Analysis of Slag-Containing Steamed Concrete’s Composition Efficiency
Abstract
:1. Introduction
2. Criteria for Evaluating Material Consumption in Concrete
3. Research Aims, Scope, and Novelty
- -
- Implementing a planned experiment in order to study the influence of characteristics and the consumption of concrete components, including slag from thermal power plants, on the steamed concrete strength and the optimality criterion L (Equation (3));
- -
- Carrying out statistical processing of experimental data, establishing quantitative estimates of the individual and joint influence of the investigated factors, and obtaining experimental–statistical models of the influence of concrete composition parameters and raw material characteristics;
- -
- Analyzing the obtained models and evaluating the influence of factors on the steamed concrete strength and optimality criterion L as well as to finding the optimal values of the factors;
- -
- Developing a method for designing the optimal composition of steamed concrete using TPP slag with a given strength, while considering criterion L.
4. Materials and Research Methods
5. Experimental Data and Its Processing
Properties | Equation |
---|---|
Water demand of the concrete mixture, L/m3 |
W = 208.6 − 7.7X1 − 3.4X2 − 5.5X3 + 8.4X4 + 2.5X5 + 10.0X6
+ 17.0X12 + 26.5X22 + 1.5X32 − 1.0X42 + 12.1X1X2 + 5.6X1X3 − 5.1X1X5 + 8.5X2X4 − 10X2X5 |
Concrete compressive strength, 4 h after steaming, MPa |
fcm4h = 18.9 + 2.1X1 + 1.0X2 − 0.4X3 + 0.5X4 − 0.5X5 + 8.9X6 − 0.8X12
− 2.0X22 + 0.3X32 − 0.7X42 + 1.1X52 + 1.5X62 − 1.3X1X3 − 0.3X1X5 + 0.7X1X6 − 0.3X2X3 + 0.3X2X4 + 0.2X2X5 + 0.7X2X6 − 0.9X3X4 − 0.3X3X5 − 0.8X4X5 |
Concrete compressive strength, 28 days after steaming, MPa |
fcm28d = 30.9 + 2.6X1 + 2.5X2 + 1.3X3 + 1.8X4 + 1.8X5 + 13X6 + 0.4X12 − 1.5X22
+ 1.3X32 − 1.0X42 + 0.9X52 − 0.8X62 − 1.4X1X2 − 0.6X1X3 − 0.8X1X4 − 0.8X1X5 + 2.0X1X6 + 1.1X2X3 − 1.3X2X5 + 2.4X2X6 − 0.3X3X4 − 0.4X3X5 − 0.3X4X5 |
Criterion of cement efficiency for concrete, 4 h after steaming (L4h), MPa/kg |
L4h = 0.048 + 0.006X1 + 0.002X2 − 0.002X3 − 0.003X4 + 0.005X6 − 0.005X12
− 0.009X22 − 0.001X42 + 0.002X52 − 0.001X62 − 0.001X1X2 − 0.003X1X3 − 0.010X1X5 + 0.002X2X5 + 0.001X2X6 − 0.002X3X4 − 0.015X3X5 − 0.002X4X5 |
Criterion of cement efficiency for concrete, 28 days after steaming (L28d), MPa/kg |
L28d = 0.078 + 0.008X1 + 0.006X2 + 0.005X3 − 0.007X4 − 0.005X5 + 0.006X6
− 0.004X12 − 0.011X22 + 0.002X32 − 0.002X42 + 0.001X52 − 0.005X62 − 0.006X1X2 − 0.002X1X4 + 0.001X1X5 + 0.003X1X6 + 0.002X2X3 − 0.002X2X4 + 0.004X2X6 + 0.001X3X6 + 0.002X4X6 + 0.002X5X6 |
6. Example
- X1 = 0.63;
- X2 = 0.12.
- rsc = 0.33 · 0.63 + 0.33 = 0.54;
- rsl = 0.5 · 0.12 + 0.5 = 0.56.
