Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis by Electrochemical Anodization
2.2. Morphological and Structural Characterization of the Nanostructures (FESEM and XRD)
2.3. Electrochemical Characterization
2.4. Application of WO3 Nanostructures
2.4.1. Photoelectrochemical Production of Hydrogen
2.4.2. Photoelectrodegradation of Methyl Red
3. Results and Discussion
3.1. Synthesis by Electrochemical Anodization
3.2. Morphological and Structural Characterization of the Nanostructures (FESEM and XRD)
3.3. Electrochemical Characterization
3.4. Application of WO3 Nanostructures
3.4.1. Photoelectrochemical Production of Hydrogen
3.4.2. Photoelectrodegradation of Methyl Red
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Aisaee, N.; Alhabradi, M.; Yang, X.; Alruwaili, M.; Rasul, S.; Tahir, A.A. Fabrication of WO3/Fe2O3 Heterostructure Photoanode by PVD for Photoelectrochemical Applications. Sol. Energy Mater. Sol. Cells 2023, 263, 112561. [Google Scholar] [CrossRef]
- Ebrahimi, H.R.; Modrek, M. Photocatalytic Decomposition of Methyl Red Dye by Using Nanosized Zinc Oxide Deposited on Glass Beads in Various PH and Various Atmosphere. J. Chem. 2013, 2013, 151034. [Google Scholar] [CrossRef]
- Conrad, C.L.; Elias, W.C.; Garcia-Segura, S.; Reynolds, M.A.; Wong, M.S. A Simple and Rapid Method of Forming Double-Sided TiO2 Nanotube Arrays. ChemElectroChem 2022, 9, e202200081. [Google Scholar] [CrossRef]
- Sánchez-García, G.; Da Silva, E.; Fernández-Domene, R.M.; Cháfer, A.; González-Alfaro, V.; Solsona, B.; Sánchez-Tovar, R. TiO2 Nanostructures Synthesized by Electrochemical Anodization in Green Protic Ionic Liquids for Photoelectrochemical Applications. Ceram. Int. 2023, 49, 26900–26909. [Google Scholar] [CrossRef]
- Hussain, S.M.S.; Adewunmi, A.A.; Alade, O.S.; Murtaza, M.; Mahboob, A.; Khan, H.J.; Mahmoud, M.; Kamal, M.S. A Review of Ionic Liquids: Recent Synthetic Advances and Oilfield Applications. J. Taiwan Inst. Chem. Eng. 2023, 153, 105195. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Kumar, H. Introduction to Ionic Liquids, Applications and Micellization Behaviour in Presence of Different Additives. J. Mol. Liq. 2024, 393, 123447. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Y.; Yao, X.; Hang, R. Na-Ti-O Nanostructured Film Anodically Grown on Titanium Surface Have the Potential to Improve Osteogenesis. Surf. Coat. Technol. 2020, 397, 125907. [Google Scholar] [CrossRef]
- Tacca, A.; Meda, L.; Marra, G.; Savoini, A.; Caramori, S.; Cristino, V.; Bignozzi, C.A.; Pedro, V.G.; Boix, P.P.; Gimenez, S.; et al. Photoanodes Based on Nanostructured WO3 for Water Splitting. ChemPhysChem 2012, 13, 3025–3034. [Google Scholar] [CrossRef]
- Amano, F.; Tian, M.; Ohtani, B.; Chen, A. Photoelectrochemical Properties of Tungsten Trioxide Thin Film Electrodes Prepared from Facet-Controlled Rectangular Platelets. J. Solid State Electrochem. 2012, 16, 1965–1973. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.; Chacón, C.; Palacios-González, E.; Rodríguez-Gattorno, G.; Oskam, G. Photoelectrochemical Water Oxidation at Electrophoretically Deposited WO3 Films as a Function of Crystal Structure and Morphology. Electrochim. Acta 2014, 140, 320–331. [Google Scholar] [CrossRef]
- Rougier, A.; Portemer, F.; Quede, A.; El Marssi, M.; Francè, F.F. Characterization of Pulsed Laser Deposited WO3 Thin Films for Electrochromic Devices. Appl. Surf. Sci. 1999, 153, 1–9. [Google Scholar] [CrossRef]
