Synthesis and Modification of Polycarboxylate Superplasticizers—A Review
Abstract
:1. Introduction
2. Synthesis of Macromolecular Monomers
2.1. Polymerization
2.2. Direct Esterification
2.3. Acylation Reaction
2.4. Ester Transfer
2.5. Other Methods
3. Synthesis of PCE
3.1. Direct Polymerization
3.2. Function Aggregation
3.3. Graft Polymerization
3.4. Free Radical Polymerization
3.5. Synthetic Conditions
3.5.1. Initiating System with Vc as Reducing Agent
3.5.2. An Initiating System That Uses Other Agents as Reducing Agents
4. Application
4.1. Surface Tension
4.2. Flowability
4.3. Zeta Potential
5. Conclusions
- (1)
- The properties of PCE are significantly influenced by the structural characteristics of the macromonomer. Therefore, the design and synthesis of PCE should initiate from the macromonomer, focusing on controlling the molecular weight and adjusting the proportions of hydrophilic and lipophilic groups. A macromonomer with a reasonable structure and stable performance should be prepared, and the existing polyether and polyester should be modified using block and grafting.
- (2)
- The higher the carboxyl content of the PCE main chain, the more suitable the length of the side chain. The length of the main chain and side chain and molecular weight have more influence on the dispersion of PCE in cement. Therefore, the longer the length of the main chain and side chain, the better the dispersion of PCE. The dispersion of PCE in cement cannot be adequately explained by a singular theory. Multiple factors, including electrostatic repulsion, steric hindrance, the chain length of the main chain or side chain, and molecular form, among others, should be taken into consideration to provide a comprehensive understanding.
- (3)
- In contrast to other polycarboxylate superplasticizer such as sodium bisulfite and tonalite, polycarboxylate molecules generated through the REDOX system of hydrogen peroxide and ammonium persulfate Vc exhibit a compact high monomer conversion and molecular weight distribution. The outcome is an outstanding overall performance, characterized by extended side chains in comparison to conventional PCE, leading to enhanced steric hindrance and dispersion. Under the same experimental conditions, it was found that the dispersibility of polycarboxylate increased with the increase in the AA/TPEG mole ratio.
- (4)
- With an increase in the content of polycarboxylic superplasticizer, the surface tension of cement paste decreases. The reduction in surface tension results in a decline in the stability of cement paste and a decrease in ζ potential.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwasny, J.; Sonebi, M.; Plasse, J.; Amziane, S. Influence of rheology on the quality of surface finish of cement-based mortars. Constr. Build. Mater. 2015, 89, 102–109. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.G.; Pan, G.H.; Li, D.X. Dispersion of graphene oxide modified polycarboxylate superplasticizer in cement alkali solution for improving cement composites. J. Build. 2022, 57, 104860. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Tuyan, M.; Yılmaz, G.; Arıöz, Ö.; Ramyar, K. Effect of different types of superplasticizer on fresh, rheological and strength properties of self-consolidating concrete. Constr. Build. Mater. 2013, 47, 1020–1025. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, W.; Li, Y.; Zhu, J.; Liao, M.; Xie, Y. Study on compatibility mechanism of plasticizer and asphalt based on molecular dynamics. Mater. Des. 2023, 228, 111827. [Google Scholar] [CrossRef]
