A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives
Abstract
:1. Introduction
2. Experimental and Simulation Aspects
2.1. Inorganic Layer Fabrication
2.2. HQS@LDH Fabrication
2.3. Characterization Methods
2.4. Computational Simulations
2.5. Electrochemical Experiments
3. Results and Discussion
3.1. Experimental Data
3.2. Computational Perspectives
3.3. Anticorrosion Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahmani, A.; Lotfpour, M.; Taghizadeh, M.; Kim, W.-J. Corrosion Behavior of Severely Plastically Deformed Mg and Mg Alloys. J. Magnes. Alloys 2022, 10, 2607–2648. [Google Scholar] [CrossRef]
- Krishnan, R.; Pandiaraj, S.; Muthusamy, S.; Panchal, H.; Alsoufi, M.S.; Ibrahim, A.M.M.; Elsheikh, A. Biodegradable Magnesium Metal Matrix Composites for Biomedical Implants: Synthesis, Mechanical Performance, and Corrosion Behavior-A Review. J. Mater. Res. Technol. 2022, 20, 650–670. [Google Scholar] [CrossRef]
- Chafiq, M.; Chaouiki, A.; Suhartono, T.; Hazmatulhaq, F.; Ko, Y.G. Interface Engineering of LDH-Based Material as Efficient Anti-Corrosive System via Synergetic Performance of Host, Interlayers, and Morphological Features of Nature-Mimic Architectures. Chem. Eng. J. 2023, 462, 142239. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Ko, Y.G. Nature-Inspired Architecture Combining Organic–Inorganic Frameworks: Unique Structure and Active Sites toward a Stable Anti-Corrosion Coating. Appl. Mater. Today 2023, 32, 101852. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Suhartono, T.; Ko, Y.G. Unveiling the in-situ Formation Mechanism of Nano-Fir Tree-like Architecture: Yolk-Shell Structure Enables the Development of an Advanced Multifunctional Template. Chem. Eng. J. 2023, 470, 144355. [Google Scholar] [CrossRef]
- Wu, B.; Zuo, J.; Dong, B.; Xing, F.; Luo, C. Study on the Affinity Sequence between Inhibitor Ions and Chloride Ions in MgAl Layer Double Hydroxides and Their Effects on Corrosion Protection for Carbon Steel. Appl. Clay Sci. 2019, 180, 105181. [Google Scholar] [CrossRef]
- Li, Y.; Hu, T.; Li, B.; Wei, J.; Zhang, J. Totally Waterborne and Highly Durable Superamphiphobic Coatings for Anti-Icing and Anticorrosion. Adv. Mater. Interfaces 2019, 6, 1901255. [Google Scholar] [CrossRef]
- Sugisawa, K.; Kaneko, T.; Sago, T.; Sato, T. Rapid Quantitative Analysis of Magnesium Stearate in Pharmaceutical Powders and Solid Dosage Forms by Atomic Absorption: Method Development and Application in Product Manufacturing. J. Pharm. Biomed. Anal. 2009, 49, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Tronto, J.; Crepaldi, E.L.; Pavan, P.C.; Cipriano De Paula, C.; Valim, J.B. Organic Anions of Pharmaceutical Interest Intercalated in Magnesium Aluminum LDHs by Two Different Methods. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. Mol. Cryst. Liq. Cryst. 2001, 356, 227–237. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Ko, Y.G. Engineering Organic-Inorganic Frameworks as Functionalized Coating with Remarkable Active Sites for Boosted Durability of Anti-Corrosion Protection. J. Environ. Chem. Eng. 2023, 11, 110935. [Google Scholar] [CrossRef]
- Toorani, M.; Aliofkhazraei, M. Review of Electrochemical Properties of Hybrid Coating Systems on Mg with Plasma Electrolytic Oxidation Process as Pretreatment. Surf. Interfaces 2019, 14, 262–295. [Google Scholar] [CrossRef]
