-W.; Hussein, H.S. Integrating ISPH Simulations with Machine Learning for Thermal Radiation and Exothermic Chemical Reaction on Heat and Mass Transfer in Spline/Triangle Star Annulus. Case Stud. Therm. Eng. 2024, 54, 103948. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Han, L.; Qian, W.; Wang, J.; Wu, H.; Li, J.; Dai, Y.; Zhang, Z.; Bowen, C.R.; et al. Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception. Nano-Micro Lett. 2024, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, P.V.; Agashe, S.D. Investigation and Hybrid Deep Belief Neural Network-Based Validation of Piezoelectric Bimorph Cantilever Composites Assisted with Tip Mass. Noise Vib. Worldw. 2024, 55, 3–15. [Google Scholar] [CrossRef]
- Beaver, L.E.; Sokolich, M.; Alsalehi, S.; Weiss, R.; Das, S.; Belta, C. Learning a Tracking Controller for Rolling Bots. IEEE Robot. Autom. Lett. 2024, 9, 1819–1826. [Google Scholar] [CrossRef]
- Uchida, S.; Hiraoka, S.-I.; Kawamura, K.; Sakamoto, K.; Akiyama, R.; Tanaka, S. Machine Learning Analysis of Gaze Data for Enhanced Precision in Diagnosing Oral Mucosal Diseases. J. Clin. Med. 2024, 13, 136. [Google Scholar] [CrossRef]
- Lombardo, F.; Pittino, F.; Goldoni, D.; Selmi, L. Machine Learning and Data Augmentation Methods for Multispectral Capacitance Images of Nanoparticles with Nanoelectrodes Array Biosensors. Eng. Appl. Artif. Intell. 2024, 127, 107246. [Google Scholar] [CrossRef]
- Sana, M.; Asad, M.; Farooq, M.U.; Anwar, S.; Talha, M. Machine Learning for Multi-Dimensional Performance Optimization and Predictive Modelling of Nanopowder-Mixed Electric Discharge Machining (EDM). Int. J. Adv. Manuf. Technol. 2024, 130, 5641–5664. [Google Scholar] [CrossRef]
- Long, W.; Guan, Y.; Lei, G.; Hu, Z.; Chen, H.; She, Y.; Fu, H. Machine Learning-Assisted Visual Sensor Array for Identifying the Origin of Lilium Bulbs. Sens. Actuators B Chem. 2024, 399, 134812. [Google Scholar] [CrossRef]
- Khoei, A.R.; Seddighian, M.R.; Sameti, A.R. Machine Learning-Based Multiscale Framework for Mechanical Behavior of Nano-Crystalline Structures. Int. J. Mech. Sci. 2024, 265, 108897. [Google Scholar] [CrossRef]
- Yuan, W.; Han, X.; Shi, G.; Wang, M.; Zhou, W.; Cui, J.; Liu, F.; Li, Z.; Wu, Y.; Wang, L. Machine Learning-Driven Multi-Level Composite SERS Platform for Trace Detection of Chlorogenic Acid as Pharmacodynamic Substance in Honeysuckle. Opt. Laser Technol. 2024, 169, 109911. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, M.; Zhang, G.; Li, G.; Li, G. Microstructure and Mechanical Property of Al,Ti Co-Adding L21-Strengthened NiCrFe-Based HEAs. Mater. Charact. 2024, 207, 113516. [Google Scholar] [CrossRef]
- Balraj, S.; Gnana Prakash, D.; Iyyappan, J.; Bharathiraja, B. Modelling and Optimization of Biodiesel Production from Waste Fish Oil Using Nano Immobilized rPichiapastoris Whole Cell Biocatalyst with Response Surface Methodology and Hybrid Artificial Neural Network Based Approach. Bioresour. Technol. 2024, 393, 130012. [Google Scholar] [CrossRef] [PubMed]
- Nelaturu, P.; Hattrick-Simpers, J.R.; Moorehead, M.; Jambur, V.; Szlufarska, I.; Couet, A.; Thoma, D.J. Multi-Principal Element Alloy Discovery Using Directed Energy Deposition and Machine Learning. Mater. Sci. Eng. A 2024, 891, 145945. [Google Scholar] [CrossRef]
- Bhatlawande, S.; Shilaskar, S.; Pramanik, S.; Sole, S. Multimodal Emotion Recognition Based on the Fusion of Vision, EEG, ECG, and EMG Signals. Int. J. Electr. Comput. Eng. Syst. 2024, 15, 41–58. [Google Scholar] [CrossRef]
- Amigo, N.; Aquistapace, F.; Sayad, S.; Valencia, F.J.; Alahyarizadeh, G.; Bringa, E.M. Nanoindentation of CuZr Metallic Glasses Subjected to Thermal–Pressure Treatments. J. Non-Cryst. Solids 2024, 626, 122789. [Google Scholar] [CrossRef]
- Chaitanya, P.; Sethuraman, S.; Kanthamani, S.; Roomi, S.M.M. Nanoscale Modeling of an Efficient Carbon Nanotube-Based RF Switch Using XG-Boost Machine Learning Algorithm. Microsyst. Technol. 2024, 30, 105–116. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Rajendran, V.; Prajwal, S.J.; Indiran, T. Neural Network-Based Hammerstein Model Identification of a Lab-Scale Batch Reactor. ACS Omega 2024, 9, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Darmawan, J.T.; Sigalingging, X.K.; Faisal, M.; Leu, J.-S.; Ratnasari, N.R.P. Neural Network-Based Small Cursor Detection for Embedded Assistive Technology. Vis. Comput. 2024. [Google Scholar] [CrossRef]
