A 3D Meso-Scale Model and Numerical Uniaxial Compression Tests on Concrete with the Consideration of the Friction Effect
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Programs
2.1.1. Materials and Specimens
2.1.2. Experimental Setup
2.2. Meso-Scale Finite-Element Model
2.2.1. Geometry of Coarse Aggregates
2.2.2. Grading of Coarse Aggregate
2.2.3. Amount of Coarse Aggregate
2.2.4. ITZ Layer
2.3. Material Properties
2.3.1. The CDP Model
2.3.2. Cohesive Elements of ITZ
2.3.3. The Constitutive Parameters
2.4. Mesh Generation and Convergence
2.5. Boundary and Load Conditions
3. Results
3.1. Mechanical Behaviors
3.1.1. Linear Elastic Behaviors
3.1.2. Nonlinear Mechanical Behaviors
3.2. Failure Profiles
4. Discussion
4.1. Evolution of Compressing Failure
4.2. Effect of Friction
5. Conclusions
- (1)
- The contacting friction had quite a small influence on the compression elastic mechanical behavior of the concrete;
- (2)
- The nonlinear hardening behavior of the stress–strain curves had a quite strong relationship with the contacting friction;
- (3)
- The final failure profiles of the experiments showed a “sand-glass” shape, which may be expected to result from the contacting friction;
- (4)
- The contacting friction had a significant influence on both the mechanical performance and the failure profiles of the concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3-D | three-dimensional |
DIC | digital image correlation |
FE | finite-element |
ITZ | interface transition zone |
d | diameter of each grading class |
compression scalar stiffness degradation variable | |
maximum aggregate diameter | |
minimum aggregate diameter | |
tensile scalar stiffness degradation variable | |
D | scalar stiffness degradation variable |
Young’s modules of the weaker concrete | |
homogeneous Young’s modulus | |
Young’s modules of the mortar | |
initial elastic modulus | |
G | flow potential |
Kirchhoff’s modules of the weaker concrete | |
fracture energy | |
K | stiffness matrix |
ratio of the second stress invariant of the tensile meridian to that of the compressive meridian | |
frictional coefficient | |
n | exponent of the chosen grading curve |
N | amount of aggregates |
effective hydro-static pressure | |
P | loading force |
corresponding passing percentage | |
Mises equivalent effective stress | |
compression meridian | |
tensile meridian | |
t | nominal traction stress vector |
original thickness of the cohesive element | |
effective traction | |
cracking displacement | |
V | volume of the concrete sample |
equivalent volume of a single aggregate | |
volume fraction of aggregates | |
total weight of aggregate particles | |
characteristic parameter of yield function, | |
characteristic parameter of yield function, | |
characteristic parameter of yield function, | |
separation | |
strain | |
plastic strain | |
parameter, referred to as the eccentricity of materials | |
dilation angle | |
Poisson’s ratio | |
specific weight | |
Stress | |
effective stress | |
initial equi-biaxial compressive yield stress | |
initial uniaxial compressive yield stress | |
compression failure stress | |
yield stress, | |
tension strength | |
tension failure stress | |
module parameter of mortar |
References
- Li, M.; Hao, H.; Shi, Y.; Hao, Y. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests. Constr. Build. Mater. 2018, 161, 84–93. [Google Scholar] [CrossRef]
- Chaabene, W.B.; Flah, M.; Nehdi, M.L. Machine learning prediction of mechanical properties of concrete: Critical review. Constr. Build. Mater. 2020, 260, 119889. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, X.; Dong, X.; Zhou, F.; Ning, J.; Li, P.; Zheng, Y. Investigating the failure behaviors of RC beams without stirrups under impact loading. Int. J. Impact Eng. 2020, 137, 103432. [Google Scholar] [CrossRef]
