Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Polymer Composites and Their Samples
2.3. Methods
2.3.1. Morphological Characterization
2.3.2. Thermal Characterization
2.3.3. Mechanical Characterization
2.3.4. Surface Characterization
- —total surface free energy,
- —dispersive component of the surface free energy of the tested materials,
- —polar component of the surface free energy of the tested materials.
- —surface free energy of diiodomethane,
- —dispersive component of the diiodomethane surface free energy,
- —polar component of the diiodomethane surface free energy,
- —surface free energy of distilled water,
- —dispersive component of the distilled water surface free energy,
- —polar component of the distilled water surface free energy,
- —the value of the contact angle measured for diiodomethane,
- —the value of the contact angle measured for distilled water.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fink, J.K. Unsaturated Polyester Resins. In Reactive Polymers Fundamentals and Applications, 2nd ed.; Fink, J.K., Ed.; William Andrew: San Francisco, CA, USA, 2013; pp. 1–48. [Google Scholar]
- Penczek, P.; Czub, P.; Pielichowski, J. Unsaturated polyester resins: Chemistry and technology. Adv. Polym. Sci. 2005, 184, 1–95. [Google Scholar]
- Aurer, J.H.; Kasper, A. Unsaturated Polyester Resins: Polymers with Unlimited Possibilities; Verlag Moderne Industrie: Landsberg/Lech, Germany, 2003; pp. 1–69. [Google Scholar]
- Jo, B.-W.; Park, S.-K.; Park, J.-C. Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr. Build. Mater. 2008, 22, 2281–2291. [Google Scholar] [CrossRef]
- Tan, C.; Ahmad, I.; Heng, M. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Mater. Des. 2011, 323, 4493–4501. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Radoman, T.; Džunuzović, E.S.; Džunuzović, J.V.; Markovski, J.; Spasojević, P.; Marinković, A.D. Effect of the modified silica Nanofiller on the Mechanical Properties of Unsaturated Polyester Resins Based on Recycled Polyethylene Terephthalate. Polym. Compos. 2015, 38, 538–554. [Google Scholar] [CrossRef]
- Gawdzik, B.; Matynia, T.; Zarębska, E. Synthesis of unsaturated polyester resins based on dimethyl terephthalate process residue. Przem. Chem. 2002, 81, 525–527. [Google Scholar]
- Nodehl, M. Epoxy, polyester and vinyl ester based polymer concrete: A review. Innov. Infrastruct. Solut. 2022, 7, 64. [Google Scholar] [CrossRef]
- Głogowska, K.; Pączkowski, P.; Samujło, B. Study on the Properties and Structure of Rotationally Moulded Linear Low-Density Polyethylene Filled with Quartz Flour. Materials 2022, 15, 2154. [Google Scholar] [CrossRef]
- Krivonogov, P.S.; Shkuro, A.E.; Glukhikh, V.V.; Stoyanov, O.V. Composite Materials Based on Thermoplastic Matrix. Polym. Sci. Ser. D 2019, 12, 41–46. [Google Scholar] [CrossRef]
- Pérez, E.; Pérez, C.J.; Bernal, C.; Greco, A.; Maffezzoli, A. Mechanical behavior of fibers and films based on PP/Quartz composites. Polym. Compos. 2016, 38, 1631–1639. [Google Scholar] [CrossRef]
- Pérez, E.; Bernal, C.; Pérez, C.J. Internal structure analysis of Polypropylene/quartz composites related to their toughness. Polym. Compos. 2014, 37, 1488–1496. [Google Scholar] [CrossRef]
- Peng, H.-Y.; Wei, Y.-A.; Hsu, Y.-C.; Lin, K.-C.; Yeh, P.-U.; Yang, C.-S.; Cheng, C.-P. Complex optical properties of polymeric composite materials mixed with quartz powder and investigated by THz time-domain spectroscopy. Opt. Mater. Express 2022, 12, 22–23. [Google Scholar] [CrossRef]
- Fauziyah, N.A.; Hilmi, A.R.; Zainuri, M.; Asrori, M.Z.; Mashuri, M.; Jawaid, M.; Pratapa, S. Thermal and dynamic mechanical properties of polyethylene glycol/quartz composites for phase change materials. J. Appl. Polym. Sci. 2019, 136, 48130. [Google Scholar] [CrossRef]
- Campbell, P.M.; Johnston, W.M.; O’Brien, W.J. Light Scattering and Gloss of an Experimental Quartz-filled Composite. J. Dent. Res. 1986, 65, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Ateş, E.; Barnes, S. The effect of elevated temperature curing treatment on the compression strength of composites with polyester resin matrix and quartz filler. Mater. Des. 2012, 34, 435–443. [Google Scholar] [CrossRef]
