Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pore Structure and Cell Wall Characterization of Fabricated Al-Sc Foams
3.2. Inhomogeneity of Aging Temperature and Mechanical Properties of Al-Sc Foams
3.3. Effect of Homogeneous Precipitates Distribution on the Yielding Strength of Al-Sc Foams Micro-Alloyed with Zr and Ti
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhu, D.F.; Wu, Y.; Liu, X.J.; Jiang, S.H.; Nieh, T.G.; Lu, Z.P. New Insight into Fabrication of Shaped Mg–X Alloy Foams with Cellular Structure via a Gas Release Reaction Powder Metallurgy Route. J. Iron Steel Res. Int. 2021, 28, 125–132. [Google Scholar] [CrossRef]
- Banhart, J.; Seeliger, H. Recent Trends in Aluminum Foam Sandwich Technology. Adv. Eng. Mater. 2012, 14, 1082–1087. [Google Scholar] [CrossRef]
- García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9, 85. [Google Scholar] [CrossRef]
- Rao, D.W.; Yang, Y.W.; Huang, Y.; Sun, J.B.; Pan, L.W.; Hu, Z.L. Microstructure and Compressive Properties of Aluminum Matrix Syntactic Foams Containing Al2O3 Hollow Particles. Met. Mater. 2021, 58, 395–407. [Google Scholar] [CrossRef]
- Byakova, A.; Gnyloskurenko, S.; Bezimyanniy, Y.; Nakamura, T. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties. Metals 2014, 4, 445–454. [Google Scholar] [CrossRef]
- Ferraris, S.; Santostefano, A.; Barbato, A.; Molina, R.; Ubertalli, G. Al-Based Foams as Permanent Cores in Al Castings: Effect of Surface Skin Thickness and Composition on Infiltration and Core-Shell Bonding. Metals 2021, 11, 1715. [Google Scholar] [CrossRef]
- Sasikumar, S.; Georgy, K.; Mukherjee, M. Production, Stability, and Properties of In-situ Al-5ZrB2 Composite Foams. Mater. Sci. Eng. A 2022, 849, 143501. [Google Scholar] [CrossRef]
- Hangai, Y.; Ando, M.; Ohashi, M.; Amagai, K.; Suzuki, R.; Matsubara, M.; Yoshikawa, N. Compressive Properties of Two-Layered Aluminum Foams with Closed-Cell and Open-Cell Structures. Mater. Today Commun. 2020, 24, 101249. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Tagliaferri, V.; Ucciardello, N. Design and Mechanical Characterization of Voronoi Structures Manufactured by Indirect Additive Manufacturing. Materials 2020, 13, 1085. [Google Scholar] [CrossRef]
- Byakova, A.V.; Gnyloskurenko, S.V.; Nakamura, T. Effect of CaCO3 Foaming Agent at Formation and Stabilization of Al-Based Foams Fabricated by Powder Compact Technique. Mater. Trans. 2017, 58, 249–258. [Google Scholar] [CrossRef]
- Sabuwala, T.; Gioia, G. Skeleton-and-Bubble Model of Polyether-Polyurethane Elastic Open-Cell Foams for Finite Element Analysis at Large Deformations. J. Mech. Phys. Solids 2013, 61, 886–911. [Google Scholar] [CrossRef]
- Oh, J.-S.; Shim, M.-C.; Park, M.-H.; Lee, K.-A. High Temperature Oxidation Behavior of Ni-Cr-Al Based Powder Porous Metal. Met. Mater. Int. 2014, 20, 915–921. [Google Scholar] [CrossRef]
- Pan, L.; Rao, D.; Yang, Y.; Qiu, J.; Sun, J.; Gupta, N.; Hu, Z. Gravity Casting of Aluminum-Al2O3 Hollow Sphere Syntactic Foams for Improved Compressive Properties. J. Porous Mater. 2020, 27, 1127–1137. [Google Scholar] [CrossRef]
