Post-Consumer Carpet Fibers in Concrete: Fiber Behavior in Alkaline Environments and Concrete Durability
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mixture Proportions
2.3. Fiber Exposure to Alkaline Environments and SEM and FTIR Tests
2.4. Tests on Mortars
2.5. Chloride Transport Tests
3. Results and Discussions
3.1. Tensile Strength and Toughness of Fibers under Different Exposure Conditions
3.2. Chemical and Microstructural Alterations of Fibers under Alkaline Exposure
3.3. Dimensional Changes in and Compressive Strengths of Mortar Mixtures under Alkaline Exposure
3.4. Chloride Transport Behavior of Carpet-Fiber-Reinforced Concretes
4. Summary, Conclusions, and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pakravan, H.R.; Asgharian Jeddi, A.A.; Jamshidi, M.; Memarian, F.; Saghafi, A.M. Properties of Recycled Carpet Fiber Reinforced Concrete. In Use of Recycled Plastics in Eco-Efficient Concrete; Elsevier: Duxford, UK, 2019; pp. 411–425. ISBN 978-0-08-102676-2. [Google Scholar]
- Wang, Y. Carpet Recycling Technologies. In Recycling in Textiles; Woodhead Publising: Cambridge, UK, 2006; pp. 58–70. ISBN 978-1-85573-952-9. [Google Scholar]
- Peoples, R. Carpet Stewardship in the United States—A Commitment to Sustainability. In Recycling in Textiles; Woodhead Publising: Cambridge, UK, 2006; pp. 38–45. ISBN 978-1-85573-952-9. [Google Scholar]
- Peoples, R. CARE 2015 Annual Report. Available online: https://carpetrecovery.org/wp-content/uploads/2014/04/CARE-2015-Annual-Report-FINAL-9-2-16-1.pdf (accessed on 20 September 2022).
- Thomassen, M.A.; Dalgaard, R.; Heijungs, R.; de Boer, I. Attributional and Consequential LCA of Milk Production. Int. J. Life Cycle Assess. 2008, 13, 339–349. [Google Scholar] [CrossRef]
- Sotayo, A.; Green, S.; Turvey, G. Carpet Recycling: A Review of Recycled Carpets for Structural Composites. Environ. Technol. Innov. 2015, 3, 97–107. [Google Scholar] [CrossRef]
- The Process That’s Saving Arizona’s Carpets from Landfill. Available online: https://www.nationalgeographic.com/environment/slideshow/partner-content-recovering-arizonas-rugs (accessed on 29 August 2023).
- Carpet America Recovery Effort. Available online: https://carpetrecovery.org/ (accessed on 6 January 2024).
- Wang, Y. Fiber and Textile Waste Utilization. Waste Biomass Valoriz. 2010, 1, 135–143. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Polk, M.B.; Kumar, S.; Muzzy, J.D. Recycling of Carpet and Textile Fibers. In Plastics and the Environment; Andrady, A.L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 697–725. ISBN 978-0-471-72155-0. [Google Scholar]
- Barbu, B. A New Catalyst for Breaking Down Nylon 6. Available online: https://cen.acs.org/environment/recycling/new-catalyst-breaking-down-nylon/101/web/2023/12 (accessed on 6 January 2024).
- Miraftab, M.; Lickfold, A. Utilization of Carpet Waste in Reinforcement of Substandard Soils. J. Ind. Text. 2008, 38, 167–174. [Google Scholar] [CrossRef]
- Fashandi, H.; Pakravan, H.R.; Latifi, M. Application of Modified Carpet Waste Cuttings for Production of Eco-Efficient Lightweight Concrete. Constr. Build. Mater. 2019, 198, 629–637. [Google Scholar] [CrossRef]
- Bolden, J.; Abu-Lebdeh, T.; Fini, E. Utilization of recycled and waste materials in various construction applications. Am. J. Environ. Sci. 2013, 9, 14–24. [Google Scholar] [CrossRef]
- Awal, A.S.M.A.; Mohammadhosseini, H. Green Concrete Production Incorporating Waste Carpet Fiber and Palm Oil Fuel Ash. J. Clean. Prod. 2016, 137, 157–166. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid Short Fiber Reinforcement System in Concrete: A Review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Simon, A.; Tripathi, A.; Surehali, S.; Neithalath, N. Carpet Fiber Recycling in Regular-Use Concrete Mixtures and Associated Life Cycle Analysis. Waste Manag. Bull. 2023, 1, 103–114. [Google Scholar] [CrossRef]
- Neithalath, N. Analysis of Moisture Transport in Mortars and Concrete Using Sorption-Diffusion Approach. ACI Mater. J. 2006, 103, 209–217. [Google Scholar] [CrossRef]
- ASTM C1585; C09 Committee. Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2020.