- Boyton, I.; Valenzuela, S.M.; Collins-Praino, L.E.; Care, A. Neuronanomedicine for Alzheimer’s and Parkinson’s Disease: Current Progress and a Guide to Improve Clinical Translation. Brain. Behav. Immun. 2024, 115, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Alshamrani, A.M. Nonlinear Dynamical Behavior and Energy Harvesting Analyses of Flexoelectric MEMS under Residual Stresses: Application of Machine Learning for Simulating the System. Mech. Adv. Mater. Struct. 2024. [Google Scholar] [CrossRef]
- Lanjewar, M.G.; Morajkar, P.P.; Parab, J.S. Portable System to Detect Starch Adulteration in Turmeric Using NIR Spectroscopy. Food Control 2024, 155, 110095. [Google Scholar] [CrossRef]
- Lionus Leo, G.M.; Jayabal, R.; Srinivasan, D.; Chrispin Das, M.; Ganesh, M.; Gavaskar, T. Predicting the Performance and Emissions of an HCCI-DI Engine Powered by Waste Cooking Oil Biodiesel with Al2O3 and FeCl3 Nano Additives and Gasoline Injection—A Random Forest Machine Learning Approach. Fuel 2024, 357, 129914. [Google Scholar] [CrossRef]
- Lal, H.P.; Abhiram, B.R.; Ghosh, D. Prediction of Nonlocal Elasticity Parameters Using High-Throughput Molecular Dynamics Simulations and Machine Learning. Eur. J. Mech. ASolids 2024, 103, 105175. [Google Scholar] [CrossRef]
- Kong, J.F.; Ren, Y.; Tey, M.S.N.; Ho, P.; Khoo, K.H.; Chen, X.; Soumyanarayanan, A. Quantifying the Magnetic Interactions Governing Chiral Spin Textures Using Deep Neural Networks. ACS Appl. Mater. Interfaces 2024, 16, 1025–1032. [Google Scholar] [CrossRef]
- Hady, M.A. Recent Advances Ultra-Porous Drug Nano-Carriers: Synthesis and Targeting Approaches. Silicon 2024, 16, 345–366. [Google Scholar] [CrossRef]
- Sultan, H.; Ijaz, H.; Waris, A.; Mushtaq, S.; Mushtaq, K.; Khan, N.B.; Khan, S.G.; Tlija, M.; Iqbal, J. Robust CNN Architecture for Classification of Reach and Grasp Actions from Neural Correlates: An Edge Device Perspective. Meas. Sci. Technol. 2024, 35, 035703. [Google Scholar] [CrossRef]
- Xie, H.; Wei, C.; Wang, W.; Chen, R.; Cui, L.; Wang, L.; Chen, D.; Yu, Y.-L.; Li, B.; Li, Y.-F. Screening the Phytotoxicity of Micro/Nanoplastics through Non-Targeted Metallomics with Synchrotron Radiation X-Ray Fluorescence and Deep Learning: Taking Micro/Nano Polyethylene Terephthalate as an Example. J. Hazard. Mater. 2024, 463, 132886. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Kumar, A. Structural Phase Transformation in Single-Crystal Fe–Cr–Ni Alloy during Creep Deformation Using Molecular Dynamics Simulation and Regression-Based Machine Learning Methodology. Bull. Mater. Sci. 2024, 47, 7. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Hanandeh, S. The Influence of Nano-Silica Precursor on the Compressive Strength of Mortar Using Advanced Machine Learning for Sustainable Buildings. Asian J. Civ. Eng. 2024, 25, 1135–1148. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, L.; Wei, N.; Li, D. Underappreciated Microplastic Galaxy Biases the Filter-Based Quantification. J. Hazard. Mater. 2024, 463, 132897. [Google Scholar] [CrossRef]
- Wang, Y.; Moradpur-Tari, E.; Zadin, V.; Kyritsakis, A. Unraveling the Atomic Structure of the R(15×12) Reconstruction of Carburized W(110) Based on Ab Initio Calculations. Appl. Surf. Sci. 2024, 643, 158632. [Google Scholar] [CrossRef]
- Sung, J.; Han, S.-J. Use of Edge Resources for DNN Model Maintenance in 5G IoT Networks. Clust. Comput. 2024. [Google Scholar] [CrossRef]
- Kirilov, S.; Todorova, V.; Nakov, O.; Mladenov, V. Application of a Memristive Neural Network for Classification of COVID-19 Patients. Int. J. Circuits Syst. Signal Process. 2021, 15, 1282–1291. [Google Scholar] [CrossRef]
- Becker, B.R.; Hintsala, E.D.; Stadnick, B.; Hangen, U.D.; Stauffer, D.D. Automated Analysis Method for High Throughput Nanoindentation Data with Quantitative Uncertainty. J. Appl. Phys. 2022, 132, 185101. [Google Scholar] [CrossRef]
- Liu, S.; Amin-Ahmadi, B.; Liu, R.; Zheng, Q.; Zhang, X. Automated Phase Segmentation and Quantification of High-Resolution TEM Image for Alloy Design. Mater. Charact. 2023, 199, 112779. [Google Scholar] [CrossRef]
- Huang, F.; Li, R.; Wang, G.; Zheng, J.; Tang, Y.; Liu, J.; Yang, Y.; Yao, Y.; Shi, J.; Hong, W. Automatic Classification of Single-Molecule Charge Transport Data with an Unsupervised Machine-Learning Algorithm. Phys. Chem. Chem. Phys. 2020, 22, 1674–1681. [Google Scholar] [CrossRef]
- Papetti, D.M.; Spolaor, S.; Nazari, I.; Tirelli, A.; Leonardi, T.; Caprioli, C.; Besozzi, D.; Vlachou, T.; Pelicci, P.G.; Cazzaniga, P.; et al. Barcode Demultiplexing of Nanopore Sequencing Raw Signals by Unsupervised Machine Learning. Front. Bioinforma. 2023, 3, 1067113. [Google Scholar] [CrossRef]
- Ramirez Ramirez, D.; Cordova Fraga, T.; Gómez Solis, C.; Hernández Farías, D.I. Data Analysis for Nano-Material’s Design by Using Diffraction Pattern. Appl. Phys. Mater. Sci. Process. 2022, 128, 648. [Google Scholar] [CrossRef]
