Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Morphology
3.2. Electrochemical Performance
3.3. Potassium Storage Mechanism
3.4. First-Principles Calculations
3.5. Full Cell Demonstration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camargos, P.H.; dos Santos, P.H.J.; dos Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Kainat, S.; Anwer, J.; Hamid, A.; Gull, N.; Khan, S.M. Electrolytes in Lithium-Ion Batteries: Advancements in the Era of Twenties (2020’s). Mater. Chem. Phys. 2024, 313, 128796. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ohnishi, T.; Osawa, T.; Pratt, A.; Tear, S.; Shimoda, S.; Baba, H.; Laitinen, M.; Sajavaara, T. In-Operando Lithium-Ion Transport Tracking in an All-Solid-State Battery. Small 2022, 18, 2204455. [Google Scholar] [CrossRef]
- Tatara, R.; Ishihara, K.; Kosugi, M.; Aoki, K.; Takei, Y.; Matsui, T.; Takayama, T.; Komaba, S. Application of Potassium Ion Conducting KTiOPO4 as Effective Inner Solid-Contact Layer in All-Solid-State Potassium Ion-Selective Electrode. J. Electrochem. Soc. 2023, 170, 027507. [Google Scholar] [CrossRef]
- Woo, D.; Ban, M.; Lee, J.S.; Park, C.Y.; Kim, J.; Kim, S.; Lee, J. Anisotropic lens-shaped mesoporous carbon from interfacially perpendicular self-assembly for potassium-ion batteries. Chem. Commun. 2024, 60, 590–593. [Google Scholar] [CrossRef]
- Wrogemann, J.M.; Fromm, O.; Deckwirth, F.; Beltrop, K.; Heckmann, A.; Winter, M.; Placke, T. Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries. Batter. Supercaps 2022, 5, e202200206. [Google Scholar] [CrossRef]
- Sada, K.; Darga, J.; Manthiram, A. Challenges and Prospects of Sodium-Ion and Potassium-Ion Batteries for Mass Production. Adv. Energy Mater. 2023, 13, 2302321. [Google Scholar] [CrossRef]
- Dhir, S.; Wheeler, S.; Capone, I.; Pasta, M. Outlook on K-Ion Batteries. Chem 2020, 6, 2442–2460. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Xie, H.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. Weak Cation–Solvent Interactions in Ether-Based Electrolytes Stabilizing Potassium-ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202208291. [Google Scholar] [CrossRef]
- Sohn, W.; Chae, J.S.; Lim, G.H.; Roh, K.C. Ion-exchange-assisted Li0.27K0.72Ni0.6Co0.2Mn0.2O2 cathode in potassium-ion batteries. J. Alloys Compd. 2022, 898, 162904. [Google Scholar] [CrossRef]
- Ko, W.; Kim, J.; Kang, J.; Park, H.; Lee, Y.; Ahn, J.; Ku, B.; Choi, M.; Ahn, H.; Oh, G.; et al. Development of P3-type K0.70[Cr0.86Sb0.14]O2 cathode for high-performance K-ion batteries. Mater. Today Energy 2023, 36, 101356. [Google Scholar] [CrossRef]
- Le Pham, P.N.; Wernert, R.; Cahu, M.; Sougrati, M.T.; Aquilanti, G.; Johansson, P.; Monconduit, L.; Stievano, L. Prussian blue analogues for potassium-ion batteries: Insights into the electrochemical mechanisms. J. Mater. Chem. A 2023, 11, 3091–3104. [Google Scholar] [CrossRef]
- Shu, W.; Huang, M.; Geng, L.; Qiao, F.; Wang, X. Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage. Small 2023, 19, 2207080. [Google Scholar] [CrossRef]
- Park, W.B.; Han, S.C.; Park, C.; Hong, S.U.; Han, U.; Singh, S.P.; Jung, Y.H.; Ahn, D.; Sohn, K.-S.; Pyo, M. KVP2O7 as a Robust High-Energy Cathode for Potassium-Ion Batteries: Pinpointed by a Full Screening of the Inorganic Registry under Specific Search Conditions. Adv. Energy Mater. 2018, 8, 1703099. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Luchinin, N.D.; Aksyonov, D.A.; Morozov, A.V.; Ryazantsev, S.V.; Gaboardi, M.; Plaisier, J.R.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat. Commun. 2020, 11, 1484. [Google Scholar] [CrossRef]
- Park, S.; Park, S.; Park, Y.; Alfaruqi, M.H.; Hwang, J.-Y.; Kim, J. A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy Environ. Sci. 2021, 14, 5864–5874. [Google Scholar] [CrossRef]