- K = (1000 − 506/3.1−218/1)/(0.54/2.61 + 0.2/2.69 + 0.26/2.45) = 1597 kg/m3;
- CS = 1597 · 0.54 = 862 kg/m3;
- Sl = 1597 · 0.26 = 415 kg/m3;
- S = 1597· 0.2 = 320 kg/m3.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Coded Factors | |||||
X1 | X2 | X3 | X4 | X5 | X6 | |
1 | −1 | −1 | 0 | −1 | 0 | 0 |
2 | +1 | −1 | 0 | −1 | 0 | 0 |
3 | −1 | +1 | 0 | −1 | 0 | 0 |
4 | +1 | +1 | 0 | −1 | 0 | 0 |
5 | −1 | −1 | 0 | +1 | 0 | 0 |
6 | +1 | −1 | 0 | +1 | 0 | 0 |
7 | −1 | +1 | 0 | +1 | 0 | 0 |
8 | +1 | +1 | 0 | +1 | 0 | 0 |
9 | 0 | −1 | −1 | 0 | −1 | 0 |
10 | 0 | +1 | −1 | 0 | −1 | 0 |
11 | 0 | −1 | +1 | 0 | −1 | 0 |
12 | 0 | +1 | +1 | 0 | −1 | 0 |
13 | 0 | −1 | −1 | 0 | +1 | 0 |
14 | 0 | +1 | −1 | 0 | +1 | 0 |
15 | 0 | −1 | +1 | 0 | +1 | 0 |
16 | 0 | +1 | +1 | 0 | +1 | 0 |
17 | 0 | 0 | −1 | −1 | 0 | −1 |
18 | 0 | 0 | +1 | −1 | 0 | −1 |
19 | 0 | 0 | −1 | +1 | 0 | −1 |
20 | 0 | 0 | +1 | +1 | 0 | −1 |
21 | 0 | 0 | −1 | −1 | 0 | +1 |
22 | 0 | 0 | +1 | −1 | 0 | +1 |
23 | 0 | 0 | −1 | +1 | 0 | +1 |
24 | 0 | 0 | +1 | +1 | 0 | +1 |
25 | −1 | 0 | 0 | −1 | −1 | 0 |
26 | +1 | 0 | 0 | −1 | −1 | 0 |
27 | −1 | 0 | 0 | +1 | −1 | 0 |
28 | +1 | 0 | 0 | +1 | −1 | 0 |
29 | −1 | 0 | 0 | −1 | +1 | 0 |
30 | +1 | 0 | 0 | −1 | +1 | 0 |
31 | −1 | 0 | 0 | +1 | +1 | 0 |
32 | +1 | 0 | 0 | +1 | +1 | 0 |
33 | 0 | −1 | 0 | 0 | −1 | −1 |
34 | 0 | +1 | 0 | 0 | −1 | −1 |
35 | 0 | −1 | 0 | 0 | +1 | −1 |
36 | 0 | +1 | 0 | 0 | +1 | −1 |
37 | 0 | −1 | 0 | 0 | −1 | +1 |
38 | 0 | +1 | 0 | 0 | −1 | +1 |
39 | 0 | −1 | 0 | 0 | +1 | +1 |
40 | 0 | +1 | 0 | 0 | +1 | +1 |
41 | −1 | 0 | −1 | 0 | 0 | −1 |
42 | +1 | 0 | −1 | 0 | 0 | −1 |
43 | −1 | 0 | +1 | 0 | 0 | −1 |
44 | +1 | 0 | +1 | 0 | 0 | −1 |
45 | −1 | 0 | −1 | 0 | 0 | +1 |
46 | +1 | 0 | −1 | 0 | 0 | +1 |
47 | −1 | 0 | +1 | 0 | 0 | +1 |
48 | +1 | 0 | +1 | 0 | 0 | +1 |
49 | 0 | 0 | 0 | 0 | 0 | 0 |
50 | 0 | 0 | 0 | 0 | 0 | 0 |
51 | 0 | 0 | 0 | 0 | 0 | 0 |
52 | 0 | 0 | 0 | 0 | 0 | 0 |
53 | 0 | 0 | 0 | 0 | 0 | 0 |
54 | 0 | 0 | 0 | 0 | 0 | 0 |
No. | Cement Consumption, C, kg/m3 | Water Consumption, W, L/m3 | Concrete Compressive Strength, MPa (Average of Three Tested Specimens) | Criterion L, MPa/kg (Values Calculated According to Equation (3)) | ||
4 h after Steaming (fcm4h) | 28 Days after Steaming (fcm28d) | 4 h after Steaming (L4h) | 28 Days after Steaming (L28d) | |||
1 | 521 | 274 | 13.1 | 23.3 | 0.025 | 0.045 |
2 | 446 | 235 | 17.3 | 32.9 | 0.039 | 0.074 |
3 | 430 | 226 | 14.5 | 31.1 | 0.034 | 0.072 |