- Baldenebro-Lopez, F.J. Influence of Continuous Plastic Fibers Reinforcement Arrangement in Concrete Strengthened. IOSR J. Eng. 2014, 4, 15–23. [Google Scholar] [CrossRef]
- Gonzalez-Canche, N.G.; Flores-Johnson, E.A.; Cortes, P.; Carrillo, J.G. Evaluation of Surface Treatments on 5052-H32 Aluminum Alloy for Enhancing the Interfacial Adhesion of Thermoplastic-Based Fiber Metal Laminates. Int. J. Adhes. Adhes. 2018, 82, 90–99. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. A Sensor for the Determination of Lindane Using PANI/Zn, Fe(III) Oxides and Nylon 6,6/MWCNT/Zn, Fe(III) Oxides Nanofibers Modified Glassy Carbon Electrode. J. Nanomater. 2016, 2016, 4049730. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega 2020, 5, 8572–8578. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; George, S.M. Molecular Layer Deposition of Nylon 66 Films Examined Using in Situ FTIR Spectroscopy. J. Phys. Chem. C 2007, 111, 8509–8517. [Google Scholar] [CrossRef]
- ASTM C150; C01 Committee: Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C618; C09 Committee: Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C157; C09 Committee: Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C109; C01 Committee: Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2001.
- ASTM C1202; C09 Committee: Test Method for Electrical Indication of Concretes Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2017.
- NT BUILD 492; Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. NORDTEST: Espoo, Finland, 1999.
- Stanish, K.D.; Hooton, R.D.; Thomas, M.D.A. Testing the Chloride Penetration Resistance of Concrete: A Literature Review; Federal Highway Administration: Washington, DC, USA, 1997. [Google Scholar]
- Cam, H.T.; Neithalath, N. Moisture and Ionic Transport in Concretes Containing Coarse Limestone Powder. Cem. Concr. Compos. 2010, 32, 486–496. [Google Scholar] [CrossRef]
- Neithalath, N.; Jain, J. Relating Rapid Chloride Transport Parameters of Concretes to Microstructural Features Extracted from Electrical Impedance. Cem. Concr. Res. 2010, 40, 1041–1051. [Google Scholar] [CrossRef]
- Vance, K.; Aguayo, M.; Dakhane, A.; Ravikumar, D.; Jain, J.; Neithalath, N. Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders. Int. J. Concr. Struct. Mater. 2014, 8, 289–299. [Google Scholar] [CrossRef]
- Shahinian, H.; Cherukuri, H.; Mullany, B. Evaluation of Fiber-Based Tools for Glass Polishing Using Experimental and Computational Approaches. Appl. Opt. 2016, 55, 4307–4316. [Google Scholar] [CrossRef]
- Mahfuz, H.; Hasan, M.; Dhanak, V.; Beamson, G.; Stewart, J.; Rangari, V.; Wei, X.; Khabashesku, V.; Jeelani, S. Reinforcement of Nylon 6 with Functionalized Silica Nanoparticles for Enhanced Tensile Strength and Modulus. Nanotechnology 2008, 19, 445702. [Google Scholar] [CrossRef]
- Borg, R.P.; Baldacchino, O.; Ferrara, L. Early Age Performance and Mechanical Characteristics of Recycled PET Fibre Reinforced Concrete. Constr. Build. Mater. 2016, 108, 29–47. [Google Scholar] [CrossRef]
