A Molecular Dynamics Analysis of the Thickness and Adhesion Characteristics of the Quasi-Liquid Layer at the Asphalt–Ice Interface
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Analysis of Material Models
2.1.1. Asphalt Model
2.1.2. Water and Ice Models
2.1.3. MD Simulation Details
2.2. Ice–QLL–Asphalt
2.2.1. Asphalt Model Verification and Optimization
2.2.2. Ice–QLL–Asphalt Model
3. Simulation Task
3.1. QLL Thickness Task
3.2. Adhesion Strength Task
3.2.1. Surface Tension and Contact Angle
3.2.2. Interface Adhesion Strength
3.2.3. Binding Free Energy
4. Results and Discussion
4.1. Investigation of QLL Thickness at the Asphalt–Ice Interface
4.1.1. Impact of Crystal Facets of Ice on the Thickness of the QLL
4.1.2. Impact of Temperature on the QLL Thickness
4.1.3. Impact of Different Types of Asphalt on the Thickness of the QLL
4.2. Adhesive Characteristics of Asphalt–QLL–Ice
4.2.1. Interfacial Tension and Contact Angle of the Asphalt–QLL–Ice
4.2.2. Adhesive Characteristics of Asphalt–QLL–Ice Interface
5. Conclusions
- The QLL thickness varies among different asphalt types upon interaction with ice. At a constant temperature, the QLL thickness decreases in the order of AAM-1, AAA-1. As temperature increases, the system’s disorder grows, speeding up the surface melting and further thickening the QLL.
- AAA-1 asphalt shows varying premelting temperatures on the three different crystal faces of ice, resulting in different QLL thicknesses. The premelting temperature on the basal plane is observed at 170 K, 200 K on the primary prismatic plane, and 210 K on the secondary prismatic plane. At any given temperature, the QLL thickness is highest on the basal plane, correlating with increased adhesion strength.
- The adhesive strength at the asphalt–QLL–ice interface is influenced by the QLL thickness, the simulation temperature, and the QLL’s surface tension. There is an inverse relationship between adhesive strength and QLL thickness because of free water molecules acting as lubricants at the interface.
- Of the studied asphalts, AAM-1 exhibits the highest adhesive strength at the QLL–ice interface, measured at 1306.93 Pa at 250 K. This is attributed to its high proportion of polar aromatic hydrocarbons. In cold regions, it is advisable to avoid selecting asphalts similar to AAM-1, which contains a high proportion of polar aromatic hydrocarbons, as road surface materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slater, B.; Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 2019, 3, 172–188. [Google Scholar] [CrossRef]
- Guerin, F.; Laforte, C.; Farinas, M.-I.; Perron, J. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg. Sci. Technol. 2016, 121, 93–99. [Google Scholar] [CrossRef]
- Li, H.; Bier, M.; Mars, J.; Weiss, H.; Dippel, A.-C.; Gutowski, O.; Honkimäki, V.; Mezger, M. Interfacial premelting of ice in nano composite materials. Phys. Chem. Chem. Phys. 2019, 21, 3734–3741. [Google Scholar] [CrossRef]
- Pittenger, B.; Fain, S.C., Jr.; Cochran, M.J.; Donev, J.M.K.; Robertson, B.E.; Szuchmacher, A.; Overney, R.M. Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips. Phys. Rev. B 2001, 63, 134102. [Google Scholar] [CrossRef]
- Goertz, M.P.; Zhu, X.-Y.; Houston, J.E. Exploring the liquid-like layer on the ice surface. Langmuir 2009, 25, 6905–6908. [Google Scholar] [CrossRef]
- Yuk, J.M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D.J.; Crommie, M.F.; Lee, J.Y.; Zettl, A.; Alivisatos, A.P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64. [Google Scholar] [CrossRef]
- Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Kaiser, U.; Wu, H.A.; Geim, A.K.; Grigorieva, I.V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445. [Google Scholar] [CrossRef]
- Dec, S.F. Clathrate hydrate formation: Dependence on aqueous hydration number. J. Phys. Chem. C 2009, 113, 12355–12361. [Google Scholar] [CrossRef]
- Dec, S.F. Surface transformation of methane–ethane sI and sII clathrate hydrates. J. Phys. Chem. C 2012, 116, 9660–9665. [Google Scholar] [CrossRef]