4 | 447 | 235 | 18.7 | 35.1 | 0.042 | 0.079 |
5 | 521 | 274 | 11.5 | 21.3 | 0.022 | 0.041 |
6 | 446 | 235 | 15.7 | 27.7 | 0.035 | 0.062 |
7 | 494 | 260 | 14.1 | 29.1 | 0.029 | 0.059 |
8 | 511 | 269 | 18.3 | 29.9 | 0.036 | 0.059 |
9 | 422 | 222 | 17.8 | 31.6 | 0.042 | 0.075 |
10 | 447 | 235 | 20 | 37 | 0.045 | 0.083 |
11 | 443 | 233 | 18.2 | 27.6 | 0.041 | 0.062 |
12 | 468 | 246 | 19.2 | 37.4 | 0.041 | 0.080 |
13 | 469 | 247 | 17 | 31.4 | 0.036 | 0.067 |
14 | 418 | 220 | 20 | 31.6 | 0.048 | 0.076 |
15 | 490 | 258 | 16.2 | 25.8 | 0.033 | 0.053 |
16 | 439 | 231 | 18 | 30.4 | 0.041 | 0.069 |
17 | 241 | 185 | 11.1 | 20.2 | 0.046 | 0.084 |
18 | 255 | 196 | 12.1 | 18.2 | 0.047 | 0.071 |
19 | 263 | 202 | 11.9 | 17.2 | 0.045 | 0.065 |
20 | 277 | 213 | 9.3 | 14 | 0.034 | 0.051 |
21 | 513 | 205 | 28.9 | 46.2 | 0.056 | 0.090 |
22 | 541 | 216 | 29.9 | 44.2 | 0.055 | 0.082 |
23 | 555 | 222 | 29.7 | 43.2 | 0.054 | 0.078 |
24 | 583 | 233 | 27.1 | 40 | 0.047 | 0.069 |
25 | 411 | 216 | 16.3 | 31.1 | 0.040 | 0.076 |
26 | 401 | 211 | 21.1 | 37.9 | 0.053 | 0.094 |
27 | 443 | 233 | 16.9 | 29.7 | 0.038 | 0.067 |
28 | 433 | 228 | 21.7 | 33.3 | 0.050 | 0.077 |
29 | 440 | 232 | 17.5 | 28.1 | 0.040 | 0.064 |
30 | 391 | 206 | 21.1 | 34.9 | 0.054 | 0.089 |
31 | 472 | 248 | 14.9 | 25.5 | 0.032 | 0.054 |
32 | 423 | 223 | 18.5 | 29.1 | 0.044 | 0.069 |
33 | 281 | 216 | 11 | 16.9 | 0.039 | 0.060 |
34 | 298 | 229 | 11.2 | 19.7 | 0.038 | 0.066 |
35 | 313 | 241 | 9.6 | 15.9 | 0.031 | 0.051 |
36 | 278 | 214 | 10.6 | 13.5 | 0.038 | 0.048 |
37 | 590 | 236 | 27.4 | 38.1 | 0.046 | 0.065 |
38 | 623 | 249 | 30.4 | 50.5 | 0.049 | 0.081 |
39 | 653 | 261 | 26 | 37.1 | 0.040 | 0.057 |
40 | 586 | 234 | 29.8 | 44.3 | 0.051 | 0.076 |
41 | 278 | 214 | 8.7 | 18.9 | 0.031 | 0.068 |
42 | 272 | 210 | 14.1 | 21.3 | 0.052 | 0.078 |
43 | 307 | 236 | 10.5 | 17.5 | 0.034 | 0.057 |
44 | 272 | 209 | 10.7 | 17.5 | 0.039 | 0.064 |
45 | 584 | 234 | 25.1 | 40.9 | 0.043 | 0.070 |
46 | 574 | 230 | 33.3 | 51.3 | 0.058 | 0.089 |
47 | 640 | 256 | 26.9 | 39.5 | 0.042 | 0.062 |
48 | 573 | 229 | 29.9 | 47.5 | 0.052 | 0.083 |
49 | 396 | 209 | 18.4 | 30.9 | 0.046 | 0.078 |
50 | 396 | 210 | 18.9 | 30.9 | 0.048 | 0.077 |
51 | 396 | 210 | 19 | 30.9 | 0.048 | 0.077 |
52 | 396 | 208 | 19.2 | 30.9 | 0.048 | 0.079 |
53 | 396 | 211 | 18.7 | 30.9 | 0.047 | 0.079 |
54 | 396 | 208 | 18.9 | 30.9 | 0.048 | 0.076 |
References