- Yildirim, F.F.; Avinc, O.; Yavas, A. Elastic Polyesters. In Proceedings of the Strutex 19th International Conference: Structure and Structural Mechanics of Textiles, Liberec, Czech Republic, 3–4 December 2012. [Google Scholar]
- Zhang, M.; Ma, X.; Liu, Y.; Ma, J.; Chen, F.; Zhang, Q. High-Performance Electrospun POSS-(PMMA46)8/PVDF Hybrid Gel Polymer Electrolytes with PP Support for Li-Ion Batteries. Ionics 2019, 25, 2595–2605. [Google Scholar] [CrossRef]
- Wilson, D. The Structure and Tensile Properties of Continuous Oxide Fibers. In Handbook of Tensile Properties of Textile and Technical Fibres; Woodhead Publishing: Cambridge, UK, 2009; pp. 626–650. ISBN 978-1-84569-387-9. [Google Scholar]
- Bunsell, A.R. The Mechanical Behaviour of Small Diameter Silicon Carbide Fibres. In Handbook of Tensile Properties of Textile and Technical Fibres; Woodhead Publishing: Cambridge, UK, 2009; pp. 603–625. ISBN 978-1-84569-387-9. [Google Scholar]
- Xin, H.; Liu, Y.; Mosallam, A.S.; He, J.; Du, A. Evaluation on Material Behaviors of Pultruded Glass Fiber Reinforced Polymer (GFRP) Laminates. Compos. Struct. 2017, 182, 283–300. [Google Scholar] [CrossRef]
- Athijayamani, A.; Thiruchitrambalam, M.; Natarajan, U.; Pazhanivel, B. Effect of Moisture Absorption on the Mechanical Properties of Randomly Oriented Natural Fibers/Polyester Hybrid Composite. Mater. Sci. Eng. A 2009, 517, 344–353. [Google Scholar] [CrossRef]
- Hanny, R.A.; Habib, A.W. Polymers Degradation. Biomater. J. 2022, 1, 47–60. [Google Scholar]
- Boesel, L.F.; Reis, R.L. A Review on the Polymer Properties of Hydrophilic, Partially Degradable and Bioactive Acrylic Cements (HDBC). Prog. Polym. Sci. 2008, 33, 180–190. [Google Scholar] [CrossRef]
- Preston, J.M.; Nimkar, M.V. Measuring the swelling of fibres in water. J. Text. Inst. Proc. 1949, 40, P674–P688. [Google Scholar] [CrossRef]
- Moody, V.; Needles, H.L. Tufted Carpet: Textile Fibers, Dyes, Finishes and Processes; William Andrew Publishing: Norwich, NY, USA, 2004. [Google Scholar]
- Needles, H.L. Textile Fibers, Dyes, Finishes, and Processes: A Concise Guide; Textile Series; Noyes Publications: Park Ridge, NJ, USA, 1986; ISBN 978-0-8155-1076-5. [Google Scholar]
- Sanjeevi, S.; Shanmugam, V.; Kumar, S.; Ganesan, V.; Sas, G.; Johnson, D.J.; Shanmugam, M.; Ayyanar, A.; Naresh, K.; Neisiany, R.E.; et al. Effects of Water Absorption on the Mechanical Properties of Hybrid Natural Fibre/Phenol Formaldehyde Composites. Sci. Rep. 2021, 11, 13385. [Google Scholar] [CrossRef]
- Mihut, C.; Captain, D.K.; Gadala-Maria, F.; Amiridis, M.D. Review: Recycling of nylon from carpet waste. Polym. Eng. Sci. 2004, 41, 1457–1470. [Google Scholar] [CrossRef]
- Rostami, R.; Zarrebini, M.; Mandegari, M.; Sanginabadi, K.; Mostofinejad, D.; Abtahi, S.M. The Effect of Concrete Alkalinity on Behavior of Reinforcing Polyester and Polypropylene Fibers with Similar Properties. Cem. Concr. Compos. 2019, 97, 118–124. [Google Scholar] [CrossRef]
- Čorak, I.; Tarbuk, A.; Đorđević, D.; Višić, K.; Botteri, L. Sustainable Alkaline Hydrolysis of Polyester Fabric at Low Temperature. Materials 2022, 15, 1530. [Google Scholar] [CrossRef]