- Aliannezhadi, M.; Abbaspoor, M.; Shariatmadar Tehrani, F.; Jamali, M. High Photocatalytic WO3 Nanoparticles Synthesized Using Sol-Gel Method at Different Stirring Times. Opt. Quantum Electron. 2023, 55, 250. [Google Scholar] [CrossRef]
- Poongodi, S.; Kumar, P.S.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Masuda, Y.; Lee, C. Electrodeposition of WO3 Nanostructured Thin Films for Electrochromic and H2S Gas Sensor Applications. J. Alloys Compd. 2017, 719, 71–81. [Google Scholar] [CrossRef]
- Pligovka, A. Reflectant Photonic Crystals Produced via Porous-Alumina-Assisted-Anodizing of Al/Nb and Al/Ta Systems. Surf. Rev. Lett. 2021, 28, 1–7. [Google Scholar] [CrossRef]
- Deshpande, R.; Lee, S.H.; Mahan, A.H.; Parilla, P.A.; Jones, K.M.; Norman, A.G.; To, B.; Blackburn, J.L.; Mitra, S.; Dillon, A.C. Optimization of Crystalline Tungsten Oxide Nanoparticles for Improved Electrochromic Applications. Solid. State Ion. 2007, 178, 895–900. [Google Scholar] [CrossRef]
- Pan, L.; Han, Q.; Dong, Z.; Wan, M.; Zhu, H.; Li, Y.; Mai, Y. Reactively Sputtered WO3 Thin Films for the Application in All Thin Film Electrochromic Devices. Electrochim. Acta 2019, 328, 135107. [Google Scholar] [CrossRef]
- Pligovka, A.; Lazavenka, A.; Zakhlebayeva, A. Electro-Physical Properties of Niobia Columnlike Nanostructures via the Anodizing of Al/Nb Layers. In Proceedings of the IEEE Conference on Nanotechnology, 2018 IEEE 18th International Conference on Nanotechnology, Cork, Ireland, 23–26 July 2018; IEEE Computer Society: Washington, DC, USA, 2018; Volume 2018. [Google Scholar]
- Go, G.H.; Shinde, P.S.; Doh, C.H.; Lee, W.J. PVP-Assisted Synthesis of Nanostructured Transparent WO3 Thin Films for Photoelectrochemical Water Splitting. Mater. Des. 2016, 90, 1005–1009. [Google Scholar] [CrossRef]
- Shimosako, N.; Sakama, H. Influence of Vacuum Environment on Photocatalytic Degradation of Methyl Red by TiO2 Thin Film. Acta Astronaut. 2021, 178, 693–699. [Google Scholar] [CrossRef]
- Davi, M.; Ogutu, G.; Schrader, F.; Rokicinska, A.; Kustrowski, P.; Slabon, A. Enhancing Photoelectrochemical Water Oxidation Efficiency of WO3/α-Fe2O3 Heterojunction Photoanodes by Surface Functionalization with CoPd Nanocrystals. Eur. J. Inorg. Chem. 2017, 2017, 4267–4274. [Google Scholar] [CrossRef]
- Maldonado, M.I.; Passarinho, P.C.; Oller, I.; Gernjak, W.; Fernández, P.; Blanco, J.; Malato, S. Photocatalytic Degradation of EU Priority Substances: A Comparison between TiO2 and Fenton plus Photo-Fenton in a Solar Pilot Plant. J. Photochem. Photobiol. A Chem. 2007, 185, 354–363. [Google Scholar] [CrossRef]
- Luo, J.; Hepel, M. Photoelectrochemical Degradation of Naphthol Blue Black Diazo Dye on WO3 Film Electrode. Electrochim. Acta 2001, 46, 2913–2922. [Google Scholar] [CrossRef]
- Sreekantan, S.; Saharudin, K.A.; Basiron, N.; Wei, L.C. New-Generation Titania-Based Catalysts for Photocatalytic Hydrogen Generation. In Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–292. ISBN 9780128195529. [Google Scholar]
- Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. Recent Trends in Photoelectrochemical Water Splitting: The Role of Cocatalysts. NPG Asia Mater. 2022, 14, 88. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Cao, Y.; Kong, L.; Huang, J. Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem 2021, 8, 4427–4440. [Google Scholar] [CrossRef]