- Singh, T.; Arpanaei, A.; Elustondo, D.; Wang, Y.; Stocchero, A.; West, T.A.P.; Fu, Q. Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture. Carbon Capture Sci. Technol. 2022, 4, 100057. [Google Scholar] [CrossRef]
- Silvestro, L.; Ruviaro, A.S.; Lima, G.T.D.S.; Matos, P.R.D.; Rodríguez, E.; Gleize, P.J.P. Sonicating polycarboxylate-based superplasticizer for application in cementitious matrix. Rev. IBRACON Estrut. E Mater. 2023, 16, e16205. [Google Scholar] [CrossRef]
- Eltayeb, E.; Ma, X.; Zhuge, Y.; Xiao, J.; Youssf, O. Dynamic performance of rubberised concrete and its structural applications—An overview. Eng. Struct. 2021, 234, 111990. [Google Scholar] [CrossRef]
- Ng, P.G.; Cheah, C.B.; Ng, E.P.; Oo, C.W.; Leow, K.H. The influence of main and side chain densities of PCE superplasticizer on engineering properties and microstructure development of slag and fly ash ternary blended cement concrete. Constr. Build. Mater. 2020, 242, 118103. [Google Scholar] [CrossRef]
- Dalas, F.; Pourchet, S.; Nonat, A.; Rinaldi, D.; Sabio, S.; Mosquet, M. Fluidizing efficiency of comb-like superplasticizers:The effect of the anionic function, the side chain length and the grafting degree. Cem. Concr. Res. 2015, 71, 115–123. [Google Scholar] [CrossRef]
- Sahin, H.G.; Biricik, O.; Mardani-Aghabaglou, A. Polycarboxylate-based water reducing admixture—Clay compatibility; literature review. J. Polym. Res. 2022, 29, 33. [Google Scholar] [CrossRef]
- Plank, J.; Li, H.Q.; Ilg, M.; Pickelmann, J.; Yao, Y.; Wang, Z.M. A microstructural analysis of isoprenol ether-based polycarboxylates and the impact of structural motifs on the dispersing effectiveness. Cem. Concr. Res. 2016, 84, 20–29. [Google Scholar] [CrossRef]
- Chandel, M.; Kaur, K.; Sahu, B.K.; Sharma, S.; Panneerselvam, R.; Shanmugam, V. Promise of nano-carbon to the next generation sustainable agriculture. Carbon 2022, 188, 461–481. [Google Scholar] [CrossRef]
- Qomi, M.J.A.; Brochard, L.; Honorio, T.; Maruyama, I.; Vandamme, M. Advances in atomistic modeling and understanding of drying shrinkage in cementitious materials. Cem. Concr. Res. 2021, 148, 106536. [Google Scholar] [CrossRef]
- Lange, A.; Plank, J. Contribution of non-adsorbing polymers to cement dispersion. Cem. Concr. Res. 2016, 79, 131–136. [Google Scholar] [CrossRef]
- Poellmann, K.; Strasser, A.; Mueller, S. Hydroxy-Functional Copolymerizable Polyalkylene Glycol Macromonomers, Their Preparation and Use. U.S. Patent 20080097042A1, 24 April 2008. [Google Scholar]
- Kinoshita, M.; Tamaki, S. Method of Producing Allyletherester Monomers for Production of Cement Dispersants. U.S. Patent 6,881,818, 19 April 2005. [Google Scholar]
- Keiji, Y.; Takafumi, K. Process for Producing Alpha, Beta-Unsaturated Carboxylic Acid Esters and Catalyst for Use in Such Process. U.S. Patent 6,541,656, 1 April 2003. [Google Scholar]
- Akhlaghi, O.; Aytas, T.; Tatli, B.; Sezer, D.; Hodaei, A.; Favier, A.; Scrivener, K.; Menceloglu, Y.Z.; Akbulut, O. Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement. Cem. Concr. Res. 2017, 101, 114–122. [Google Scholar] [CrossRef]
- Gkournelos, P.D.; Triantafillou, T.C.; Bournas, D.A. Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Eng. Struct. 2021, 240, 112273. [Google Scholar] [CrossRef]