- Limmer, D.T.; Chandler, D. Premelting, fluctuations, and coarse-graining of water-ice interfaces. J. Chem. Phys. 2014, 141, 18C505. [Google Scholar] [CrossRef] [PubMed]
- Pickering, I.; Paleico, M.; Sirkin, Y.A.P.; Scherlis, D.A.; Factorovich, M.H. Grand canonical investigation of the quasi liquid layer of ice: Is it liquid? J. Phys. Chem. B 2018, 122, 4880–4890. [Google Scholar] [CrossRef]
- Qiu, Y.; Molinero, V. Why is it so difficult to identify the onset of ice premelting? J. Phys. Chem. Lett. 2018, 9, 5179–5182. [Google Scholar] [CrossRef]
- Conde, M.M.; Vega, C.; Patrykiejew, A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J. Chem. Phys. 2008, 129, 014702. [Google Scholar] [CrossRef]
- Berrens, M.L.; Bononi, F.C.; Donadio, D. Effect of sodium chloride adsorption on the surface premelting of ice. Phys. Chem. Chem. Phys. 2022, 24, 20932–20940. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, S.; Ma, R.; Zhang, Z.; He, J. Characterization of the quasi-liquid layer on gas hydrates with molecular dynamics simulations. Fuel 2024, 357, 129905. [Google Scholar] [CrossRef]
- Anderson, D.; Reich, A. Tests of the performance of coatings for low ice adhesion. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–10 January 1997; p. 303. [Google Scholar]
- Shi, J.; Fulford, M.; Li, H.; Marzook, M.; Reisjalali, M.; Salvalaglio, M.; Molteni, C. Investigating the quasi-liquid layer on ice surfaces: A comparison of order parameters. Phys. Chem. Chem. Phys. 2022, 24, 12476–12487. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Dai, Q.; You, Z. Molecular dynamics simulation of physicochemical properties of the asphalt model. Fuel 2016, 164, 83–93. [Google Scholar] [CrossRef]
- Li, Y.; Yu, G.; Xu, M.; Ou, W.; Niu, C.; Jiang, H.; Zhang, Y.; Wu, N.; Sun, J. Interfacial strength between ice and sediment: A solution towards fracture-filling hydrate system. Fuel 2022, 330, 125553. [Google Scholar] [CrossRef]
- Murgich, J.; Rodríguez, M.J.; Izquierdo, A.; Carbognani, L.; Rogel, E. Interatomic interactions in the adsorption of asphaltenes and resins on kaolinite calculated by molecular dynamics. Energy Fuels 1998, 12, 339–343. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Hansen, J.S.; Lemarchand, C.A. Nzsphalt-aggregate interface adhesion strength with moisture effect. Int. J. Pavement Eng. 2017, 18, 414–423. [Google Scholar]
- Zhang, L.; Greenfield, M.L. Analyzing properties of model asphalts using molecular simulation. Energy Fuels 2007, 21, 1712–1716. [Google Scholar] [CrossRef]
- Wang, H.; Lin, E.; Xu, G. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect. Int. J. Pavement Eng. 2015, 18, 414–423. [Google Scholar] [CrossRef]
- Wu, W.; Cavalli, M.C.; Jiang, W.; Kringos, N. Differing perspectives on the use of high-content SBS polymer-modified bitumen. Constr. Build. Mater. 2024, 411, 134433. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, Y.; Chen, A.; Wu, S.; Li, Y.; Xu, H.; Wang, H.; Yang, Y.; Amirkhanian, S. Adhesion failure mechanism of asphalt-aggregate interface under an extreme saline environment: A molecular dynamics study. Appl. Surf. Sci. 2024, 645, 158851. [Google Scholar] [CrossRef]
- Li, Y.; Sha, A.; Wang, Z.; Liu, Z. Laboratory measurement of the adhesion strength between asphalt concrete and ice layer. Constr. Build. Mater. 2024, 416, 135102. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Zhou, B.; Wu, W.; Zheng, W.; Yuan, C. Influence of surface characteristics of cement pavement on ice-concrete adhesion. Constr. Build. Mater. 2023, 394, 132259. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Xin, L.; Ren, J.; Cao, Y.; Tian, Y. Concrete pavement with microwave heating enhancement functional layer for efficient de-icing: Design and case study. Cold Reg. Sci. Technol. 2023, 210, 103846. [Google Scholar] [CrossRef]