- Cheng, Q.; Jiang, X.; Zhang, H.; Wang, W.; Sun, C. Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators. Sustainability 2020, 12, 8926. [Google Scholar] [CrossRef]
- Walraven, M.; Sabrkhany, S.; Knol, J.C.; Dekker, H.; de Reus, I.; Piersma, S.R.; Pham, T.V.; Griffioen, A.W.; Broxterman, H.J.; Egbrink, M.O.; et al. Effects of Cancer Presence and Therapy on the Platelet Proteome. Int. J. Mol. Sci. 2021, 22, 8236. [Google Scholar] [CrossRef]
- Sizochenko, N.; Syzochenko, M.; Fjodorova, N.; Rasulev, B.; Leszczynski, J. Evaluating Genotoxicity of Metal Oxide Nanoparticles: Application of Advanced Supervised and Unsupervised Machine Learning Techniques. Ecotoxicol. Environ. Saf. 2019, 185, 109733. [Google Scholar] [CrossRef]
- Kim, H.-S. Geospatial Data-Driven Assessment of Earthquake-Induced Liquefaction Impact Mapping Using Classifier and Cluster Ensembles. Appl. Soft Comput. 2023, 140, 110266. [Google Scholar] [CrossRef]
- Dizaji, A.N.; Ozek, N.S.; Yilmaz, A.; Aysin, F.; Yilmaz, M. Gold Nanorod Arrays Enable Highly Sensitive Bacterial Detection via Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Colloids Surf. B Biointerfaces 2021, 206, 111939. [Google Scholar] [CrossRef] [PubMed]
- Gietl, H.; Garrison, B.; Sprouster, D.J.; Koyanagi, T. Heterogeneous Microstructure of Yttrium Hydride and Its Relation to Mechanical Properties. J. Eur. Ceram. Soc. 2023, 43, 3216–3227. [Google Scholar] [CrossRef]
- Sizochenko, N.; Mikolajczyk, A.; Jagiello, K.; Puzyn, T.; Leszczynski, J.; Rasulev, B. How the Toxicity of Nanomaterials towards Different Species Could Be Simultaneously Evaluated: A Novel Multi-Nano-Read-across Approach. Nanoscale 2018, 10, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.J.; Iyer, V.; Dhami, B.S.; Klein, C.; Lawrie, B.J.; Appavoo, K. Hyperspectral Mapping of Nanoscale Photophysics and Degradation Processes in Hybrid Perovskite at the Single Grain Level. Nanoscale Adv. 2023, 5, 4687–4695. [Google Scholar] [CrossRef]
- Debnath, R.; Bardhan, R. India Nudges to Contain COVID-19 Pandemic: A Reactive Public Policy Analysis Using Machine-Learning Based Topic Modelling. PLoS ONE 2020, 15, e0238972. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Pinz, M.; Ghosh, S. Machine Learning-Enabled Self-Consistent Parametrically-Upscaled Crystal Plasticity Model for Ni-Based Superalloys. Comput. Methods Appl. Mech. Eng. 2022, 402, 115384. [Google Scholar] [CrossRef]
- Narayanan, B.; Chan, H.; Kinaci, A.; Sen, F.G.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Machine Learnt Bond Order Potential to Model Metal-Organic (Co-C) Heterostructures. Nanoscale 2017, 9, 18229–18239. [Google Scholar] [CrossRef] [PubMed]
- Laulainen, J.E.M.; Johnstone, D.N.; Bogachev, I.; Longley, L.; Calahoo, C.; Wondraczek, L.; Keen, D.A.; Bennett, T.D.; Collins, S.M.; Midgley, P.A. Mapping Short-Range Order at the Nanoscale in Metal-Organic Framework and Inorganic Glass Composites. Nanoscale 2022, 14, 16524–16535. [Google Scholar] [CrossRef] [PubMed]
- Rakita, Y.; Hart, J.L.; Das, P.P.; Shahrezaei, S.; Foley, D.L.; Mathaudhu, S.N.; Nicolopoulos, S.; Taheri, M.L.; Billinge, S.J.L. Mapping Structural Heterogeneity at the Nanoscale with Scanning Nano-Structure Electron Microscopy (SNEM). Acta Mater. 2023, 242, 118426. [Google Scholar] [CrossRef]
- Bergh, T.; Johnstone, D.N.; Crout, P.; Høgås, S.; Midgley, P.A.; Holmestad, R.; Vullum, P.E.; Helvoort, A.V. Nanocrystal Segmentation in Scanning Precession Electron Diffraction Data. J. Microsc. 2020, 279, 158–167. [Google Scholar] [CrossRef]
- Ayush, K.; Seth, A.; Patra, T.K. nanoNET: Machine Learning Platform for Predicting Nanoparticles Distribution in a Polymer Matrix. Soft Matter 2023, 19, 5502–5512. [Google Scholar] [CrossRef]
- Mahmoodabadi, R.G.; Taylor, R.W.; Kaller, M.; Spindler, S.; Mazaheri, M.; Kasaian, K.; Sandoghdar, V. Point Spread Function in Interferometric Scattering Microscopy (iSCAT). Part I: Aberrations in Defocusing and Axial Localization. Opt. Express 2020, 28, 25969–25988. [Google Scholar] [CrossRef]
- Honda, M.; Hirosawa, S.; Mimura, M.; Hayami, T.; Kitaguchi, S.; Satou, T. Proposal of unsupervised defect segmentation method for patterned textiles based on machine learning. J. Text. Eng. 2020, 66, 47–54. [Google Scholar] [CrossRef]
- Roncaglia, C.; Rapetti, D.; Ferrando, R. Regression and Clustering Algorithms for AgCu Nanoalloys: From Mixing Energy Predictions to Structure Recognition. Phys. Chem. Chem. Phys. 2021, 23, 23325–23335. [Google Scholar] [CrossRef]