- Jha, P.K.; Totade, S.N.; Barpanda, P.; Sai Gautam, G. Evaluation of P3-Type Layered Oxides as K-Ion Battery Cathodes. lnorg. Chem. 2023, 62, 14971–14979. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Oh, G.; Lee, J.; Kang, H.; Kim, H.; Park, J.; Kansara, S.; Hwang, J.-Y.; Park, Y.; Lestari, K.R.; et al. Stabilization of layered-type potassium manganese oxide cathode with fluorine treatment for high-performance K-ion batteries. J. Power Sources 2023, 588, 233729. [Google Scholar] [CrossRef]
- Zhu, X.; Meng, F.; Zhang, Q.; Xue, L.; Zhu, H.; Lan, S.; Liu, Q.; Zhao, J.; Zhuang, Y.; Guo, Q.; et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 2021, 4, 392–401. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, T.; Yu, X. Unlock the Potassium Storage Behavior of Single-Phased Tungsten Selenide Nanorods via Large Cation Insertion. Adv. Mater. 2023, 35, 2208096. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Su, D.; Liu, L.; Chisnell, R.; Ong, S.P.; Chen, H.; Toumar, A.; Idrobo, J.-C.; Lei, Y.; et al. Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2. Nat. Mater. 2014, 13, 586–592. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Kim, J.; Yu, T.-Y.; Jung, H.-G.; Kim, J.; Kim, K.-H.; Sun, Y.-K. A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. J. Mater. Chem. A 2019, 7, 21362–21370. [Google Scholar] [CrossRef]
- Kim, H.; Seo, D.-H.; Kim, J.C.; Bo, S.-H.; Liu, L.; Shi, T.; Ceder, G. Investigation of Potassium Storage in Layered P3-Type K0.5MnO2 Cathode. Adv. Mater. 2017, 29, 1702480. [Google Scholar] [CrossRef]
- Cho, M.K.; Jo, J.H.; Choi, J.U.; Myung, S.-T. Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells. ACS Appl. Mater. Interfaces 2019, 11, 27770–27779. [Google Scholar] [CrossRef]
- Choi, J.U.; Kim, J.; Hwang, J.-Y.; Jo, J.H.; Sun, Y.-K.; Myung, S.-T. K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy 2019, 61, 284–294. [Google Scholar] [CrossRef]
- Liu, C.-L.; Luo, S.-H.; Huang, H.-B.; Liu, X.; Zhai, Y.-C.; Wang, Z.-W. Fe-doped layered P3-type K0.45Mn1−xFexO2 (x ≤ 0.5) as cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2019, 378, 122167. [Google Scholar] [CrossRef]
- Weng, J.; Duan, J.; Sun, C.; Liu, P.; Li, A.; Zhou, P.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649. [Google Scholar]
- Xu, Y.-S.; Zhou, Y.-N.; Zhang, Q.-H.; Qi, M.-Y.; Guo, S.-J.; Luo, J.-M.; Sun, Y.-G.; Gu, L.; Cao, A.-M.; Wan, L.-J. Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chem. Eng. J. 2021, 412, 128735. [Google Scholar] [CrossRef]
- Zhang, Q.; Didier, C.; Pang, W.K.; Liu, Y.; Wang, Z.; Li, S.; Peterson, V.K.; Mao, J.; Guo, Z. Structural Insight into Layer Gliding and Lattice Distortion in Layered Manganese Oxide Electrodes for Potassium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900568. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, X.; Cheng, Q.; Tan, T.; Huang, Q.; Deng, Q.; Hu, J.; Yang, C. Suppressing the interlayer-gliding of layered P3-type K0.5Mn0.7Co0.2Fe0.1O2 cathode materials on electrochemical potassium-ion storage. Appl. Phys. Rev. 2021, 8, 031412. [Google Scholar] [CrossRef]
- Kim, U.-H.; Myung, S.-T.; Yoon, C.S.; Sun, Y.-K. Extending the Battery Life Using an Al-Doped Li[Ni0.76Co0.09Mn0.15]O2 Cathode with Concentration Gradients for Lithium Ion Batteries. ACS Energy Lett. 2017, 2, 1848–1854. [Google Scholar] [CrossRef]
- Wang, X.; Han, K.; Qin, D.; Li, Q.; Wang, C.; Niu, C.; Mai, L. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 2017, 9, 18216–18222. [Google Scholar] [CrossRef]
- Gogula, S.K.; Gangadharappa, V.A.; Jayaraman, V.K.; Prakash, A.S. High-Voltage Layered NaNi0.5Co0.1Ti0.3Sb0.1O2 Cathode for Sodium-Ion Batteries. Energy Fuels 2023, 37, 4143–4149. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, H.J.; Lyoo, J.; Attias, R.; Gofer, Y.; Hong, S.-T.; Aurbach, D. Anomalous Sodium Storage Behavior in Al/F Dual-Doped P2-Type Sodium Manganese Oxide Cathode for Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2002205. [Google Scholar] [CrossRef]