- Acosta, A.; Aineto, M.; Iglesias, I.; Romero, M.; Rincón, J.M. Physico-chemical characterization of slag waste coming from GICC thermal power plant. Mater. Lett. 2001, 50, 246–250. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Sánchez, I.; Climent, M.Á. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days. Materials 2017, 10, 1254. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; Sánchez, I.; Miñano, I.; Benito, F.; Cabeza, M.; Parra, C. On the Possibility of Using Recycled Mixed Aggregates and GICC Thermal Plant Wastes in Non-Structural Concrete Elements. Sustainability 2019, 11, 633. [Google Scholar] [CrossRef]
- Dvorkin, L.; Dvorkin, O.; Ribakov, Y. Construction Materials Based on Industrial Waste Products; Nova Publisher: New York, NY, USA, 2015; 252p, ISBN 978-1-63483-486-5. [Google Scholar]
- Kolokhov, V.; Moroz, L.; Romin, A.; Kovregin, V. Ash-Slag Waste of the Coal-Fired Thermal Power Plant as a Resource for the Construction Industry. Mater. Sci. Forum 2021, 1038, 290–295. [Google Scholar] [CrossRef]
- Thenepalli, T.; Ngoc, N.T.M.; Tuan, L.Q.; Son, T.H.; Hieu, H.H.; Thuy, D.T.N.; Thao, N.T.T.; Tam, D.T.T.; Huyen, D.T.N.; Van, T.T.; et al. Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam. Energies 2018, 11, 2018. [Google Scholar] [CrossRef]
- Konečný, P.; Ghosh, P.; Hrabová, K.; Lehner, P.; Teplý, B. Effective methodology of sustainability assessment of concrete mixtures. Mater. Struct. 2020, 53, 98. [Google Scholar] [CrossRef]
- Salvi Malacarne, C.; Silva, M.; Danieli, S.; Maciel, V.G.; Kirchheim, A.P. Environmental and technical assessment to support sustainable strategies for limestone calcined clay cement production in Brazil. Constr. Build. Mater. 2021, 310, 125261. [Google Scholar] [CrossRef]
- Hemalatha, T.; Ramaswamy, A. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod. 2017, 147, 546–559. [Google Scholar] [CrossRef]
- Koper, A.; Koper, M.; Kubissa, W. Determining Concrete Composition on Recycled Aggregates. Key Eng. Mater. 2016, 677, 266–272. [Google Scholar] [CrossRef]
- Hrabová, K.; Lehner, P.; Ghosh, P.; Konečný, P.; Teplý, B. Sustainability Levels in Comparison with Mechanical Properties and Durability of Pumice High-Performance Concrete. Appl. Sci. 2021, 11, 4964. [Google Scholar] [CrossRef]
- Teplý, B.; Rovnaníková, P.; Vymazal, T. Sustainability Quantification of Concrete Structures. In Advances in Environmental Research; NOVA Science Publishers: New York, NY, USA, 2018; ISBN 978-1-53613-918-1. [Google Scholar]
- Müller, H.S. Sustainable structural concrete—From today’s approach to future challenge. Struct. Concr. 2013, 14, 299–300. [Google Scholar] [CrossRef]