- McAuliffe, T.P.; Dye, D.; Britton, T.B. Spherical-Angular Dark Field Imaging and Sensitive Microstructural Phase Clustering with Unsupervised Machine Learning. Ultramicroscopy 2020, 219, 113132. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, M.; Magner, A.; Saldinger, J.; Turali-Emre, E.S.; Elvati, P.; Kozarekar, S.; VanEpps, J.S.; Kotov, N.A.; Violi, A.; Hero, A.O. Struct2Graph: A Graph Attention Network for Structure Based Predictions of Protein–Protein Interactions. BMC Bioinform. 2022, 23, 370. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Joshi, S.Y.; Wang, Y.; Deshmukh, S.A.; Matson, J.B. Supramolecular Peptide Nanostructures Regulate Catalytic Efficiency and Selectivity. Angew. Chem. Int. Ed. 2023, 62, e202303755. [Google Scholar] [CrossRef]
- Cheng, R.; Goteti, U.S.; Walker, H.; Krause, K.M.; Oeding, L.; Hamilton, M.C. Toward Learning in Neuromorphic Circuits Based on Quantum Phase Slip Junctions. Front. Neurosci. 2021, 15, 765883. [Google Scholar] [CrossRef] [PubMed]
- Attari, V.; Khatamsaz, D.; Allaire, D.; Arroyave, R. Towards Inverse Microstructure-Centered Materials Design Using Generative Phase-Field Modeling and Deep Variational Autoencoders. Acta Mater. 2023, 259, 119204. [Google Scholar] [CrossRef]
- Aarva, A.; Deringer, V.L.; Sainio, S.; Laurila, T.; Caro, M.A. Understanding X-Ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra. Chem. Mater. 2019, 31, 9256–9267. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Y.; Zhang, J.; Shao, W.; Huang, S.; Zhang, D. Unsupervised deep learning for identifying the O 6-carboxymethyl guanine by nanopore sequencing. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi J. Biomed. Eng. Shengwu Yixue Gongchengxue Zazhi 2022, 39, 139–148. [Google Scholar] [CrossRef]
- Luo, A.; Gorobtsov, O.Y.; Nelson, J.N.; Kuo, D.-Y.; Zhou, T.; Shao, Z.; Bouck, R.; Cherukara, M.J.; Holt, M.V.; Shen, K.M.; et al. X-ray Nano-Imaging of Defects in Thin Film Catalysts via Cluster Analysis. Appl. Phys. Lett. 2022, 121, 153904. [Google Scholar] [CrossRef]
- Orts Mercadillo, V.; Ijije, H.; Chaplin, L.; Kinloch, I.A.; Bissett, M.A. Novel Techniques for Characterising Graphene Nanoplatelets Using Raman Spectroscopy and Machine Learning. 2D Mater. 2023, 10, 025018. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Wan, H.; Liu, M.; Liu, J. Unsupervised Machine Learning Methods for Polymer Nanocomposites Data via Molecular Dynamics Simulation. Mol. Simul. 2020, 46, 1509–1521. [Google Scholar] [CrossRef]
- Forró, C.; Ihle, S.J.; Reichmuth, A.M.; Han, H.; Stauffer, F.; Weaver, S.; Bonnin, A.; Stampanoni, M.; Tybrandt, K.; Vörös, J. Visualizing and Analyzing 3D Metal Nanowire Networks for Stretchable Electronics. Adv. Theory Simul. 2020, 3, 2000038. [Google Scholar] [CrossRef]
- Fadavi Hoseini, F.; Mansouri, A. The Role of Articles in Science–Technology Relationship: A Topic Analysis of Non-Patent Literature (NPL) References. Ser. Rev. 2022, 48, 137–150. [Google Scholar] [CrossRef]
- Sari, A.A.; Munawaroh, R.; Sofyanita, E.N. Bibliometric Analysis of Antibacterial Activity of Centella Asiatica: A Study Based on Scopus Database. J. Appl. Pharm. Sci. 2023, 13, 001–015. [Google Scholar] [CrossRef]
- de Souza, F.G., Jr.; de Morais Araújo, A.M.; da Silveira Maranhão, F.; Domingues, P. Biofuels and Nanocatalysts: A Data Mining Study. Qeios 2022. [Google Scholar] [CrossRef]
- Huang, Z.W.; Guo, M.Q.; Wang, W.H. Crosstalk between Nano/Micro Particulate Technologies and Chinese Medicine: A Bibliometric Analysis. Tradit. Med. Res. 2023, 8, 32. [Google Scholar] [CrossRef]
- de Lima, W.F.; Né, Y.G.S.; Aragão, W.A.B.; Eiró-Quirino, L.; Baia-da-Silva, D.C.; Cirovic, A.; Cirovic, A.; Lima, R.R. Global Scientific Research Landscape on Aluminum Toxicology. Biol. Trace Elem. Res. 2023, 201, 3210–3224. [Google Scholar] [CrossRef]
- Bustanji, Y.; Taneera, J.; Semreen, M.H.; Abu-Gharbieh, E.; El-Huneidi, W.; Faris, M.A.-I.E.; Alzoubi, K.H.; Soares, N.C.; Albustanji, B.; Abuhelwa, A.Y. Gold Nanoparticles and Breast Cancer: A Bibliometric Analysis of the Current State of Research and Future Directions. OpenNano 2023, 12, 100164. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, F.; Ruan, N.; Gao, Z. Mapping the Knowledge Domains of Medical Textiles: A Review. Medicine 2023, 102, e35956. [Google Scholar] [CrossRef] [PubMed]
- Gladstone Kombe, G. Overview of Microwave-Assisted Transesterification Technology for Biodiesel Production with Bibliometric Indicators. Biofuels 2022, 14, 119–135. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Sridhar, K.; Inbaraj, B.S.; Singh, R.; Kamma, S.; Tripathi, M.; Sharma, M. Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering 2023, 10, 152. [Google Scholar] [CrossRef]