- Zurowski, W.; Zepchlo, J.; Krzyzak, A.; Gevorkyan, E.; Rucki, M. Effect of the quartz powder on the performance of the two layers glass fiber reinforced polymer composite with emulsion binder. Compos. Struct. 2022, 298, 116024. [Google Scholar] [CrossRef]
- Goyanes, S.N.; Marconi, J.D.; König, P.G.; Martin, M.D.; Mondragon, I. Dynamic properties of epoxy composite filled with quartz powder. J. Alloys Compd. 2000, 310, 374–377. [Google Scholar] [CrossRef]
- Sagi-Mana, D.; Narkis, M.; Siegmann, A.; Joseph, R.; Dodiuk, H. The effect of marine environment on a vinyl ester resin and its highly filled particulate quartz composites. J. Appl. Polym. Sci. 1998, 69, 2229–2234. [Google Scholar] [CrossRef]
- Niaki, M.H.; Ahangari, M.G. Introduction to Polymer Concrete. In Polymer Concretes: Advanced Construction Materials, 1st ed.; Niaki, M.H., Ahangari, M.G., Eds.; CRC Press: Boca Rarin, FL, USA, 2023. [Google Scholar]
- Leonardi, L.; Pique, T.M.; Leizerow, T.; Balzamo, H.; Bernal, C.; Vazquez, A.; Agaliotis, E. Design and Assessment of a Lightweight Polymer Concrete Utility Manhole. Adv. Mater. Sci. Eng. 2019, 2019, 5234719. [Google Scholar] [CrossRef]
- Peng, L.; Qin, S. Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO2 waste crucible and quartz sand. Constr. Build. Mater. 2018, 171, 273–280. [Google Scholar] [CrossRef]
- Matynia, T.; Gawdzik, B.; Andrachiewicz, M.; Gadaczowski, S.; Pazgan, A. Application of unsaturated polyester resin from waste PET to the production of resin mine charges. Przem. Chem. 1999, 78, 303–304. [Google Scholar]
- Gawdzik, B.; Pączkowski, P. Sposób Otrzymywania Polimerów Kobaltowych. PL Patent P.445494, 4 July 2023. [Google Scholar]
- EN ISO 11358-1:2014; Plastics—Thermogravimetry (TG) of Polymers—Part 1: General Principles. ISO: Geneva, Switzerland, 2014.
- ISO 306:2013; Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature (VST). ISO: Geneva, Switzerland, 2013.
- EN ISO 75-2:2013; Plastics—Determination of Temperature of Deflection Under Load—Part 2: Plastics and Ebonite. ISO: Geneva, Switzerland, 2013.
- EN ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003.
- EN ISO 178:2019; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2019.
- EN ISO 179-1:2020; Plastics—Determination of Charpy Impact Properties—Part 2: Instrumented Impact Test. ISO: Geneva, Switzerland, 2020.
- ASTM D2457-21; Standard Test Method for Specular Gloss of Plastic Films and Solid Plastics. ASTM International: West Conshohocken, PA, USA, 2013.
- Park, S.-J.; Cho, M.-S.; Lee, J.-R. Studies on the Surface Free Energy of Carbon-Carbon Composites: Effect of Filler Addition on the ILSS of Composites. J. Colloid Interface Sci. 2000, 226, 60–64. [Google Scholar] [CrossRef]
- Miturska-Barańska, I.; Rudawska, A.; Doluk, E. The Influence of Sandblasting Process Parameters of Aerospace Aluminium Alloy Sheets on Adhesive Joints Strength. Materials 2021, 14, 6626. [Google Scholar] [CrossRef]
- Miturska-Barańska, I.; Józwik, J.; Bere, P. Effect of Face Milling Parameters of Carbon Fiber Reinforced Plastics Composites on Surface Properties. Adv. Sci. Technol. Res. J. 2022, 16, 26–38. [Google Scholar] [CrossRef]
- Yang, L. Properties of Quartz-Reinforced Polyester Resin Composites (QPCs). J. Membr. Sci. Technol. 2022, 12, 315. [Google Scholar]
- Jesson, D.A.; Abel, M.-L.; Hay, J.N.; Smith, P.A.; Watts, J.F. Organic−Inorganic Hybrid Nanoparticles: Surface Characteristics and Interactions with a Polyester Resin. Langmuir 2006, 22, 5144–5151. [Google Scholar] [CrossRef]
- Zhou, S.-X.; Wu, L.-M.; Sun, J.; Shen, W.-D. Effect of nanosilica on the properties of polyester-based polyurethane. J. Appl. Polym. Sci. 2003, 88, 189–193. [Google Scholar] [CrossRef]
- Kominar, V.; Narkis, M.; Siegmann, A.; Breuer, O. Failure of highly filled quartz/polyester particulate composites as a function of coupling agent content. Sci. Eng. Compos. Mater. 1994, 3, 61–66. [Google Scholar] [CrossRef]
- Pączkowski, P.; Gawdzik, B. Synthesis, characterization and degradation studies of eco-friendly composites from thermoset resins with pistachio shell waste. J. Therm. Anal. Calorim. 2024. [Google Scholar] [CrossRef]