- Hangai, Y.; Saito, K.; Utsunomiya, T.; Kuwazuru, O.; Yoshikawa, N. Fabrication and Compression Properties of Functionally Graded Foam with Uniform Pore Structures Consisting of Dissimilar A1050 and A6061 Aluminum Alloys. Mater. Sci. Eng. A 2014, 613, 163–170. [Google Scholar] [CrossRef]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Y.A.; Yelagin, V.I. Scientific Principles of Making an Alloying Addition of Scandium to Aluminium Alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Yang, D.; Ye, F.; Lu, Z.P. Effects of Scandium Additions on Mechanical Properties of Cellular Al-Based Foams. Intermetallics 2012, 28, 71–76. [Google Scholar] [CrossRef]
- Gao, Y.H.; Cao, L.F.; Yang, C.; Zhang, J.Y.; Liu, G.; Sun, J. Co-Stabilization of θ′-Al2Cu and Al3Sc Precipitates in Sc-Microalloyed Al–Cu Alloy with Enhanced Creep Resistance. Mater. Today Nano 2019, 6, 100035. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, Z.; Hou, B.; Zhao, Y.; Pang, X.; Zhang, J.; Li, L. Effects of Sc Addition and Retrogression and Re-Aging on Microstructure and Mechanical Properties of Al-8Zn-2Mg-2Cu-0.15Zr Alloy. J. Mater. Eng. Perform. 2022, 31, 5409–5418. [Google Scholar] [CrossRef]
- Huang, L.; Yang, D.H.; Wang, H.; Ye, F.; Lu, Z.P. Effects of Scandium on Corrosion Resistance and Mechanical Properties of Cellular Al-Based Foams. Mater. Sci. Forum 2013, 747–748, 93–100. [Google Scholar] [CrossRef]
- Dorin, T.; Babaniaris, S.; Jiang, L.; Cassel, A.; Eggeman, A.; Robson, J. Precipitation Sequence in Al-Sc-Zr Alloys Revisited. Materialia 2022, 26, 101608. [Google Scholar] [CrossRef]
- Tolley, A.; Radmilovic, V.; Dahmen, U. Segregation in Al3(Sc,Zr) Precipitates in Al–Sc–Zr Alloys. Scr. Mater. 2005, 52, 621–625. [Google Scholar] [CrossRef]
- Miyoshi, T.; Itoh, M.; Akiyama, S.; Kitahara, A. ALPORAS Aluminum Foam: Production Process, Properties, and Applications. Adv. Eng. Mater. 2000, 2, 179–183. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Yang, D.H.; Ye, F.; Wang, S.Q.; Lu, Z.P. Effects of Calcium on Mechanical Properties of Cellular Al–Cu Foams. Mater. Sci. Eng. A 2014, 618, 471–478. [Google Scholar] [CrossRef]
- Byakova, A.; Gnyloskurenko, S.; Vlasov, A.; Yevych, Y.; Semenov, N. The Mechanical Performance of Aluminum Foam Fabricated by Melt Processing with Different Foaming Agents: A Comparative Analysis. Metals 2022, 12, 1384. [Google Scholar] [CrossRef]
- Yang, D.; Chen, J.; Wang, H.; Jiang, J.; Ma, A.; Lu, Z.P. Effect of Decomposition Kinetics of Titanium Hydride on the Al Alloy Melt Foaming Process. J. Mater. Sci. Technol. 2015, 31, 361–368. [Google Scholar] [CrossRef]
- Qu, Y.-R.; Liu, S.-A.; Wu, H.; Li, M.-L.; Tian, H.-C. Tracing Carbonate Dissolution in Subducting Sediments by Zinc and Magnesium Isotopes. Geochim. Cosmochim. Acta 2022, 319, 56–72. [Google Scholar] [CrossRef]
- Sadeghi, E.; Hsieh, S.; Bahrami, M. Thermal Conductivity and Contact Resistance of Metal Foams. J. Phys. Appl. Phys. 2011, 44, 125406. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.; Long, B.; Yang, J.; Liu, H. Thermal Properties of Closed-Cell Aluminum Foams Prepared by Melt Foaming Technology. Trans. Nonferrous Met. Soc. China 2016, 26, 3147–3153. [Google Scholar] [CrossRef]
- Abishek, S.; King, A.J.C.; Nadim, N.; Mullins, B.J. Effect of Microstructure on Melting in Metal-Foam/Paraffin Composite Phase Change Materials. Int. J. Heat Mass Transf. 2018, 127, 135–144. [Google Scholar] [CrossRef]
- Manoj; Afzal Khan, D.M.; Mondal, D.P. High Temperature Deformation Behavior of Closed Cell ZnAl27 Hybrid Foam Made through Stir Casting Technique. Mater. Sci. Eng. A 2018, 731, 324–330. [Google Scholar] [CrossRef]