- Movahed, S.M.A.; Calgaro, L.; Marcomini, A. Trends and Characteristics of Employing Cavitation Technology for Water and Wastewater Treatment with a Focus on Hydrodynamic and Ultrasonic Cavitation over the Past Two Decades: A Scientometric Analysis. Sci. Total Environ. 2023, 858, 159802. [Google Scholar]
- Elisha, I.L.; Gotep, J.G.; Makoshi, M.S.; Usman, J.G.; Shok, B.Z.; Oyebade, K.F.; Muhammad, Z.; Akogwu, I.E.; Tondo, K.B.; Joseph, H. Trends in Euphorbia Hirta Research: A 30-Year Bibliometric Appraisal of the Present Realities. J. Complement. Med. Res. 2023, 14, 81–92. [Google Scholar] [CrossRef]
- Reales, O.M.; Alvim, T.M.M.E.; da Silveira Maranhão, F.; De Souza Junior, F.G.; Toledo Filho, R.D.; Farrôco, M.J.; Batista, J.H.G.; Fairbairn, E.M.R.; Silva, A.B.d.C.G.E. Use of Magnetic Nanoparticles and Inductive Heating as Means to Reduce Wait on Cement Time. In Proceedings of the Rio Oil and Gas 2022, Rio de Janeiro, Brazil, 26–29 September 2022; Volume 22, pp. 77–78. [Google Scholar] [CrossRef]
- Chen, E.S.; Sarkar, I.N. *Informatics: Identifying and t Racking Informatics Sub-Discipline Terms in the Literature. Methods Inf. Med. 2015, 54, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, T.; Liang, R.; Zhang, Y.; Ma, F.-J.; Payne, D.; Scardera, G.; Hoex, B. An Artificial-Intelligence-Assisted Investigation on the Potential of Black Silicon Nanotextures for Silicon Solar Cells. ACS Appl. Nano Mater. 2022, 5, 11636–11647. [Google Scholar] [CrossRef]
- Gerlich, M.; Elsayed, W.; Sokolovskiy, K. Artificial Intelligence as Toolset for Analysis of Public Opinion and Social Interaction in Marketing: Identification of Micro and Nano Influencers. Front. Commun. 2023, 8, 1075654. [Google Scholar] [CrossRef]
- Dudchenko, A.; Kopanitsa, G. Comparison of Word Embeddings for Extraction from Medical Records. Int. J. Environ. Res. Public. Health 2019, 16, 4360. [Google Scholar] [CrossRef]
- Alam, M.U.; Rahmani, R. FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices. Sensors 2023, 23, 970. [Google Scholar] [CrossRef]
- Ki, W.; Kim, K. Generating Information Relation Matrix Using Semantic Patent Mining for Technology Planning: A Case of Nano-Sensor. IEEE Access 2017, 5, 26783–26797. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, X.; Sun, W. Generic SAO Similarity Measure via Extended Sorensen-Dice Index. IEEE Access 2020, 8, 66538–66552. [Google Scholar] [CrossRef]
- Glänzel, W.; Heeffer, S.; Thijs, B. Lexical Analysis of Scientific Publications for Nano-Level Scientometrics. Scientometrics 2017, 111, 1897–1906. [Google Scholar] [CrossRef]
- Abdul Hadi, M.A.W.; Lau, K.Y.; Mohd Yusoff, N.; Zainol Abidin, N.H.; Alresheedi, M.T.; Abas, A.F.; Goh, C.S.; Mahdi, M.A. Nano-Tungsten Trioxide Saturable Absorber for L-Band Noise-like Pulse Mode-Locked Fiber Laser. Opt. Fiber Technol. 2022, 71, 102933. [Google Scholar] [CrossRef]
- Fu, P.; Lan, W.; Guo, Y.; Gu, C. Research Progress of Deep Learning-Enabled Micro-Nano Photonics Material Design. Zhenkong Kexue Yu Jishu XuebaoJournal Vac. Sci. Technol. 2023, 43, 261–270. [Google Scholar] [CrossRef]
- Csuhaj-Varjú, E.; Petre, I.; Vaszil, G. Self-Assembly of Strings and Languages. Theor. Comput. Sci. 2007, 374, 74–81. [Google Scholar] [CrossRef]
- Weilhammer, D.R.; Blanchette, C.D.; Fischer, N.O.; Alam, S.; Loots, G.G.; Corzett, M.; Thomas, C.; Lychak, C.; Dunkle, A.D.; Ruitenberg, J.J.; et al. The Use of Nanolipoprotein Particles to Enhance the Immunostimulatory Properties of Innate Immune Agonists against Lethal Influenza Challenge. Biomaterials 2013, 34, 10305–10318. [Google Scholar] [CrossRef]
- Lewinski, N.A.; McInnes, B.T. Using Natural Language Processing Techniques to Inform Research on Nanotechnology. Beilstein J. Nanotechnol. 2015, 6, 1439–1449. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, Y.; Li, X.; Dong, R.; Liu, Z.; Han, S. Effect of cross-linking degree on water dendrite aging characteristics of XLPE/OMMT nanocomposites. Eng. Sci. Technol. 2023, 55, 79–88. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Kumar, N.; Saraswat, M. Morphological, Structural, Optical, Broadband Frequency Range Dielectric and Electrical Properties of PVDF/PMMA/BaTiO3 Nanocomposites for Futuristic Microelectronic and Optoelectronic Technologies. Mater. Today Commun. 2023, 35, 105625. [Google Scholar] [CrossRef]
- Azizi, Z.; Rahmani, K.; Taheri-Behrooz, F. Fatigue Life Prediction of Aluminum-Graphene Nanocomposites: Application to High-Capacity Conductors. Int. J. Fatigue 2023, 175, 107749. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, Y.; Dong, Y.; Gong, Y. Effect of cross-linking degree on tensile properties and dielectric properties of cross-linked polyethylene/organized montmorillonite nanocomposites. J. Electr. Technol. 2023, 38, 1154–1165. [Google Scholar] [CrossRef]