- Ibrahim, S.; Meawad, A. Towards green concrete: Study the role of waste glass powder on cement/superplasticizer compatibility. J. Build. Eng. 2022, 47, 103751. [Google Scholar] [CrossRef]
- Winnefeld, F.; Becker, S.; Pakusch, J. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem. Concr. Compos. 2007, 29, 251–262. [Google Scholar] [CrossRef]
- Flatt, R.J.; Houst, Y.F. A simplified view on chemical effects perturbing the action of superplasticizers. Cem. Concr. Res. 2001, 31, 1169–1176. [Google Scholar] [CrossRef]
- Gupta, S.; Tai, N.-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187. [Google Scholar] [CrossRef]
- Şahin, H.G.; Mardani, A.; Özen, S.; Emin, A. Utilization of high-range water reducing admixture having air-entraining agents in cementitious systems. J. Build. Eng. 2023, 64, 105565. [Google Scholar] [CrossRef]
- Ketabchi, M.R.; Babamohammadi, S.; Davies, W.G.; Gorbounov, M.; Soltani, S.M. Latest advances and challenges in carbon capture using bio-based sorbents: A state-of-the-art review. Carbon Capture Sci. Technol. 2023, 6, 100087. [Google Scholar] [CrossRef]
- Jang, D.; Lee, M.E.; Choi, J.; Cho, S.Y.; Lee, S. Strategies for the production of PAN-Based carbon fibers with high tensile strength. Carbon 2022, 186, 644–677. [Google Scholar] [CrossRef]
- Dessalle, A.; Quílez-Bermejo, J.; Fierro, V.; Xu, F.; Celzard, A. Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbon 2023, 203, 237–260. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Firouz, R.M.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Tran, N.P.; Gunasekara, C.; Law, D.W.; Houshyar, S.; Setunge, S.; Cwirzen, A. A critical review on drying shrinkage mitigation strategies in cement-based materials. J. Build. Eng. 2021, 38, 102210. [Google Scholar] [CrossRef]
- MacLeod, A.J.N.; Collins, F.G.; Duan, W. Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry. Cem. Concr. Compos. 2021, 119, 103994. [Google Scholar] [CrossRef]
- Plank, J.; Pöllmann, K.; Zouaoui, N.; Andres, P.R.; Schaefer, C. Synthesis and performance of methacrylic ester based polycarboxylate superplasticizers possessing hydroxy terminated poly(ethylene glycol)side chains. Cem. Concr. Res. 2008, 38, 1210–1216. [Google Scholar] [CrossRef]
- Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197–207. [Google Scholar] [CrossRef]
- Gharanjig, H.; Gharanjig, K.; Sarli, M.A.; Ozguney, A.T.; Jalili, M.; Gharanjik, A.; Jahankaran, S. Effect of molecular composition of comb-like polycarboxylate dispersants on hydrophobic dye dispersion properties. J. Mol. Liq. 2022, 350, 118615. [Google Scholar] [CrossRef]
- Felekoğlu, B.; Sarıkahya, H. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete. Constr. Build. Mater. 2008, 22, 1972–1980. [Google Scholar] [CrossRef]
- de Souza, F.B.; Yao, X.; Lin, J.; Naseem, Z.; Tang, Z.Q.; Hu, Y.; Gao, W.; Sagoe-Crentsil, K.; Duan, W. Effective strategies to realize high-performance graphene-reinforced cement composites. Constr. Build. Mater. 2022, 324, 126636. [Google Scholar] [CrossRef]
- Silva, D.B.P.; Lima, N.B.; Lima, V.M.E.; Estolano, A.M.L.; Nascimento, H.C.B.; Vilemen, P.; Padron-Hernández, E.; Carneiro, A.M.P.; Lima, N.B.D.; Povoas, Y.V. Producing a gypsum-based self-leveling mortar for subfloor modified by polycarboxylate admixture (PCE). Constr. Build. Mater. 2023, 364, 130007. [Google Scholar] [CrossRef]