- Hannant, D.J. Durability of Cement Sheets Reinforced with Fibrillated Polypropylene Networks. Mag. Concr. Res. 1983, 35, 197–204. [Google Scholar] [CrossRef]
- Lilac, W.D. Controlled Depolymerization of Polypropylene via Selective Partial Oxidation in a Supercritical Water Medium. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 1999. [Google Scholar]
- Bossert, R.G.; Croft, R.C.; Boord, C.E. Hydrolysis of Nylon. J. Chem. Educ. 1949, 26, 611. [Google Scholar] [CrossRef]
- Owen, W.S. The Alkaline Hydrolysis of Nylons and Terylene. Microchim. Acta 1965, 53, 88–91. [Google Scholar] [CrossRef]
- Prorokova, N.; Chorev, A.; Kuzmin, S.; Vavilova, S.; Prorokov, V. Chemical Method of Fibrous Materials Surface Activation on the Basis of Polyethylene Terephthalate (PET). Chem. Chem. Technol. 2014, 8, 293–302. [Google Scholar] [CrossRef]
- Ebadi-Dehaghani, H.; Barikani, M.; Borhani, S.; Bolvardi, B.; Khonakdar, H.A.; Jafari, S.H.; Aarabi, A. Biodegradation and Hydrolysis Studies on Polypropylene/Polylactide/Organo-Clay Nanocomposites. Polym. Bull. 2016, 73, 3287–3304. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, M.S.; Yang, J.H.; Lee, D.J.; Kim, K.N.; Hong, B.K.; Kim, W.N. Effects of Compatibilizers and Hydrolysis on the Mechanical and Rheological Properties of Polypropylene/EPDM/Poly(Lactic Acid) Ternary Blends. Macromol. Res. 2011, 19, 105–112. [Google Scholar] [CrossRef]
- He, Y.; Qian, Z.; Zhang, H.; Liu, X. Alkaline Degradation Behavior of Polyesteramide Fibers: Surface Erosion. Colloid Polym. Sci. 2004, 282, 972–978. [Google Scholar] [CrossRef]
- Das, J.; Halgeri, A.B.; Sahu, V.; Parikh, P.A. Alkaline Hydrolysis of Poly(Ethylene Terephthalate) in Presence of a Phase Transfer Catalyst. Indian J. Chem. Technol. 2007, 14, 173–177. [Google Scholar]
- Silva, D.A.; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gómez, L.; Ribeiro, J. Degradation of Recycled PET Fibers in Portland Cement-Based Materials. Cem. Concr. Res. 2005, 35, 1741–1746. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.H. Poly (Ethylene Terephthalate) Recycling for High Value Added Textiles. Fash. Text. 2014, 1, 1. [Google Scholar] [CrossRef]
- Dong, Q.; Lele, A.D.; Zhao, X.; Li, S.; Cheng, S.; Wang, Y.; Cui, M.; Guo, M.; Brozena, A.H.; Lin, Y.; et al. Depolymerization of Plastics by Means of Electrified Spatiotemporal Heating. Nature 2023, 616, 488–494. [Google Scholar] [CrossRef]
- Segre, N.; Tonella, E.; Joekes, I. Evaluation of the Stability of Polypropylene Fibers in Environments Aggressive to Cement-Based Materials. Cem. Concr. Res. 1998, 28, 75–81. [Google Scholar] [CrossRef]
- Akça, K.R.; Çakır, Ö.; İpek, M. Properties of Polypropylene Fiber Reinforced Concrete Using Recycled Aggregates. Constr. Build. Mater. 2015, 98, 620–630. [Google Scholar] [CrossRef]
- Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon Nanotube Reinforced Cementitious Composites: A Comprehensive Review. Constr. Build. Mater. 2022, 315, 125100. [Google Scholar] [CrossRef]
- Ramezani, M.; Kim, Y.H.; Sun, Z.; Sherif, M.M. Influence of Carbon Nanotubes on Properties of Cement Mortars Subjected to Alkali-Silica Reaction. Cem. Concr. Compos. 2022, 131, 104596. [Google Scholar] [CrossRef]