- Fadhali, M.M. Structural, Optical, and Electrical Characterization of Laser Ablated CdO1-xSnx Nanocomposites. J. Mater. Sci. Mater. Electron. 2023, 34, 1382. [Google Scholar] [CrossRef]
- Ragab, H.M. Optical, Thermal and Electrical Characterization of PEO/CMC Incorporated with ZnO/TiO2 NPs for Advanced Flexible Optoelectronic Technologies. Ceram. Int. 2023, 49, 12563–12569. [Google Scholar] [CrossRef]
- Esmaielzadeh, O.; Eivani, A.R.; Mehdizade, M.; Boutorabi, S.M.A.; Masoudpanah, S.M. Investigation of Mechanical Properties and Antibacterial Behavior of WE43 Magnesium-Based Nanocomposite. Mater. Chem. Phys. 2023, 293, 126864. [Google Scholar] [CrossRef]
- Memar, S.; Azadi, M.; Abdoos, H. An Evaluation on Microstructure, Wear, and Compression Behavior of Al2O3 /Brass Matrix Nanocomposites Fabricated by Stir Casting Method. Mater. Today Commun. 2023, 34, 105130. [Google Scholar] [CrossRef]
- Babaei, A.; Haji Abdolrasouli, M.; Rostami, A. Polylactic Acid/Polycaprolactone Bionanocomposites Containing Zinc Oxide Nanoparticles: Structure, Characterization and Cytotoxicity Assay. J. Thermoplast. Compos. Mater. 2023, 36, 2998–3020. [Google Scholar] [CrossRef]
- Kumari, S.; Hussain, A.; Avinashi, S.K.; Mishra, R.K.; Rao, J.; Behera, S.; Gautam, R.K.; Gautam, C. Enhanced Physical and Mechanical Properties of Resin Added with Aluminum Oxyhydroxide for Dental Applications. Ceram. Int. 2023, 49, 31412–31427. [Google Scholar] [CrossRef]
- Miao, Z.; Shi, Z.; Gao, S.; Ma, C.; Wang, D.; Wang, L. Modulation of Electro-Optical Properties of Polymer-Dispersed Liquid Crystals by Multi-Walled Carbon Nanotube/Polymer Nanocomposite Fibres. Liq. Cryst. 2023, 50, 700–712. [Google Scholar] [CrossRef]
- Alghamdi, H.M.; Rajeh, A. Study of the Photoluminescence, Optical, Thermal, and Electrical Parameters of the Cs/PVP Blend/Zinc Oxide Nanorods Films for Energy Storage Devices. Polym. Test. 2023, 124, 108093. [Google Scholar] [CrossRef]
- Dou, L.; Yang, B.; Lan, S.; Liu, Y.; Liu, Y.; Nan, C.-W.; Lin, Y.-H. High-Entropy-Nanofibers Enhanced Polymer Nanocomposites for High-Performance Energy Storage. Adv. Energy Mater. 2023, 13, 2203925. [Google Scholar] [CrossRef]
- Reddy, R.; Reddy, R.; Joo, S.W. Surface Decoration of MnNiWO4 Nanostructures on Carbon Nanofiber to Build Nanocomposites towards the Removal of Anionic Azo and Cationic Dyes under Light Illumination. Opt. Mater. 2023, 138, 113733. [Google Scholar] [CrossRef]
- Sakshi Joshi, A.; Leela, S.; Elamurugu, E.; Deeparani, T. Influence of GO and rGO on the Structural and Optical Properties of ZnO Photoelectrodes for Energy Harvesting Applications. Mater. Sci. Eng. B 2024, 299, 116938. [Google Scholar] [CrossRef]
- Nyabadza, A.; Shan, C.; Murphy, R.; Vazquez, M.; Brabazon, D. Laser-Synthesised Magnesium Nanoparticles for Amino Acid and Enzyme Immobilisation. OpenNano 2023, 11, 100133. [Google Scholar] [CrossRef]
- Chougan, M.; Ghaffar, S.H.; Al-Kheetan, M.J. Graphene-Based Nano-Functional Materials for Surface Modification of Wheat Straw to Enhance the Performance of Bio-Based Polylactic Acid Composites. Mater. Today Sustain. 2023, 21, 100308. [Google Scholar] [CrossRef]
- Aslam, M.A.; Zhang, L.; Liu, X.; Zhang, P.; Xu, Y.; Li, N.; Ragab, A.H.; Khan, I.; Khan, M. Structural and Catalytic Investigations of the Novel Carbon Foam Composites Containing Double Hybrid Nano Reinforcements. Diam. Relat. Mater. 2023, 139, 110314. [Google Scholar] [CrossRef]
Section | Key Insights | Recommended Keywords |
---|---|---|
4.1. Scopus Database Search Strategy | - Prominence in microstructural research. - Historical trends peaking between 2018 and 2022. - Post-2022 decline, indicating potential research saturation. | - Microstructure in Nanocomposites - Electrical Properties of Nanocomposites - Mechanical Behavior of Nanocomposites - Nanocomposite Films - SEM in Nanocomposite Research |
4.2. Textual Analytics Approach | - Importance of collaborations in innovation. - Emerging trends in electromagnetic interference and sustainable materials. - Rise of Chinese language in studies. | - Nanocomposite Collaborations - Highly Cited Nanocomposite Articles - Emerging Trends in Nanocomposites - Global Funding in Nanocomposites - Language Trends in Nanocomposite Research - Sentiment Analysis in Nanocomposite Abstracts |