- Soltani, S.M.; Lahiri, A.; Bahzad, H.; Clough, P.; Gorbounov, M.; Yan, Y. Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Sci. Technol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. Multi-method approach to study influence of superplasticizers on cement suspensions. Cem. Concr. Res. 2011, 41, 1058–1066. [Google Scholar] [CrossRef]
- Schmid, M.; Plank, J. Interaction of individual meta clays with polycarboxylate (PCE) superplasticizers in cement investigated via dispersion, zeta potential and sorption measurements. Appl. Clay Sci. 2021, 207, 106092. [Google Scholar] [CrossRef]
- Uskoković, V. A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Teng, S. Experiments on drying shrinkage and creep of high performance hybrid-fiber-reinforced concrete. Cem. Concr. Compos. 2020, 106, 103481. [Google Scholar] [CrossRef]
- Gautam, C.K.; Alam, P. To study the effect of geopolymer concrete by using metakaolin & bottom ash. Mater. Today Proc. 2023, 74, 1028–1034. [Google Scholar]
- Hamada, D.; Hamai, T.; Shimoda, M.; Shonaka, M.; Takahashi, H. Development of New Superplasticizer Providing Ultimate Workability. In Proceedings of the SP-239: 8th CanMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Sorrento, Italy, 1 October 2006. [Google Scholar]
- Shawl, E.T. Carboxylic Acid Group-Containing Additives for Cement, Cement Compositions Containing the Additives, and Manufacture of the Additives. U.S. Patent 5670578, 23 September 1997. [Google Scholar]
- Büyükyağcı, A.; Tuzcu, G.; Aras, L. Synthesis of copolymers of methoxy polyethylene glycol acrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid:Its characterization and application as superplasticizer in concrete. Cem. Concr. Res. 2009, 39, 629–635. [Google Scholar] [CrossRef]
- Cho, H.Y.; Suh, J.M. Effects of the synthetic conditions of poly{carboxylate-g-(ethylene glycol)methyl ether} on the dispersibility in cement paste. Cem. Concr. Res. 2005, 35, 891–899. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Ezzat, M.; Xu, X.; El Cheikh, K.; Lesage, K.; Hoogenboom, R.; De Schutter, G. Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization. J. Colloid Interface Sci. 2019, 553, 788–797. [Google Scholar] [CrossRef]
- Hirata, T.; Yuasa, K.; Shiote, K.; Nagare, S.I. Cement Dispersing Agent, Method for Producing Polycarboxylic acid for the Dispersant and Cement Composition. EP0850895A1, 18 December 1997. [Google Scholar]
- Adams, D.J.; Rogers, S.H.; Schuetz, P. The effect of PEO block lengths on the size and stability of complex coacervate core micelles. J. Colloid Interface Sci. 2008, 322, 448–456. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, G.W.; Oh, T.; You, I.; Wang, X.; Yoo, D.-Y. The microstructure and mechanical properties of cementless ultra-high-performance alkali activated concrete considering geometrical properties of steel fiber. Cem. Concr. Compos. 2023, 142, 105209. [Google Scholar] [CrossRef]
- Gelardi, G.; Sanson, N.; Nagy, G.; Flatt, R.J. Characterization of Comb-Shaped Copolymers by Multidetection SEC, DLS and SANS. Polymers 2017, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y. Research on Synthesis and Performance of Polycarboxylate Superplasticizer with Slump Loss Resistance. Master’s Thesis, Shanxi University, Taiyuan, China, 2012. [Google Scholar]
- Fu, C.F. Study on Molecular Structure and Slump Retention Mechanism of Polycarboxylate Superplasticizer. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2012. [Google Scholar]