- Siddesh Kumar, N.M.; Dhruthi; Pramod, G.K.; Samrat, P.; Sadashiva, M. A Critical Review on Heat Treatment of Aluminium Alloys. Mater. Today Proc. 2022, 58, 71–79. [Google Scholar] [CrossRef]
- Van Dalen, M.E.; Gyger, T.; Dunand, D.C.; Seidman, D.N. Effects of Yb and Zr Microalloying Additions on the Microstructure and Mechanical Properties of Dilute Al–Sc Alloys. Acta Mater. 2011, 59, 7615–7626. [Google Scholar] [CrossRef]
- Van Dalen, M.E.; Dunand, D.C.; Seidman, D.N. Effects of Ti Additions on the Nanostructure and Creep Properties of Precipitation-Strengthened Al–Sc Alloys. Acta Mater. 2005, 53, 4225–4235. [Google Scholar] [CrossRef]
- Binary Alloy Phase Diagrams. In Alloy Phase Diagrams; Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. (Eds.) ASM International: Detroit, MI, USA, 2016; Volume 3. [Google Scholar] [CrossRef]
- Vlach, M.; Stulíková, I.; Smola, B.; Žaludová, N.; Černá, J. Phase Transformations in Isochronally Annealed Mould-Cast and Cold-Rolled Al–Sc–Zr-Based Alloy. J. Alloys Compd. 2010, 492, 143–148. [Google Scholar] [CrossRef]
- Feng, J.; Ye, B.; Zuo, L.; Qi, R.; Wang, Q.; Jiang, H.; Huang, R.; Ding, W.; Yao, J.; Wang, C. Effects of Zr, Ti and Sc Additions on the Microstructure and Mechanical Properties of Al-0.4Cu-0.14Si-0.05Mg-0.2Fe Alloys. J. Mater. Sci. Technol. 2018, 34, 2316–2324. [Google Scholar] [CrossRef]
- Bo, H.; Liu, L.B.; Hu, J.L.; Jin, Z.P. Experimental Study and Thermodynamic Modeling of the Al-Sc-Zr System. Comput. Mater. Sci. 2017, 133, 82–92. [Google Scholar] [CrossRef]
- Watanabe, C.; Watanabe, D.; Monzen, R. Coarsening Behavior of Al3Sc Precipitates in an Al-Mg-Sc Alloy. Mater. Trans. 2006, 47, 2285–2291. [Google Scholar] [CrossRef]
- Na, X.; Wenqing, L.; Liu, Z.; Muthuramalingam, T. Effect of Scandium in Al–Sc and Al–Sc–Zr Alloys Under Precipitation Strengthening Mechanism at 350 °C Aging. Met. Mater. Int. 2021, 27, 5145–5153. [Google Scholar] [CrossRef]
- Van Dalen, M.E.; Seidman, D.N.; Dunand, D.C. Creep- and Coarsening Properties of Al–0.06at.% Sc–0.06at.% Ti at 300–450 °C. Acta Mater. 2008, 56, 4369–4377. [Google Scholar] [CrossRef]
- Fuller, C.B.; Seidman, D.N.; Dunand, D.C. Mechanical Properties of Al(Sc,Zr) Alloys at Ambient and Elevated Temperatures. Acta Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Vo, N.Q.; Dunand, D.C.; Seidman, D.N. Improving Aging and Creep Resistance in a Dilute Al–Sc Alloy by Microalloying with Si, Zr and Er. Acta Mater. 2014, 63, 73–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.; Wang, T.; Yang, D.; Peng, X.; Hou, S.; Chen, S.; Lu, G.; Jiao, M.; Wu, Y.; Rempel, A.A.; et al. Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti. Materials 2024, 17, 1269. https://doi.org/10.3390/ma17061269
Chu X, Wang T, Yang D, Peng X, Hou S, Chen S, Lu G, Jiao M, Wu Y, Rempel AA, et al. Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti. Materials. 2024; 17(6):1269. https://doi.org/10.3390/ma17061269
Chicago/Turabian StyleChu, Xuming, Tianze Wang, Donghui Yang, Xiangyang Peng, Shuo Hou, Shuai Chen, Guangyao Lu, Meiyuan Jiao, Yuan Wu, Andrey A. Rempel, and et al. 2024. "Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti" Materials 17, no. 6: 1269. https://doi.org/10.3390/ma17061269
APA StyleChu, X., Wang, T., Yang, D., Peng, X., Hou, S., Chen, S., Lu, G., Jiao, M., Wu, Y., Rempel, A. A., Qu, W., Li, H., & Wang, H. (2024). Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti. Materials, 17(6), 1269. https://doi.org/10.3390/ma17061269