- Durastanti, C.; Moretti, L. Environmental Impacts of Cement Production: A Statistical Analysis. Appl. Sci. 2020, 10, 8212. [Google Scholar] [CrossRef]
- de Brito, J.; Kurda, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- Younsi, A.; Turcry, P.; Rozière, E.; Aït-Mokhtar, A.; Loukili, A. Performance-based design and carbonation of concrete with high fly ash content. Cem. Concr. Compos. 2011, 33, 993–1000. [Google Scholar] [CrossRef]
- Dvorkin, L.; Zhitkovsky, V.; Bordiuzhenko, O.; Ribakov, Y. High Performance Concrete Optimal Composition Design; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–200. ISBN 978-1-03241-386-0. [Google Scholar]
- Dvorkin, L.; Dvorkin, O.; Ribakov, Y. Multi-Parametric Concrete Compositions Design; Nova Science Pub Inc.: New York, NY, USA, 2013; pp. 1–233. ISBN 978-1-62417-911-2. [Google Scholar]
- Dvorkin, L.; Dvorkin, O. Criterion for the rational use of thermal energy in the production of concrete and reinforced concrete products. Concr. Technol. 2014, 2, 32–35. (In Russian) [Google Scholar]
- EN 12620:2013; Aggregates for Concrete. CEN: Brussels, Belgium, 2013. Available online: https://standards.iteh.ai/catalog/standards/cen/aef412e6-36ce-49d3-afaa-5200d721ff84/en-12620-2013 (accessed on 9 March 2024).
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Discovery, and Innovation, 2nd ed.; Wiley: New Jersey, NJ, USA, 2005; 672p, ISBN 978-0-471-71813-0. [Google Scholar]
- Chong, B.W.; Othman, R.; Putra Jaya, R.; Mohd Hasan, M.R.; Sandu, A.V.; Nabiałek, M.; Jeż, B.; Pietrusiewicz, P.; Kwiatkowski, D.; Postawa, P.; et al. Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials 2021, 14, 1866. [Google Scholar] [CrossRef] [PubMed]
- Dvorkin, L.; Dvorkin, O.; Ribakov, Y. Mathematical Experiments Planning in Concrete Technology; Nova Science Pub Inc.: New York, NY, USA, 2012; pp. 1–175. ISBN 978-1621002833. [Google Scholar]
- Bazhenov, Y. Concrete Technology; ACB: Moskow, Russia, 2011; pp. 1–524. ISBN 5-93093-138-0. (In Russian) [Google Scholar]
- DSTU B V.2.7-232:2010 Building Materials. Sand for Construction. Test Methods (Ukrainian Standart). Available online: https://online.budstandart.com/ua/catalog/doc-page?id_doc=26321 (accessed on 9 March 2024).
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. CEN: Brussels, Belgium, 2016.
- EN 12350-2:2009; Testing Fresh Concrete—Part 2: Slump-Test. CEN: Brussels, Belgium, 2009.