- Paramasivam, I.; Macak, J.M.; Selvam, T.; Schmuki, P. Electrochemical Synthesis of Self-Organized TiO2 Nanotubular Structures Using an Ionic Liquid (BMIM-BF4). Electrochim. Acta 2008, 54, 643–648. [Google Scholar] [CrossRef]
- Wender, H.; Feil, A.F.; Diaz, L.B.; Ribeiro, C.S.; Machado, G.J.; Migowski, P.; Weibel, D.E.; Dupont, J.; Teixeira, S.R. Self-Organized TiO2 Nanotube Arrays: Synthesis by Anodization in an Ionic Liquid and Assessment of Photocatalytic Properties. ACS Appl. Mater. Interfaces 2011, 3, 1359–1365. [Google Scholar] [CrossRef]
- Li, H.; Qu, J.; Cui, Q.; Xu, H.; Luo, H.; Chi, M.; Meisner, R.A.; Wang, W.; Dai, S. TiO2 Nanotube Arrays Grown in Ionic Liquids: High-Efficiency in Photocatalysis and Pore-Widening. J. Mater. Chem. 2011, 21, 9487–9490. [Google Scholar] [CrossRef]
- Pancielejko, A.; Mazierski, P.; Lisowski, W.; Zaleska-Medynska, A.; Łuczak, J. Ordered TiO2 Nanotubes with Improved Photoactivity through Self-Organizing Anodization with the Addition of an Ionic Liquid: Effects of the Preparation Conditions. ACS Sustain. Chem. Eng. 2019, 7, 15585–15596. [Google Scholar] [CrossRef]
- Heydari Dokoohaki, M.; Mohammadpour, F.; Zolghadr, A.R. New Insight into Electrosynthesis of Ordered TiO2 Nanotubes in EG-Based Electrolyte Solutions: Combined Experimental and Computational Assessment. Phys. Chem. Chem. Phys. 2020, 22, 22719–22727. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Sinsamphanh, O.; Abdullah, H.; Puteh, M.H.; Kurniawan, T.A. WO3–Based Photocatalysts: A Review on Synthesis, Performance Enhancement and Photocatalytic Memory for Environmental Applications. Ceram. Int. 2022, 48, 5845–5875. [Google Scholar] [CrossRef]
- Dong, P.; Hou, G.; Xi, X.; Shao, R.; Dong, F. WO3-Based Photocatalysts: Morphology Control, Activity Enhancement and Multifunctional Applications. Env. Sci. Nano 2017, 4, 539–557. [Google Scholar] [CrossRef]
- Kwong, W.L.; Savvides, N.; Sorrell, C.C. Electrodeposited Nanostructured WO3 Thin Films for Photoelectrochemical Applications. Electrochim. Acta 2012, 75, 371–380. [Google Scholar] [CrossRef]
- Kolaei, M.; Lee, B.K.; Masoumi, Z. Enhancing the Photoelectrochemical Activity and Stability of Plate-like WO3 Photoanode in Neutral Electrolyte Solution Using Optimum Loading of BiVO4 Layer and NiFe–LDH Electrodeposition. J. Alloys Compd. 2023, 968, 172133. [Google Scholar] [CrossRef]
- Watcharenwong, A.; Chanmanee, W.; de Tacconi, N.R.; Chenthamarakshan, C.R.; Kajitvichyanukul, P.; Rajeshwar, K. Anodic Growth of Nanoporous WO3 Films: Morphology, Photoelectrochemical Response and Photocatalytic Activity for Methylene Blue and Hexavalent Chrome Conversion. J. Electroanal. Chem. 2008, 612, 112–120. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Lucas-Granados, B.; Roselló-Márquez, G.; García-Antón, J. A Simple Method to Fabricate High-Performance Nanostructured WO3 Photocatalysts with Adjusted Morphology in the Presence of Complexing Agents. Mater. Des. 2017, 116, 160–170. [Google Scholar] [CrossRef]
- Ullah, I.; Tariq, M.; Muhammad, M.; Khan, J.; Rahim, A.; Abdullah, A.Z. UV Photocatalytic Remediation of Methyl Red in Aqueous Medium by Sulfate (SO4•-) and Hydroxyl (•OH) Radicals in the Presence of Fe2+and Co@TiO2 NPs Photocatalysts. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132614. [Google Scholar] [CrossRef]
- Galenda, A.; Crociani, L.; Habra, N.E.; Favaro, M.; Natile, M.M.; Rossetto, G. Effect of Reaction Conditions on Methyl Red Degradation Mediated by Boron and Nitrogen Doped TiO2. Appl. Surf. Sci. 2014, 314, 919–930. [Google Scholar] [CrossRef]