- Eom, S.; Jeong, S.H.; Lee, S.J.; Jung, Y.H.; Kim, J.-H. Mitigating the P2–O2 phase transition of Ni–Co–Mn based layered oxide for improved sodium-ion batteries via interlayered structural modulation. Mater. Today Energy 2023, 38, 101449. [Google Scholar] [CrossRef]
- Liang, J.; Lin, C.; Meng, X.; Liang, M.; Lai, J.; Zheng, X.; Huang, Q.; Liu, L.; Shi, Z. P3-Type K0.45Co1/12Mg1/12Mn5/6O2 as a superior cathode material for potassium-ion batteries with high structural reversibility ensured by Co–Mg Co-substitution. J. Mater. Chem. A 2021, 9, 17261–17269. [Google Scholar] [CrossRef]
- Hao, J.; Xiong, K.; Zhou, J.; Rao, A.M.; Wang, X.; Liu, H.; Lu, B. Yolk–Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries. Energy Environ. Mater. 2022, 5, 261–269. [Google Scholar] [CrossRef]
- Sada, K.; Barpanda, P. P3-type layered K0.48Mn0.4Co0.6O2: A novel cathode material for potassium-ion batteries. Chem. Commun. 2020, 56, 2272–2275. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.N.; Kim, M.-H.; Meena, A.; Wi, T.-U.; Lee, H.-W.; Kim, K.S. Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for High-Performance Li-Ion Battery and Oxygen Evolution Reaction. Small 2021, 17, 2005605. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Xia, F.; Xu, L.; Wang, X.; Meng, J.; Wang, H.; Zhang, X.; Geng, L.; Wu, J.; Mai, L. Suppressing the Jahn–Teller Effect in Mn-Based Layered Oxide Cathode toward Long-Life Potassium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2108244. [Google Scholar] [CrossRef]
- Caixiang, Z.; Hao, J.; Zhou, J.; Yu, X.; Lu, B. Interlayer-Engineering and Surface-Substituting Manganese-Based Self-Evolution for High-Performance Potassium Cathode. Adv. Energy Mater. 2023, 13, 2203126. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Q.; Liao, J.; Xu, Y.; Duan, L.; Tian, R.; Du, Y.; Shen, J.; Zhou, X. Uniform P2-K0.6CoO2 Microcubes as a High-Energy Cathode Material for Potassium-Ion Batteries. Nano Lett. 2023, 23, 694–700. [Google Scholar] [CrossRef]
- Luo, R.-J.; Li, X.-L.; Ding, J.-Y.; Bao, J.; Ma, C.; Du, C.-Y.; Cai, X.-Y.; Wu, X.-J.; Zhou, Y.-N. Suppressing Jahn-Teller distortion and phase transition of K0.5MnO2 by K-site Mg substitution for potassium-ion batteries. Energy Storage Mater. 2022, 47, 408–414. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Zhang, Q.-H.; Wang, D.; Gao, J.-C.; Tao, X.-S.; Liu, Y.; Sun, Y.-G.; Gu, L.; Chang, B.-B.; Liu, C.-T.; et al. Enabling reversible phase transition on K5/9Mn7/9Ti2/9O2 for high-performance potassium-ion batteries cathodes. Energy Storage Mater. 2020, 31, 20–26. [Google Scholar] [CrossRef]
- Jo, J.H.; Choi, J.U.; Park, Y.J.; Jung, Y.H.; Ahn, D.; Jeon, T.-Y.; Kim, H.; Kim, J.; Myung, S.-T. P2-K0.75[Ni1/3Mn2/3]O2 Cathode Material for High Power and Long Life Potassium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1903605. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shu, W.; Zhang, G.; Meng, J.; Han, C.; Wei, X.; Wang, X. Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries. Materials 2024, 17, 1277. https://doi.org/10.3390/ma17061277
Li J, Shu W, Zhang G, Meng J, Han C, Wei X, Wang X. Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries. Materials. 2024; 17(6):1277. https://doi.org/10.3390/ma17061277
Chicago/Turabian StyleLi, Junxian, Wenli Shu, Guangwan Zhang, Jiashen Meng, Chunhua Han, Xiujuan Wei, and Xuanpeng Wang. 2024. "Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries" Materials 17, no. 6: 1277. https://doi.org/10.3390/ma17061277
APA StyleLi, J., Shu, W., Zhang, G., Meng, J., Han, C., Wei, X., & Wang, X. (2024). Co/Al Co-Substituted Layered Manganese-Based Oxide Cathode for Stable and High-Rate Potassium-Ion Batteries. Materials, 17(6), 1277. https://doi.org/10.3390/ma17061277