- Khan, A.; Hassanein, A.; Habib, S.; Nawaz, M.; Shakoor, R.A.; Kahraman, R. Hybrid Halloysite Nanotubes as Smart Carriers for Corrosion Protection. ACS Appl. Mater. Interfaces 2020, 12, 37571–37584. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Zou, F.; Zhou, N.; Li, Y.; Lei, W. Ca-Al LDH Hybrid Self-Healing Microcapsules for Corrosion Protection. Chem. Eng. J. 2022, 447, 137125. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Zou, F.; Zhou, N.; Zhong, Y. CaAl–NO2 LDH Hybrid Self-Healing Microcapsules with Chloride Triggering: Towards Synergistic Corrosion Resistance. Compos. Part B Eng. 2023, 264, 110902. [Google Scholar] [CrossRef]
- Malinowski, S. Computational Design of Anticorrosion Properties of Novel, Low-Molecular Weight Schiff Bases. Materials 2022, 15, 6725. [Google Scholar] [CrossRef]
- Torres, V.V.; Rayol, V.A.; Magalhães, M.; Viana, G.M.; Aguiar, L.C.S.; Machado, S.P.; Orofino, H.; D’elia, E. Study of Thioureas Derivatives Synthesized from a Green Route as Corrosion Inhibitors for Mild Steel in HCl Solution. Corros. Sci. 2014, 79, 108–118. [Google Scholar] [CrossRef]
- Kaseem, M.; Ko, Y.G. Morphological Modification and Corrosion Response of MgO and Mg3(PO4)2 Composite Formed on Magnesium Alloy. Compos. Part B Eng. 2019, 176, 107225. [Google Scholar] [CrossRef]
- Du, M.; Huang, L.; Peng, M.; Hu, F.; Gao, Q.; Chen, Y.; Liu, P. Preparation of Vancomycin-Loaded Alginate Hydrogel Coating on Magnesium Alloy with Enhanced Anticorrosion and Antibacterial Properties. Thin Solid Films 2020, 693, 137679. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Lv, Y.; Dong, Z.; Hashimoto, T.; Zhou, X. Enhanced Corrosion Resistance of AZ31 Mg Alloy by One-Step Formation of PEO/Mg-Al LDH Composite Coating. Corros. Commun. 2022, 6, 67–83. [Google Scholar] [CrossRef]
- Shao, M.; Han, J.; Wei, M.; Evans, D.G.; Duan, X. The Synthesis of Hierarchical Zn–Ti Layered Double Hydroxide for Efficient Visible-Light Photocatalysis. Chem. Eng. J. 2011, 168, 519–524. [Google Scholar] [CrossRef]
- Asif, M.; Saeed, M.; Zafar, M.; Razzaq, A.; Kim, W.Y. Development of Co-Al LDH/GO Composite Photocatalyst for Enhanced Degradation of Textile Pollutant under Visible Light Irradiation. Results Phys. 2022, 42, 105997. [Google Scholar] [CrossRef]
- Karim, A.V.; Hassani, A.; Eghbali, P.; Nidheesh, P.V. Nanostructured Modified Layered Double Hydroxides (LDHs)-Based Catalysts: A Review on Synthesis, Characterization, and Applications in Water Remediation by Advanced Oxidation Processes. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100965. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab Initio Study of Ionic Solutions by a Polarizable Continuum Dielectric Model. Chem. Phys. Lett. 1998, 286, 253–260. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-Precision Sampling for Brillouin-Zone Integration in Metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Für Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Miyata, S.; Okada, A. Synthesis of Hydrotalcite-Like Compounds and Their Physico-Chemical Properties—The Systems Mg2+-Al3+-SO42− and Mg2+-Al3+-CrO42−. Clays Clay Miner. 1977, 25, 14–18. [Google Scholar] [CrossRef]
- Duan, X.; Evans, D.G. Layered Double Hydroxides; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 119, ISBN 3-540-28279-3. [Google Scholar]
- Kebukawa, Y.; Kobayashi, H.; Urayama, N.; Baden, N.; Kondo, M.; Zolensky, M.E.; Kobayashi, K. Nanoscale Infrared Imaging Analysis of Carbonaceous Chondrites to Understand Organic-Mineral Interactions during Aqueous Alteration. Proc. Natl. Acad. Sci. USA 2019, 116, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Disalvo, E.A.; Bouchet, A.M.; Frias, M.A. Connected and Isolated CH2 Populations in Acyl Chains and Its Relation to Pockets of Confined Water in Lipid Membranes as Observed by FTIR Spectrometry. Biochim. Biophys. Acta BBA-Biomembr. 2013, 1828, 1683–1689. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.-T.; Hong, H. An FTIR Investigation of Hexadecyltrimethylammonium Intercalation into Rectorite. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2008, 71, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhang, K.; Jiao, K.; Hu, W. Evolution of Coal Structures: FTIR Analyses of Experimental Simulations and Naturally Matured Coals in the Ordos Basin, China. Energy Explor. Exploit. 2011, 29, 1–19. [Google Scholar] [CrossRef]