- Lassner, E.; Schubert, W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Springer: Berlin/Heidelberg, Germany, 1999; Volume 422. [Google Scholar]
- Paola, A.D.; Quarto, F.D.; Sunseri, C. Anodic Oxide Films on Tungsten—I. The Influence of Anodizing Parameters on Charging Curves and Film Composition. Corros. Sci. 1980, 20, 1067–1078. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Segura-Sanchís, E.; García-Antón, J. Novel Tree-like WO3 Nanoplatelets with Very High Surface Area Synthesized by Anodization under Controlled Hydrodynamic Conditions. Chem. Eng. J. 2016, 286, 59–67. [Google Scholar] [CrossRef]
- Freitas, R.G.; Justo, S.G.; Pereira, E.C. The Influence of Self-Ordered TiO2 Nanotubes Microstructure towards Li+ Intercalation. J. Power Sources 2013, 243, 569–572. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; García-Antón, J. Photoelectrocatalyzed Degradation of Organophosphorus Pesticide Fenamiphos Using WO3 Nanorods as Photoanode. Chemosphere 2020, 246, 125677. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; García-Antón, J. Influence of Annealing Conditions on the Photoelectrocatalytic Performance of WO3 Nanostructures. Sep. Purif. Technol. 2020, 238, 116417. [Google Scholar] [CrossRef]
- Wei, W.; Shaw, S.; Lee, K.; Schmuki, P.; Wei, W.; Shaw, S.; Lee, K.; Schmuki, P. Rapid Anodic Formation of High Aspect Ratio WO3 Layers with Self-Ordered Nanochannel Geometry and Use in Photocatalysis. Chem. A Eur. J. 2012, 18, 14622–14626. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Q.; Bai, J.; Li, J.; Li, J.; Zhou, B. Enhanced Photoelectrocatalytic Performance of Nanoporous WO3 Photoanode by Modification of Cobalt-Phosphate (Co-Pi) Catalyst. J. Solid. State Electrochem. 2014, 18, 157–161. [Google Scholar] [CrossRef]
- Yousif, A.A.; Khudadad, A.I. Effects of Annealing Process on the WO3 Thin Films Prepared by Pulsed Laser Deposition. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012064. [Google Scholar] [CrossRef]
- Hatel, R.; Baitoul, M. Nanostructured Tungsten Trioxide (WO3): Synthesis, Structural and Morphological Investigations. J. Phys. Conf. Ser. 2019, 1292, 012014. [Google Scholar] [CrossRef]
- Shabdan, Y.; Markhabayeva, A.; Bakranov, N.; Nuraje, N. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting. Nanomaterials 2020, 10, 1871. [Google Scholar] [CrossRef]
- Murillo-Sierra, J.C.; Hernández-Ramírez, A.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L. A Review on the Development of Visible Light-Responsive WO3-Based Photocatalysts for Environmental Applications. Chem. Eng. J. Adv. 2021, 5, 100070. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef]
- Guo, Y.; Quan, X.; Lu, N.; Zhao, H.; Chen, S. High Photocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes. Env. Sci. Technol. 2007, 41, 4422–4427. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Roselló-Márquez, G.; Sánchez-Tovar, R.; Lucas-Granados, B.; García-Antón, J. Photoelectrochemical Removal of Chlorfenvinphos by Using WO3 Nanorods: Influence of Annealing Temperature and Operation PH. Sep. Purif. Technol. 2019, 212, 458–464. [Google Scholar] [CrossRef]
- Palmas, S.; Polcaro, A.M.; Ruiz, J.R.; Da Pozzo, A.; Mascia, M.; Vacca, A. TiO2 Photoanodes for Electrically Enhanced Water Splitting. Int. J. Hydrog. Energy 2010, 35, 6561–6570. [Google Scholar] [CrossRef]