- Branlund, J.M.; Hofmeister, A.M. Thermal diffusivity of quartz to 1000 °C: Effects of impurities and the α-β phase transition. Phys. Chem. Miner. 2007, 34, 581–595. [Google Scholar] [CrossRef]
- Ringdalen, E. Changes in Quartz During Heating and the Possible Effects on Si Production. JOM 2015, 67, 484–492. [Google Scholar] [CrossRef]
- Çaykara, T.; Güven, O. Effect of filler type on the thermal degradation of inorganic filled poly (2-hydro-xyethylmethacrylate) composites. Polym. Degrad. Stabil. 1998, 62, 267–270. [Google Scholar] [CrossRef]
- Das, S.K.; Nath, M.R.; Das, R.C.; Mondal, M.; Bhowmik, S. Quartz Reinforced Unsaturated Polyester Resin Composites: Preparation and Characterization. Asian J. Appl. Chem. Res. 2021, 10, 14–25. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Tawfik, M.E.; Ward, A.A. Characterization of a polymer composite from treated kaolin and unsaturated polyester based on PET waste. Polym. Compos. 2013, 34, 1223–1234. [Google Scholar] [CrossRef]
- Pączkowski, P. Properties of Eco-Friendly Composites Based on Post-Consumer Recycled Resin Filled with Walnut Shell Powder. Polymers 2023, 15, 4389. [Google Scholar] [CrossRef] [PubMed]
- Pączkowski, P.; Sigareva, N.V.; Gorelov, B.M.; Terets, M.I.; Sementsov, Y.I.; Kartel, M.T.; Gawdzik, B. The Influence of Carbon Nanotubes on the Physical and Chemical Properties of Nanocomposites Based on Unsaturated Polyester Resin. Nanomaterials 2023, 13, 2981. [Google Scholar] [CrossRef]
- Pączkowski, P.; Puszka, A.; Miazga-Karska, M.; Ginalska, G.; Gawdzik, B. Synthesis, Characterization and Testing of Antimicrobial Activity of Composites of Unsaturated Polyester Resins with Wood Flour and Silver Nanoparticles. Materials 2021, 14, 1122. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, K.; Lakshmikandhan, T.; Alagar, M. Surface free energy and dielectric properties of vinyltriethoxysilane functionalized SBA-15-reinforced unsaturated polyester nanocomposites. Polym. Compos. 2015, 37, 3433–3441. [Google Scholar] [CrossRef]
Measuring Liquid | Surface Tension, mJ·m−2 | ||
---|---|---|---|
Diiodomethane | 53.2 | 50.8 | 2.4 |
Distilled water | 72.8 | 21.8 | 51.0 |
Sample | 1, °C | 2, °C | 3, °C | 4, °C | Mass Change, % | Residual Mass 5, % |
---|---|---|---|---|---|---|
pure UPR | 317.3 | 337.9 | 386.2 | 382.3; 519.4 | −85.04; −13.96 | --- |
UPR + Q5 | 316.1 | 337.7 | 386.0 | 383.3; 523.4 | −83.40; −11.47 | 4.87 |
UPR + Q10 | 316.1 | 338.1 | 386.3 | 383.5; 520.9 | −79.21; −11.07 | 9.24 |
UPR + Q20 | 317.5 | 338.8 | 388.7 | 383.8; 514.8 | −72.22; −10.05 | 16.61 |
UPR + Q40 | 325.4 | 345.9 | 397.2 | 384.0; 513.8 | −62.32; −9.01 | 28.58 |
Sample Name | 1, kJ·m−2 | HD2, °ShD | 3, GPa | 4, MPa | 5, % |
---|---|---|---|---|---|
pure UPR | 8.059 | 72.1 | 3.66 ± 0.01 | 76.58 ± 4.34 | 2.12 ± 0.11 |
UPR + Q5 | 7.892 | 72.7 | 3.83 ± 0.01 | 93.20 ± 7.30 | 2.51 ± 0.21 |
UPR + Q10 | 5.898 | 73.4 | 3.97 ± 0.05 | 79.43 ± 4.03 | 1.91 ± 0.19 |
UPR + Q20 | 4.923 | 74.6 | 4.41 ± 0.08 | 74.40 ± 6.09 | 1.88 ± 0.08 |
UPR + Q40 | 4.133 | 75.3 | 5.26 ± 0.04 | 71.99 ± 0.46 | 1.41 ± 0.01 |
Sample Name | Droplet and Value of Contact Angle Measurement with Water | Droplet and Value of Contact Angle Measurement with Diiodomethane | ||
---|---|---|---|---|
pure UPR | 57.0° | 41.7° | ||
UPR + Q5 | 58.9° | 41.4° | ||
UPR + Q10 | 63.1° | 41.1° | ||
UPR + Q20 | 72.4° | 38.7° | ||
UPR + Q40 | 77.9° | 36.1° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pączkowski, P.; Głogowska, K. Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate. Materials 2024, 17, 1116. https://doi.org/10.3390/ma17051116
Pączkowski P, Głogowska K. Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate. Materials. 2024; 17(5):1116. https://doi.org/10.3390/ma17051116
Chicago/Turabian StylePączkowski, Przemysław, and Karolina Głogowska. 2024. "Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate" Materials 17, no. 5: 1116. https://doi.org/10.3390/ma17051116
APA StylePączkowski, P., & Głogowska, K. (2024). Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate. Materials, 17(5), 1116. https://doi.org/10.3390/ma17051116