- Wright, P.; Garwood, F. The effect of the method of test on the flexural strength of concrete. Mag. Concr. Res. 1952, 4, 67–76. [Google Scholar] [CrossRef]
- Ince, R.; Arslan, A.; Karihaloo, B. Lattice modelling of size effect in concrete strength. Eng. Fract. Mech. 2003, 70, 2307–2320. [Google Scholar] [CrossRef]
- Yi, S.T.; Yang, E.I.; Choi, J.C. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nucl. Eng. Des. 2006, 236, 115–127. [Google Scholar] [CrossRef]
- Del Viso, J.; Carmona, J.; Ruiz, G. Shape and size effects on the compressive strength of high-strength concrete. Cem. Concr. Res. 2008, 38, 386–395. [Google Scholar] [CrossRef]
- Tokyay, M.; Özdemir, M. Specimen shape and size effect on the compressive strength of higher strength concrete. Cem. Concr. Res. 1997, 27, 1281–1289. [Google Scholar] [CrossRef]
- Abedi, R.; Haber, R.B.; Clarke, P.L. Effect of random defects on dynamic fracture in quasi-brittle materials. Int. J. Fract. 2017, 208, 241–268. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B.; Cornetti, P. On the mechanics of quasi-brittle materials with a fractal microstructure. Eng. Fract. Mech. 2003, 70, 2321–2349. [Google Scholar] [CrossRef]
- Iskander, M.; Shrive, N. Fracture of brittle and quasi-brittle materials in compression: A review of the current state of knowledge and a different approach. Theor. Appl. Fract. Mech. 2018, 97, 250–257. [Google Scholar] [CrossRef]
- De Borst, R. Fracture and damage in quasi-brittle materials: A comparison of approaches. Theor. Appl. Fract. Mech. 2022, 122, 103652. [Google Scholar] [CrossRef]
- Yu, X.; Fu, Y.; Dong, X.; Zhou, F.; Ning, J. An Improved Lagrangian-Inverse Method for Evaluating the Dynamic Constitutive Parameters of Concrete. Materials 2020, 13, 1871. [Google Scholar] [CrossRef]
- Lv, T.; Chen, X.; Chen, G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr. Build. Mater. 2018, 160, 744–764. [Google Scholar] [CrossRef]
- Liu, J.; Wenxuan, Y.; Xiuli, D.; Zhang, S.; Dong, L. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. Int. J. Impact Eng. 2019, 125, 1–12. [Google Scholar]
- Maleki, M.; Rasoolan, I.; Khajehdezfuly, A.; Jivkov, A.P. On the effect of ITZ thickness in meso-scale models of concrete. Constr. Build. Mater. 2020, 258, 119639. [Google Scholar] [CrossRef]
- Ren, W.; Yang, Z.; Sharma, R.; Zhang, C.; Withers, P.J. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete. Eng. Fract. Mech. 2015, 133, 24–39. [Google Scholar] [CrossRef]
- Grassl, P.; Grégoire, D.; Solano, L.R.; Pijaudier-Cabot, G. Meso-scale modelling of the size effect on the fracture process zone of concrete. Int. J. Solids Struct. 2012, 49, 1818–1827. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Wang, Z.; Zhang, J.; Wang, Z.; Li, Z. 3D mesoscale fracture analysis of concrete under complex loading. Eng. Fract. Mech. 2019, 220, 106646. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, J.; Zhou, F.; Wang, Z.; Li, Z. Validation and investigation on the mechanical behavior of concrete using a novel 3D mesoscale method. Materials 2019, 12, 2647. [Google Scholar] [CrossRef]
- Bandeira, M.V.V.; La Torre, K.R.; Kosteski, L.E.; Marangon, E.; Riera, J.D. Influence of contact friction in compression tests of concrete samples. Constr. Build. Mater. 2022, 317, 125811. [Google Scholar] [CrossRef]
- Torrenti, J.; Benaija, E.; Boulay, C. Influence of boundary conditions on strain softening in concrete compression test. J. Eng. Mech. 1993, 119, 2369–2384. [Google Scholar] [CrossRef]