- Ilka, M.; Bera, S.; Kwon, S.H. Influence of Surface Defects and Size on Photochemical Properties of SnO2 Nanoparticles. Materials 2018, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, V.S.; Lee, J.; Choi, Y.; Lee, H.; Ryuichi, M.; Nakayama, M.; Lee, W.; Oh, H.; Lee, K. Electrochromic and Pseudocapacitive Behavior of Hydrothermally Grown WO3 Nanostructures. Thin Solid. Film. 2020, 709, 138214. [Google Scholar] [CrossRef]
- Amano, F.; Koga, S. Electrochemical Impedance Spectroscopy of WO3 Photoanodes on Different Conductive Substrates: The Interfacial Charge Transport between Semiconductor Particles and Ti Surface. J. Electroanal. Chem. 2022, 921, 116685. [Google Scholar] [CrossRef]
- Batista-Grau, P.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; Blasco-Tamarit, E.; Solsona, B.; García-Antón, J. Indirect Charge Transfer of Holes via Surface States in ZnO Nanowires for Photoelectrocatalytic Applications. Ceram. Int. 2022, 48, 21856–21867. [Google Scholar] [CrossRef]
- Dhandole, L.K.; Koh, T.S.; Anushkkaran, P.; Chung, H.S.; Chae, W.S.; Lee, H.H.; Choi, S.H.; Cho, M.; Jang, J.S. Enhanced Charge Transfer with Tuning Surface State in Hematite Photoanode Integrated by Niobium and Zirconium Co-Doping for Efficient Photoelectrochemical Water Splitting. Appl. Catal. B 2022, 315, 121538. [Google Scholar] [CrossRef]
- Huang, M.C.; Wang, T.; Wu, B.J.; Lin, J.C.; Wu, C.C. Anodized ZnO Nanostructures for Photoelectrochemical Water Splitting. Appl. Surf. Sci. 2016, 360, 442–450. [Google Scholar] [CrossRef]
- Faughnan, B.W.; Crandall, R.S.; Lampert, M.A. Model for the Bleaching of WO3 Electrochromic Films by an Electric Field. Appl. Phys. Lett. 1975, 27, 275–277. [Google Scholar] [CrossRef]
- Yagi, M.; Maruyama, S.; Sone, K.; Nagai, K.; Norimatsu, T. Preparation and Photoelectrocatalytic Activity of a Nano-Structured WO3 Platelet Film. J. Solid. State Chem. 2008, 181, 175–182. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, W.; Han, S.; Liu, C. Photoelectrochemical Properties and Photocatalytic Activity of Nitrogen-Doped Nanoporous WO3 Photoelectrodes under Visible Light. Appl. Surf. Sci. 2012, 258, 5038–5045. [Google Scholar] [CrossRef]
- Bonham, D.B.; Orazem, M.E. A Mathematical Model for the Influence of Deep-Level Electronic States on Photoelectrochemical Impedance Spectroscopy: II. Assessment of Characterization Methods Based on Mott-Schottky Theory. J. Electrochem. Soc. 1992, 139, 127–131. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-XNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Sun, P.; Lu, S.; Wang, L.; Wang, C.; Liu, Y. Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochim. Acta 2014, 130, 290–295. [Google Scholar] [CrossRef]
- Takagi, M.; Kawaguchi, M.; Yamakata, A. Enhancement of UV-Responsive Photocatalysts Aided by Visible-Light Responsive Photocatalysts: Role of WO3 for H2 Evolution on CuCl. Appl. Catal. B 2020, 263, 118333. [Google Scholar] [CrossRef]
- Levinas, R.; Tsyntsaru, N.; Murauskas, T.; Cesiulis, H. Improved Photocatalytic Water Splitting Activity of Highly Porous WO3 Photoanodes by Electrochemical H+ Intercalation. Front. Chem. Eng. 2021, 3, 760700. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Roselló-Márquez, G.; Sánchez-Tovar, R.; Cifre-Herrando, M.; García-Antón, J. Synthesis of WO3 Nanorods through Anodization in the Presence of Citric Acid: Formation Mechanism, Properties and Photoelectrocatalytic Performance. Surf. Coat. Technol. 2021, 422, 127489. [Google Scholar] [CrossRef]