- de Sá, J.P.M. Applied Statistics Using SPSS, STATISTICA, MATLAB and R; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–529. [Google Scholar] [CrossRef]
- EN 12390-1:2021; Testing Hardened Concrete—Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds. CEN: Brussels, Belgium, 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/d1c9ccee-2e5a-425e-a964-961da95d2f99/en-12390-1-2021 (accessed on 9 March 2024).
- Kim, H.K.; Lee, H.K. Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr. Build. Mater. 2011, 25, 1115–1122. [Google Scholar] [CrossRef]
- Kosmatka, S.H.; Wilson, M.L. Design and Control of Concrete Mixtures, 15th ed.; Portland Cement Association: Skokie, IL, USA, 2011; 460p, ISBN 0-89312-272-6. [Google Scholar]
- Hansen, T.C.; Hedegaard, S.E. Modified rule of constant water content for constant consistency of fresh fly ash concrete mixes. Mater. Struct. 1992, 25, 347–354. [Google Scholar] [CrossRef]
Normal Consistency, % | Setting Time | Compressive Strength, MPa | |||
---|---|---|---|---|---|
Initial | Final | 2 Days | 7 Days | 28 Days | |
27.3 | 52 min | 2 h 35 min | 14.5 | 21.3 | 46.2 |
Aggregate | Fineness Modulus | Maximal Fraction, mm | The Content of Dusty and Clay Impurities, % | Water Demand, % |
---|---|---|---|---|
Quartz sand | 2.9 | 5 | 0.5 | 5 |
1.5 | 2.5 | 3.5 | 10 | |
1.1 | 1.25 | 5.2 | 15 | |
Thermal power plant slag | 2.5 | 5 | 0.8 | 7 |
1.8 | 5 | 3.9 | 9 | |
1.5 | 2.5 | 4.5 | 11 | |
Crushed granite stone | – | 20 | 0.5 | 1.5 |
– | 20 | 2.5 | 2.5 | |
– | 20 | 3.5 | 3.5 |
Factors | Variation Levels | Variation Interval | |||
---|---|---|---|---|---|
Natural | Coded | −1 | 0 | +1 | |
Part of crushed stone in the aggregate mixture rsc | X1 | 0 | 0.33 | 0.66 | 0.33 |
Part of slag in fine aggregate rsl | X2 | 0 | 0.5 | 1.0 | 0.5 |
Water demand of crushed stone (wsc), % | X3 | 1.5 | 2.5 | 3.5 | 1.0 |
Water demand of slag (wsl), % | X4 | 7.0 | 9.0 | 11.0 | 2.0 |
Water demand of sand (ws), % | X5 | 5.0 | 10.0 | 15.0 | 5.0 |
Cement–water ratio | X6 | 1.3 | 1.9 | 2.5 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvorkin, L.; Zhitkovsky, V.; Makarenko, R.; Ribakov, Y. Analysis of Slag-Containing Steamed Concrete’s Composition Efficiency. Materials 2024, 17, 1300. https://doi.org/10.3390/ma17061300
Dvorkin L, Zhitkovsky V, Makarenko R, Ribakov Y. Analysis of Slag-Containing Steamed Concrete’s Composition Efficiency. Materials. 2024; 17(6):1300. https://doi.org/10.3390/ma17061300
Chicago/Turabian StyleDvorkin, Leonid, Vadim Zhitkovsky, Ruslan Makarenko, and Yuri Ribakov. 2024. "Analysis of Slag-Containing Steamed Concrete’s Composition Efficiency" Materials 17, no. 6: 1300. https://doi.org/10.3390/ma17061300
APA StyleDvorkin, L., Zhitkovsky, V., Makarenko, R., & Ribakov, Y. (2024). Analysis of Slag-Containing Steamed Concrete’s Composition Efficiency. Materials, 17(6), 1300. https://doi.org/10.3390/ma17061300