- Rymeš, J.; Maruyama, I.; Aili, A. Time-dependent water vapor desorption isotherm model of hardened cement paste. Cem. Concr. Res. 2021, 150, 106612. [Google Scholar] [CrossRef]
- Arend, J.; Wetzel, A. Middendorf, Fluorescence Microscopy of Superplasticizers in Cementitious Systems: Applications and Challenges. Materials 2020, 13, 3733. [Google Scholar] [CrossRef]
- Guan, M.Q. The conventional temperature synthesis of high performance polycarboxylates superplasticizer by the oxidation-reduction composite system, New Build. Mater 2014, 8, 64–67. [Google Scholar]
- Wang, Z.M.; Wu, H.; Liu, X.; Zheng, F.Y.; Li, H.Q.; Cui, S.P.; Lan, M.Z.; Wang, Y.L. A New Kind of Synthesis Method of Polycarboxylate Superplasticizer at Room Temperature. CN Patent 101974135, 6 March 2011. [Google Scholar]
- Maruyama, I. Multi-scale Review for Possible Mechanisms of Natural Frequency Change of Reinforced Concrete Structures under an Ordinary Drying Condition. J. Adv. Concr. Technol. 2016, 14, 691–705. [Google Scholar] [CrossRef]
- Xiang, S.; Tan, Y.; Gao, Y. Synthesis of Modified Polycarboxylate and Its Application in Ultra-High Performance Concrete. Front. Mater. 2021, 8, 725242. [Google Scholar] [CrossRef]
- Maruyama, I.; Ohkubo, T.; Haji, T.; Kurihara, R. Dynamic microstructural evolution of hardened cement paste during first drying monitored by 1H NMR relaxometry. Cem. Concr. Res. 2019, 122, 107–117. [Google Scholar] [CrossRef]
- Gowda, T.S.; Ranganath, R.V. High early strength-high performance concrete produced with combination of ultra-fine slag and ultra-fine silica: Influence on fresh, mechanical, shrinkage and durability properties with microstructural investigation. Constr. Build. Mater. 2023, 385, 131462. [Google Scholar] [CrossRef]
- GB/T8077-2012; Methods for Testing Uniformity of Concrete Admixture. China Standard Press: Beijing, China, 2012.
- Xiang, S.; Gao, Y.; Shi, C. Synthesis of a New Polycarboxylate at Room Temperature and Its Influence on the Properties of Cement Pastes with Different Supplementary Cementitious Materials. Adv. Civ. Eng. 2020, 2020, 8854422. [Google Scholar] [CrossRef]
- Xiang, S.; Tan, Y.; Gao, Y.; Li, L. Influence of a polyurethane-modified polycarboxylate on properties of cement mortar. J. Appl. Polym. Sci. 2022, 139, 51793. [Google Scholar] [CrossRef]
- Zailani, W.W.A.; Abdullah, M.M.A.; Arshad, M.F.; Razak, R.A.; Tahir, M.F.M.; Zainol, R.; Nabialek, M.; Sandu, A.V.; Wyslocki, J.J.; Bloch, K. Characterisation at the Bonding Zone between Fly Ash Based Geopolymer Repair Materials (GRM)and Ordinary PC Concrete (OPCC). Materials 2021, 14, 56. [Google Scholar] [CrossRef]
- Gartner, E.; Maruyama, I.; Chen, J. A new model for the C-S-H phase formed during the hydration of PCs. Cem. Concr. Res. 2017, 97, 95–106. [Google Scholar] [CrossRef]
- Ahari, R.S.; Erdem, T.K.; Ramyar, K. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete. Constr. Build. Mater. 2015, 75, 89–98. [Google Scholar] [CrossRef]
- Hlobil, M.; Sotiriadis, K.; Hlobilová, A. Scaling of strength in hardened cement pastes—Unveiling the role of microstructural defects and the susceptibility of C-S-H gel to physical/chemical degradation by multiscale modeling. Cem. Concr. Res. 2022, 154, 106714. [Google Scholar] [CrossRef]