- Devi, L.G.; Murthy, B.N.; Kumar, S.G. Photocatalytic Activity of TiO2 Doped with Zn2+ and V5+ Transition Metal Ions: Influence of Crystallite Size and Dopant Electronic Configuration on Photocatalytic Activity. Mater. Sci. Eng. B 2010, 166, 1–6. [Google Scholar] [CrossRef]
- Grushevskaya, S.; Belyanskaya, I.; Kozaderov, O. Approaches for Modifying Oxide-Semiconductor Materials to Increase the Efficiency of Photocatalytic Water Splitting. Materials 2022, 15, 4915. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Kar, M.; Habib, M.; Zhou, G.; Frauenheim, T.; Sarkar, P.; Pal, S.; Prezhdo, O.V. Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. J. Am. Chem. Soc. 2021, 143, 6649–6656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Chong, M.N.; Chan, E.S. Nanostructured Tungsten Trioxide Thin Films Synthesized for Photoelectrocatalytic Water Oxidation: A Review. ChemSusChem 2014, 7, 2974–2997. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.M.; Mohite, V.S.; Kumbhar, S.S.; Rajpure, K.Y.; Moholkar, A.V.; Bhosale, C.H. Photoelectrocatalytic Degradation of Methyl Red Using Sprayed WO3 Thin Films under Visible Light Irradiation. J. Mater. Sci. Mater. Electron. 2015, 26, 8404–8412. [Google Scholar] [CrossRef]
- Mohite, S.V.; Ganbavle, V.V.; Rajpure, K.Y. Photoelectrocatalytic Activity of Immobilized Yb Doped WO3 Photocatalyst for Degradation of Methyl Orange Dye. J. Energy Chem. 2017, 26, 440–447. [Google Scholar] [CrossRef]
- Hernández, R.; Elizalde, E.A.; Domínguez, A.; Olvera-Rodríguez, I.; Esquivel, K.; Guzmán, C. Photoelectrocatalytic Degradation of Methyl Red Dye Using Au Doped TiO2 Photocatalyst. In Proceedings of the 2016 12th Congreso Internacional de Ingenieria, CONIIN 2016, Santiago de Queretaro, Mexico, 1–6 May 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016. [Google Scholar]
Sample | Total Charge (C) |
---|---|
Blank | 9.5 |
EMIM | 10.2 |
BMIM | 10.8 |
Sample | Nanoplate Length (μm) | Nanoplate Thickness (μm) | WO3 Layer Thickness (μm) |
---|---|---|---|
Blank | 0.48 ± 0.09 | 0.09 ± 0.02 | 0.7 ± 0.1 |
EMIM | 0.60 ± 0.05 | 0.06 ± 0.01 | 1.5 ± 0.2 |
BMIM | 0.64 ± 0.06 | 0.07 ± 0.01 | 1.2 ± 0.1 |
Sample | Crystallite Size (nm) |
---|---|
Blank | 53.5 |
EMIM | 49.7 |
BMIM | 49.7 |
Nanostructure | RT (kOhm·cm2) | R1 (kOhm·cm2) |
---|---|---|
Blank | 163.15 | 8.19 |
EMIM | 53.95 | 1.38 |
BMIM | 116.05 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva, E.; Sánchez-García, G.; Pérez-Calvo, A.; Fernández-Domene, R.M.; Solsona, B.; Sánchez-Tovar, R. Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications. Materials 2024, 17, 1243. https://doi.org/10.3390/ma17061243
Da Silva E, Sánchez-García G, Pérez-Calvo A, Fernández-Domene RM, Solsona B, Sánchez-Tovar R. Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications. Materials. 2024; 17(6):1243. https://doi.org/10.3390/ma17061243
Chicago/Turabian StyleDa Silva, Elianny, Ginebra Sánchez-García, Alberto Pérez-Calvo, Ramón M. Fernández-Domene, Benjamin Solsona, and Rita Sánchez-Tovar. 2024. "Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications" Materials 17, no. 6: 1243. https://doi.org/10.3390/ma17061243
APA StyleDa Silva, E., Sánchez-García, G., Pérez-Calvo, A., Fernández-Domene, R. M., Solsona, B., & Sánchez-Tovar, R. (2024). Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications. Materials, 17(6), 1243. https://doi.org/10.3390/ma17061243