- Krivoshein, P.K.; Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. FTIR Photoacoustic and ATR Spectroscopies of Soils with Aggregate Size Fractionation by Dry Sieving. ACS Omega 2022, 7, 2177–2197. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Ray, M.; Rajapaksa, I.; Mukherjee, S.; Datta, A. Xylene-Capped Luminescent Silicon Nanocrystals: Evidence of Supramolecular Bonding. J. Phys. Chem. C 2012, 116, 14644–14649. [Google Scholar] [CrossRef]
- Langner, R.; Zundel, G. FTIR Investigation of O··· H··· O Hydrogen Bonds with Large Proton Polarizability in Sulfonic Acid–N-Oxide Systems in the Middle and Far-IR. J. Chem. Soc. Faraday Trans. 1998, 94, 1805–1811. [Google Scholar] [CrossRef]
- Hasan, Z.; Jun, J.W.; Jhung, S.H. Sulfonic Acid-Functionalized MIL-101 (Cr): An Efficient Catalyst for Esterification of Oleic Acid and Vapor-Phase Dehydration of Butanol. Chem. Eng. J. 2015, 278, 265–271. [Google Scholar] [CrossRef]
- Jiang, D.D.; Yao, Q.; McKinney, M.A.; Wilkie, C.A. TGA/FTIR Studies on the Thermal Degradation of Some Polymeric Sulfonic and Phosphonic Acids and Their Sodium Salts. Polym. Degrad. Stab. 1999, 63, 423–434. [Google Scholar] [CrossRef]
- Varkolu, M.; Moodley, V.; Potwana, F.S.; Jonnalagadda, S.B.; van Zyl, W.E. Esterification of Levulinic Acid with Ethanol over Bio-Glycerol Derived Carbon–Sulfonic-Acid. React. Kinet. Mech. Catal. 2017, 120, 69–80. [Google Scholar] [CrossRef]
- Wei, J.; Hing, P.; Mo, Z.Q. TEM, XPS and FTIR Characterization of Sputtered Carbon Nitride Films. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films 1999, 28, 208–211. [Google Scholar] [CrossRef]
- Kanda, S.; Tokoroyama, T.; Umehara, N.; Fuwa, Y. In Situ Analysis of the Tribochemical Reaction of CNx by FTIR. Tribol. Online 2008, 3, 100–104. [Google Scholar] [CrossRef]
- Friedrichs, O.; Sánchez-López, J.C.; López-Cartes, C.; Dornheim, M.; Klassen, T.; Bormann, R.; Fernández, A. Chemical and Microstructural Study of the Oxygen Passivation Behaviour of Nanocrystalline Mg and MgH2. Appl. Surf. Sci. 2006, 252, 2334–2345. [Google Scholar] [CrossRef]
- Bouvier, Y.; Mutel, B.; Grimblot, J. Use of an Auger Parameter for Characterizing the Mg Chemical State in Different Materials. Surf. Coat. Technol. 2004, 180, 169–173. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Noeske, M.; Gasteiger, H.A.; Behm, R.J.; Britz, P.; Bönnemann, H. PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts: A Combined XPS, AFM, HRTEM, and RDE Study. J. Electrochem. Soc. 1998, 145, 925. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, T.; Ding, X. A Theoretical Investigation on Doping Superalkali for Triggering Considerable Nonlinear Optical Properties of Si12C12 Nanostructure. J. Comput. Chem. 2017, 38, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S.; Lu, T. The Geometry and Electronic Structure of Aristolochic Acid: Possible Implications for a Frozen Resonance. J. Phys. Org. Chem. 2013, 26, 473–483. [Google Scholar] [CrossRef]
- Lu, T.; Manzetti, S. Wavefunction and Reactivity Study of Benzo[a]Pyrene Diol Epoxide and Its Enantiomeric Forms. Struct. Chem. 2014, 25, 1521–1533. [Google Scholar] [CrossRef]