4.3. Scholarly Literature Analysis | - Diverse themes, including analysis, synthesis, and performance enhancement. - Growing focus on biomedical applications and optoelectronic properties. | - Nanocomposite Research Themes - Advanced Characterization Techniques - Biomedical Nanocomposites - Optoelectronic Nanocomposites - Thin-Film Nanocomposites - Conductive Nanocomposites - Structural Analysis of Nanocomposites - Nanoparticle-Enhanced Materials - High-Performance Nanocomposites |
4.4. Analysis of MAP and NET Files | - Strong correlation (R2 = 0.998) between term frequency and Total Link Strength (TLS). - Identification of thematic clusters and temporal trends. | - Bibliometric Network Analysis Themes - Total Link Strength (TLS) - Occurrences - Outliers in Bibliometric Analysis - Evolutionary Stage of Research Domains - Thematic Clustering in Materials Science - Temporal Trends in Research Topics - Emerging Research Trends - Interconnectedness of Terms - Research Themes in Optics and Materials Science |
4.5.1. Nanocomposites and Electrical Properties | - Relationships between nanocomposites and electrical properties. - Shift toward investigating electrical attributes of nanocomposites. | - Nanocomposites - Electrical Properties - Microstructure - Crosslinking Time - Optoelectronic Behaviors - Interdisciplinary Research - Fundamental Mechanisms - Materials Science - Electrical Engineering - Analytical Techniques |
4.5.2. Nanocomposites and Mechanical Behavior | - Interplay between microstructure and nanocomposite properties. - Exploration of multifunctional nanocomposites in various sectors. | - Nanocomposites - Mechanical Behavior - Microstructure - Nanoparticles - Crosslinking Time - Multifunctional Nanocomposites - Advanced Analytical Techniques - Energy Storage - Optoelectronics - Biocompatible Nanocomposites |
4.5.3. Nanocomposites and Microstructure | - Detailed analysis of microstructure in nanocomposites. - Focus on nanocomposite fibers and optical properties. | - Nanocomposites - Microstructure - Crosslinking Time - Optical Properties - Energy Storage - Spectroscopic Techniques - Nanocomposite Fiber - Nanocomposite Material - Microstructural Features - Molybdenum - PBAT Nanocomposite - Al2O3 Tin Nanocomposite - Zinc Oxide–Nickel Oxide - Carbon Nanofiber Polystyrene Nanocomposite - UV–Vis Analytical Spectroscopy |
Subsection | Key Insights | Specific Studies and Findings |
---|---|---|
5.1.1. XLPE/OMMT Nanocomposites | Crosslinking degree significantly affects mechanical and electrical properties. | Yunzi et al. (2023) [465]: Utilized XRD, SEM, and gel content test to demonstrate the influence of crosslinking on XLPE/OMMT nanocomposites’ tensile and dielectric properties. |
5.1.2. PVDF/PMMA/BaTiO3 Nanocomposites | BaTiO3 nanofillers’ impact on polymer blend nanocomposites for optoelectronic applications. | Sengwa et al. (2023) [466]: Analyzed the effects of BaTiO3 concentration on the properties of PBNC films using SEM, XRD, and FTIR. |
5.1.3. Aluminum–Graphene Nanocomposites | Enhancing fatigue life in nanocomposites for power transmission. | Azizi et al. (2023) [467]: Investigated high-cycle fatigue in Al-0.5 wt% GNP composites, employing quasi-static and fatigue tests. |
5.1.4. XLPE/OMMT Water-Tree Aging | Crosslinking degree’s effect on water-tree aging in nanocomposites. | Dong et al. (2023b) [468]: Conducted accelerated water-tree aging tests on XLPE/OMMT nanocomposites to study the effect of crosslinking. |
5.1.5. CdO:Sn Nanocomposites | Effects of Sn doping in laser ablated nanocomposites for nanophotonics. | Fadhali (2023) [469]: Synthesized CdO:Sn nanocomposites to explore their structural, optical, and electrical properties. |
5.1.6. ZnO/TiO2 Nanocomposites in PEO/CMC | Application of nanoparticles in bionanocomposites for flexible optoelectronics. | Ragab (2023) [470]: Analyzed PEO/CMC nanocomposites incorporated with ZnO/TiO2 NPs for optoelectronic technologies. |
Subsection | Key Insights | Specific Studies and Findings |
---|---|---|
5.2.1. WE43 Magnesium-Based Nanocomposites | Improvement of mechanical and antibacterial properties through Friction Stir Processing (FSP). | O. Esmaielzadeh et al. (2023) [471]: Demonstrated enhanced strength and antibacterial properties of WE43 magnesium alloy using ZnO and CuZnO particles through FSP. |
5.2.2. XLPE/OMMT Nanocomposites | Impact of crosslinking degree on mechanical and electrical properties. | Gao Dongyunzi et al. (2023) [465]: Analyzed how crosslinking affects XLPE/OMMT nanocomposites using XRD, SEM, and gel content tests. |
5.2.3. Al2O3/Brass Matrix Nanocomposites | Al2O3 nanoparticle reinforcement’s effect on mechanical properties and wear behavior. | Shayan Memar et al. (2023) [472]: Studied the mechanical properties of Al2O3-reinforced brass matrix nanocomposites using stir casting. |