- Bouarroudj, M.E.; Remond, S.; Bulteel, D.; Potier, G.; Michel, F.; Zhao, Z.F.; Courard, L. Use of grinded hardened cement pastes as mineral addition for mortars. J. Build. 2021, 34, 101863. [Google Scholar] [CrossRef]
- de Carvalho, J.M.F.; Schmidt, W.; Kuhne, H.C.; Peixoto, R.A.F. Influence of high-charge and low-charge PCE-based superplasticizers on PC pastes containing particle-size designed recycled mineral admixtures. J. Build. 2020, 32, 101515. [Google Scholar]
- Di Bella, C.; Wyrzykowski, M.; Lura, P. Evaluation of the ultimate drying shrinkage of cement-based mortars with poroelastic models. Mater. Struct. 2017, 50, 52. [Google Scholar] [CrossRef]
- Derkani, M.H.; Bartlett, N.J.; Koma, G.; Carter, L.A.; Geddes, D.A.; Provis, J.L.; Walkley, B. Mechanisms of dispersion of metakaolin particles via adsorption of sodium naphthalene sulfonate formaldehyde polymer. J. Colloid Interface Sci. 2022, 628, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Sposito, R.; Beuntner, N.; Thienel, K.-C. Characteristics of components in calcined clays and their influence on the efficiency of superplasticizers. Cem. Concr. Compos. 2020, 110, 103594. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. A Review and Comparative Study of Existing Shrinkage Prediction Models for Portland and Non-Portland Cementitious Materials. Adv. Mater. Sci. Eng. 2016, 2016, 2418219. [Google Scholar] [CrossRef]
- Manosa, J.; Gomez-Carrera, A.M.; Svobodova-Sedlackova, A.; Maldonado-Alameda, A.; Fernandez-Jimenez, A.; Chimenos, J.M. Potential reactivity assessment of mechanically activated kaolin as alternative cement precursor. Appl. Clay Sci. 2022, 228, 106648. [Google Scholar] [CrossRef]
- Zhu, W.W.; Feng, Q.G.; Luo, Q.; Bai, X.K.; Chen, K.; Lin, X.H. Effect of a specific PCE superplasticizer on the initial dissolution and early hydration of PC. J. Build. 2022, 46, 103786. [Google Scholar]
- Magudeaswaran, P.; Kumar, C.V.; Krishna, K.V.; Nagasaibaba, A.; Ravinder, R. Investigational studies on the impact of Supplementary Cementitious Materials (SCM) for identifying the strength and durability characteristics in self curing concrete. Mater. Today Proc. 2023, in press. [CrossRef]
Material | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | K2O | Na2O | Total | Loss |
---|---|---|---|---|---|---|---|---|---|---|---|
PI 42.5 | 21.18 | 4.73 | 3.41 | 62.49 | 2.53 | 2.83 | - | - | 0.56 | 97.73 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Shi, W.; Xiang, S.; Yang, X.; Yuan, M.; Zhou, H.; Yu, H.; Zheng, T.; Zhang, J.; Jiang, Z.; et al. Synthesis and Modification of Polycarboxylate Superplasticizers—A Review. Materials 2024, 17, 1092. https://doi.org/10.3390/ma17051092
Xia Y, Shi W, Xiang S, Yang X, Yuan M, Zhou H, Yu H, Zheng T, Zhang J, Jiang Z, et al. Synthesis and Modification of Polycarboxylate Superplasticizers—A Review. Materials. 2024; 17(5):1092. https://doi.org/10.3390/ma17051092
Chicago/Turabian StyleXia, Yuchen, Wei Shi, Shuncheng Xiang, Xin Yang, Ming Yuan, Huan Zhou, Haotian Yu, Tingxiang Zheng, Jiake Zhang, Zhen Jiang, and et al. 2024. "Synthesis and Modification of Polycarboxylate Superplasticizers—A Review" Materials 17, no. 5: 1092. https://doi.org/10.3390/ma17051092
APA StyleXia, Y., Shi, W., Xiang, S., Yang, X., Yuan, M., Zhou, H., Yu, H., Zheng, T., Zhang, J., Jiang, Z., & Huang, L. (2024). Synthesis and Modification of Polycarboxylate Superplasticizers—A Review. Materials, 17(5), 1092. https://doi.org/10.3390/ma17051092