- Belghiti, M.E.; Echihi, S.; Dafali, A.; Karzazi, Y.; Bakasse, M.; Elalaoui-Elabdallaoui, H.; Olasunkanmi, L.O.; Ebenso, E.E.; Tabyaoui, M. Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Hydrazine Derivatives in Phosphoric Acid on Mild Steel Surface. Appl. Surf. Sci. 2019, 491, 707–722. [Google Scholar] [CrossRef]
- Han, P.; He, Y.; Chen, C.; Yu, H.; Liu, F.; Yang, H.; Ma, Y.; Zheng, Y. Study on Synergistic Mechanism of Inhibitor Mixture Based on Electron Transfer Behavior. Sci. Rep. 2016, 6, 33252. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, S.; Li, W.; Guo, L.; Xu, S.; Feng, L.; Madkour, L.H. Experimental and Theoretical Investigations of Some Pyrazolo-Pyrimidine Derivatives as Corrosion Inhibitors on Copper in Sulfuric Acid Solution. Appl. Surf. Sci. 2018, 459, 612–620. [Google Scholar] [CrossRef]
- Kozlica, D.K.; Kokalj, A.; Milošev, I. Synergistic Effect of 2-Mercaptobenzimidazole and Octylphosphonic Acid as Corrosion Inhibitors for Copper and Aluminium–An Electrochemical, XPS, FTIR and DFT Study. Corros. Sci. 2021, 182, 109082. [Google Scholar] [CrossRef]
- Hazmatulhaq, F.; Sheng, Y.; Suhartono, T.; Fatimah, S.; Chafiq, M.; Chaouiki, A.; Ko, Y.G. Electrochemical Response and Adsorption Behavior of Sulfocarbanilide Inhibitor on Oxide Layer Produced by Pulsed Plasma Electrolysis (PPE): Experimental and DFT Perspective. Corros. Sci. 2024, 229, 111849. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Ko, Y.G. Unveiling the Mechanisms behind High CO2 Adsorption by the Selection of Suitable Ionic Liquids Incorporated into a ZIF-8 Metal Organic Framework: A Computational Approach. Environ. Res. 2024, 246, 118112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Guo, Y.; Xu, Z.; Yang, X. DFT Insights into the Interfacial Chemical Behavior of Hybrid LDH/GO Nanocomposites. J. Phys. Chem. C 2019, 123, 1692–1699. [Google Scholar] [CrossRef]
- Tedim, J.; Zheludkevich, M.L.; Salak, A.N.; Lisenkov, A.; Ferreira, M.G.S. Nanostructured LDH-Container Layer with Active Protection Functionality. J. Mater. Chem. 2011, 21, 15464–15470. [Google Scholar] [CrossRef]
- Dehghanghadikolaei, A.; Ibrahim, H.; Amerinatanzi, A.; Hashemi, M.; Moghaddam, N.S.; Elahinia, M. Improving Corrosion Resistance of Additively Manufactured Nickel–Titanium Biomedical Devices by Micro-Arc Oxidation Process. J. Mater. Sci. 2019, 54, 7333–7355. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Chen, M.; Zhang, W.; Mao, J.; Zhao, Y.; Maitz, M.F.; Huang, N.; Wan, G. Sandwiched Polydopamine (PDA) Layer for Titanium Dioxide (TiO2) Coating on Magnesium to Enhance Corrosion Protection. Corros. Sci. 2015, 96, 67–73. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.; Yang, F.; Jiang, J.; Sun, J.; Wu, G.; Ma, A.; Ma, X. Simultaneously Improving Corrosion Resistance and Mechanical Properties of a Magnesium Alloy via Equal-Channel Angular Pressing and Post Water Annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chafiq, M.; Al-Moubaraki, A.H.; Chaouiki, A.; Ko, Y.G. A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives. Materials 2024, 17, 1176. https://doi.org/10.3390/ma17051176
Chafiq M, Al-Moubaraki AH, Chaouiki A, Ko YG. A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives. Materials. 2024; 17(5):1176. https://doi.org/10.3390/ma17051176
Chicago/Turabian StyleChafiq, Maryam, Aisha H. Al-Moubaraki, Abdelkarim Chaouiki, and Young Gun Ko. 2024. "A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives" Materials 17, no. 5: 1176. https://doi.org/10.3390/ma17051176
APA StyleChafiq, M., Al-Moubaraki, A. H., Chaouiki, A., & Ko, Y. G. (2024). A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives. Materials, 17(5), 1176. https://doi.org/10.3390/ma17051176