5.2.4. ZnO Nanoparticles in PLA/PCL Bionanocomposites | Incorporation of ZnO nanoparticles improves structural, thermal, mechanical, and biocompatible properties. | Amir Babaei et al. (2023) [473]: Examined PLA/PCL bionanocomposites containing ZnO nanoparticles, focusing on their structural, thermal, mechanical, and biocompatibility aspects. |
5.2.5. Aluminum Oxyhydroxide in Dental Nanocomposites | Enhancement of mechanical and tribological properties in dental resin composites with AlOOH. | Savita Kumari et al. (2023) [474]: Investigated the addition of aluminum oxyhydroxide to resin composites, improving mechanical properties for dental applications. |
Subsection | Key Insights | Specific Studies and Findings |
---|---|---|
5.3.1. PDLC Films with MWCNT-Loaded Reticular Nanofiber | Enhancement of electro-optical properties in PDLC films using MWCNT-loaded nanofibers. | Miao et al. (2023) [475]: Investigated improved electro-optical properties of PDLC films by optimizing the interaction between MWCNTs and PDLC using reticular nanofiber films. |
5.3.2. Zinc Oxide Nanorods in Cs/PVP Polymers | Structural, optical, thermal, and electrical enhancement of nanocomposites using ZnO nanorods with Cs/PVP. | Alghamdi and Rajeh (2023) [476]: Analyzed the synergistic effects of ZnO nanorods in Cs/PVP polymer blends for potential applications in energy storage and thin-film solar cells. |
5.3.3. High-Entropy Nanofibers in Polymer Composites | Transformation of energy storage performance in polymer composites using high-entropy nanofibers. | Dou et al. (2023) [477]: Introduced high-entropy nanofibers to improve dielectric breakdown properties and cyclic charge–discharge reliability in polymer composites. |
5.3.4. MnNiWO4 on Carbon Nanofiber for Photocatalytic Dye Removal | Efficient photocatalytic dye removal using MnNiWO4 nanostructures on carbon nanofibers. | Sai Kumar A. et al. (2023) [478]: Synthesized MnNiWO4 hybrid nanostructures on CNFs for photocatalytic removal of dyes under light illumination. |
5.3.5. ZnO:GO/rGO Composite Thin Films for Energy Harvesting | Synthesis and characterization of GO and rGO with ZnO for advanced energy harvesting applications. | Joshi et al. (2023) [479]: Explored the impact of GO and rGO on ZnO thin films, assessing their potential in photovoltaic technology and DSSCs. |
5.3.6. Magnesium Nanoparticles for Tissue Engineering | Production and application of magnesium nanoparticles for tissue engineering and biochemical reactions. | Nyabadza et al. (2023) [480]: Produced MgNPs using laser ablation techniques for tissue engineering applications, enhancing cell growth and biochemical reactions. |
5.3.7. Bio-Based PLA Composites with GBMs and Wheat Straw | Enhancement of bio-based PLA composites using graphene-based materials and wheat straw. | Chougan et al. (2023) [481]: Investigated the use of GBMs for surface functionalization of wheat straw to improve the mechanical and thermal performance of PLA bio-based composites. |
5.3.8. Carbon Foam with MWCNTs and FNDs | Improvement of carbon foam properties with the addition of MWCNTs and functionalized nanodiamonds. | Aslam et al. (2023) [482]: Explored the enhancement of pitch-derived carbon foam through MWCNT and FND integration, focusing on mechanical, thermal, electrical, and photocatalytic properties. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes Souza, F., Jr.; Bhansali, S.; Pal, K.; Silveira Maranhão, F.d.; Santos Oliveira, M.; Valladão, V.S.; Brandão e Silva, D.S.; Silva, G.B. A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. Materials 2024, 17, 1088. https://doi.org/10.3390/ma17051088
Gomes Souza F Jr., Bhansali S, Pal K, Silveira Maranhão Fd, Santos Oliveira M, Valladão VS, Brandão e Silva DS, Silva GB. A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. Materials. 2024; 17(5):1088. https://doi.org/10.3390/ma17051088
Chicago/Turabian StyleGomes Souza, Fernando, Jr., Shekhar Bhansali, Kaushik Pal, Fabíola da Silveira Maranhão, Marcella Santos Oliveira, Viviane Silva Valladão, Daniele Silvéria Brandão e Silva, and Gabriel Bezerra Silva. 2024. "A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence" Materials 17, no. 5: 1088. https://doi.org/10.3390/ma17051088
APA StyleGomes Souza, F., Jr., Bhansali, S., Pal, K., Silveira Maranhão, F. d., Santos Oliveira, M., Valladão, V. S., Brandão e Silva, D. S., & Silva, G. B. (2024). A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. Materials, 17(5), 1088. https://doi.org/10.3390/ma17051088