- Hirsch, T.J. Modulus of elasticity iof concrete affected by elastic moduli of cement paste matrix and aggregate. J. Proc. 1962, 59, 427–452. [Google Scholar]
- Meddah, M.S.; Zitouni, S.; Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr. Build. Mater. 2010, 24, 505–512. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Tejchman, J. Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography. Strain 2016, 52, 26–45. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Mo, Y.; Zhou, T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr. Build. Mater. 2018, 178, 418–431. [Google Scholar] [CrossRef]
- Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Prokopski, G.; Halbiniak, J. Interfacial transition zone in cementitious materials. Cem. Concr. Res. 2000, 30, 579–583. [Google Scholar] [CrossRef]
- Smith, M. ABAQUS/Standard User’s Manual; Version 6.9; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2009. [Google Scholar]
- Tan, H.; Huang, Y.; Liu, C.; Geubelle, P. The Mori–Tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 2005, 21, 1890–1918. [Google Scholar] [CrossRef]
- Trawiński, W.; Tejchman, J.; Bobiński, J. A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images. Eng. Fract. Mech. 2018, 189, 27–50. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Dehestani, M.; Alizadeh, E. Three-dimensional multiscale simulations of recycled aggregate concrete employing energy homogenization and finite element approaches. Constr. Build. Mater. 2022, 328, 127110. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, H.; Li, Z. Influence of end friction confinement on impact tests of concrete material at high strain rate. Int. J. Impact Eng. 2013, 60, 82–106. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, G.; Jing, L.; Shim, V. Response of high-strength concrete to dynamic compressive loading. Int. J. Impact Eng. 2017, 108, 114–135. [Google Scholar] [CrossRef]
Sieve Size | Total Percentage Retained | Total Percentage Passing (%) |
---|---|---|
12.7 | 0 | 100 |
9.5 | 23 | 77 |
4.75 | 74 | 26 |
2.36 | 100 | 0 |
Grain diameter (mm) | 9.5–12.7 | 4.75–9.5 | 2.36–4.75 |
Grain number | 19 | 57 | 268 |
Composition | Elastic Modulus (GPa) | Poisson’s Ratio | Compressive Strength (MPa) | Tensile Strength (MPa) | Fracture Energy (N/m) | Stiffness MPa/mm |
---|---|---|---|---|---|---|
Aggregate | 48 | 0.2 | - | - | - | - |
Mortar | 30 | 0.2 | 50.2 | 3.8 | 100 | - |
ITZ | 30 | 0.2 | 33.6 | 2.66 | 120 |
Component | Element Type | Element Size | Number |
---|---|---|---|
Mortar | C3D4H | 1 | 964,611 |
Aggregate | C3D4H | 1 | 182,557 |
ITZ layer | Zero-thickness cohesive elements | 1 | 57,808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yu, X.; Fu, Y.; Zhou, G. A 3D Meso-Scale Model and Numerical Uniaxial Compression Tests on Concrete with the Consideration of the Friction Effect. Materials 2024, 17, 1204. https://doi.org/10.3390/ma17051204
Wang J, Yu X, Fu Y, Zhou G. A 3D Meso-Scale Model and Numerical Uniaxial Compression Tests on Concrete with the Consideration of the Friction Effect. Materials. 2024; 17(5):1204. https://doi.org/10.3390/ma17051204
Chicago/Turabian StyleWang, Jiawei, Xinlu Yu, Yingqian Fu, and Gangyi Zhou. 2024. "A 3D Meso-Scale Model and Numerical Uniaxial Compression Tests on Concrete with the Consideration of the Friction Effect" Materials 17, no. 5: 1204. https://doi.org/10.3390/ma17051204
APA StyleWang, J., Yu, X., Fu, Y., & Zhou, G. (2024). A 3D Meso-Scale Model and Numerical Uniaxial Compression Tests on Concrete with the Consideration of the Friction Effect. Materials, 17(5), 1204. https://doi.org/10.3390/ma17051204