- Jain, J.A.; Neithalath, N. Chloride Transport in Fly Ash and Glass Powder Modified Concretes—Influence of Test Methods on Microstructure. Cem. Concr. Compos. 2010, 32, 148–156. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L. Compressive Strength, Chloride Diffusivity and Pore Structure of High Performance Metakaolin and Silica Fume Concrete. Constr. Build. Mater. 2006, 20, 858–865. [Google Scholar] [CrossRef]
- Ravikumar, D.; Neithalath, N. Electrically Induced Chloride Ion Transport in Alkali Activated Slag Concretes and the Influence of Microstructure. Cem. Concr. Res. 2013, 47, 31–42. [Google Scholar] [CrossRef]
- Aguayo, M.; Yang, P.; Vance, K.; Sant, G.; Neithalath, N. Electrically Driven Chloride Ion Transport in Blended Binder Concretes: Insights from Experiments and Numerical Simulations. Cem. Concr. Res. 2014, 66, 1–10. [Google Scholar] [CrossRef]
Binder Ingredients | Chemical Composition (% by Mass) | Specific Gravity | ||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | LOI | ||
OPC (Type I/II) | 20.98 | 3.82 | 3.82 | 63.54 | 1.82 | 2.84 | 1.27 | 3.15 |
Fly ash (FA) | 54.93 | 20.44 | 4.57 | 9.93 | 2.81 | 0.86 | 0.99 | 2.28 |
Mix ID | % CF (by Vol) | OPC (Type I/II); kg | FA; kg | CF; kg | Sand; kg | Water; kg | Admixture; % by wt. of Binder | Water-to-Binder Ratio |
---|---|---|---|---|---|---|---|---|
MF0 | 0 | 413 | 0 | 0 | 1817 | 170 | 0.50 | 0.41 |
MF1 | 0 | 330 | 83 | 0 | 1791 | 170 | 0.50 | 0.41 |
MF2 | 2.5 | 567 | 0 | 23.8 | 1469 | 230 | 0.65 | 0.41 |
MF3 | 2.5 | 410 | 102 | 23.8 | 1534 | 210 | 0.65 | 0.41 |
MF4 | 5 | 567 | 0 | 47.5 | 1339 | 255 | 0.65 | 0.45 |
MF5 | 5 | 410 | 102 | 47.5 | 1418 | 230 | 0.65 | 0.45 |
Mix ID | % CF (by Vol.) | OPC (Type I/II); kg | FA; kg | CF; kg | Sand; kg | CA; kg | Water; kg | Admixture; % by wt. of Binder | Water-to-Binder Ratio | 28-Day Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
CF0 | 0 | 413 | 0 | 0 | 985 | 864 | 170 | 0.50 | 0.41 | 46.0 |
CF1 | 0 | 330 | 83 | 0 | 904 | 920 | 170 | 0.50 | 0.41 | 47.5 |
CF2 | 2.5 | 567 | 0 | 23.8 | 744 | 753 | 230 | 0.65 | 0.41 | 45.0 |
CF3 | 2.5 | 410 | 102 | 23.8 | 776 | 787 | 210 | 0.65 | 0.41 | 46.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, A.; Mobasher, B.; Neithalath, N. Post-Consumer Carpet Fibers in Concrete: Fiber Behavior in Alkaline Environments and Concrete Durability. Materials 2024, 17, 977. https://doi.org/10.3390/ma17050977
Simon A, Mobasher B, Neithalath N. Post-Consumer Carpet Fibers in Concrete: Fiber Behavior in Alkaline Environments and Concrete Durability. Materials. 2024; 17(5):977. https://doi.org/10.3390/ma17050977
Chicago/Turabian StyleSimon, Aswathy, Barzin Mobasher, and Narayanan Neithalath. 2024. "Post-Consumer Carpet Fibers in Concrete: Fiber Behavior in Alkaline Environments and Concrete Durability" Materials 17, no. 5: 977. https://doi.org/10.3390/ma17050977
APA StyleSimon, A., Mobasher, B., & Neithalath, N. (2024). Post-Consumer Carpet Fibers in Concrete: Fiber Behavior in Alkaline Environments and Concrete Durability. Materials, 17(5), 977. https://doi.org/10.3390/ma17050977