- Luo, L.; Chu, L.; Fwa, T. Molecular dynamics analysis of oxidative aging effects on thermodynamic and interfacial bonding properties of asphalt mixtures. Constr. Build. Mater. 2021, 269, 121299. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Xia, H.; Zhang, Z.; Yuan, T. Anti-freezing asphalt concrete: Ice-adhesion performance. J. Mater. Sci. 2018, 53, 4781–4795. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Xia, H.; Jing, B.; Zhang, Q. Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing. J. Traffic Transp. Eng. (Engl. Ed.) 2018, 5, 224–238. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, H.; Wu, Y.; Wu, J.; Liu, Y.; Lin, Y. Heating characteristics and deicing properties of magnetite mortar microwave-absorbing layer on concrete pavement. J. Mater. Civ. Eng. 2023, 35, 04023324. [Google Scholar] [CrossRef]
- Qiu, H.; Wu, Y.; Chen, H.; Wang, R.; Han, Z.; Wan, Z. Effect of silicon carbide powder on temperature field distribution characteristics and microwave deicing efficiency of cement concrete containing magnetite (Fe3O4) powder. Constr. Build. Mater. 2023, 392, 132005. [Google Scholar] [CrossRef]
- Qiu, H.; Wu, Y.; Chen, H.; Yu, J.; Kuang, D.; Jiao, Y.; Gao, P. Microwave heating characteristics of cement mortar containing carbonyl iron powder applied to airport pavement deicing. Cold Reg. Sci. Technol. 2024, 218, 104098. [Google Scholar] [CrossRef]
- Shen, S.; Lu, X.; Liu, L.; Zhang, C. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels. Constr. Build. Mater. 2016, 126, 197–205. [Google Scholar] [CrossRef]
- Abascal, J.L.F.; Sanz, E.; García Fernández, R.; Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 2005, 122, 234511. [Google Scholar] [CrossRef]
- Buch, V.; Devlin, J.P. (Eds.) Water in Confining Geometries; Springer Science Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Engel, E.A.; Monserrat, B.; Needs, R.J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 2015, 5, 021033. [Google Scholar] [CrossRef]
- Cheng, B.; Engel, E.A.; Behler, J.; Dellago, C.; Ceriotti, M. Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. USA 2019, 116, 1110–1115. [Google Scholar] [CrossRef]
- Tonauer, C.M.; Yamashita, K.; Rosso, L.; Celli, M.; Loerting, T. Enthalpy Change from Pure Cubic Ice Ic to Hexagonal Ice Ih. J. Phys. Chem. Lett. 2023, 14, 5055–5060. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Zhu, S. Validation of the generalized force fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by testing against experimental osmotic coefficient data for small drug-like molecules. J. Chem. Inf. Model. 2019, 59, 4239–4247. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Fischer, J.; Wendland, M. On the history of key empirical intermolecular potentials. Fluid Phase Equilibria 2023, 573, 113876. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [PubMed]
- Martoňák, R.; Laio, A.; Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 2003, 90, 075503. [Google Scholar] [CrossRef]
- Haile, J.M.; Johnston, I.; Mallinckrodt, A.J.; McKay, S. Molecular dynamics simulation: Elementary methods. Comput. Phys. Commun. 1993, 7, 625. [Google Scholar] [CrossRef]
- Kuiper, M.J.; Morton, C.J.; Abraham, S.E.; Gray-Weale, A. The biological function of an insect antifreeze protein simulated by molecular dynamics. eLife 2015, 4, e05142. [Google Scholar] [CrossRef]
- Kundu, S.; Roy, D. Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation. J. Mol. Graph. Model. 2008, 27, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Errington, J.R.; Debenedetti, P.G.; Torquato, S. Cooperative origin of low-density domains in liquid water. Phys. Rev. Lett. 2002, 89, 215503. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M. Relevance of hydrogen bond definitions in liquid water. J. Chem. Phys. 2007, 126, 054503. [Google Scholar] [CrossRef] [PubMed]
- Giovambattista, N.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E. Structural order in glassy water. Phys. Rev. E 2005, 71, 061505. [Google Scholar] [CrossRef]
- Jellinek, H.H.G. Ice adhesion. Can. J. Phys. 1962, 40, 1294–1309. [Google Scholar] [CrossRef]
- Cai, S.; Bhushan, B. Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng. R Rep. 2008, 61, 78–106. [Google Scholar] [CrossRef]
Molecule | Molecular Formula | Atom Mass Fraction (Carom) | Atom Mass Fraction (S) | Atom Mass Fraction (N) |
---|---|---|---|---|
Asphaltene-thiophene | C51H62S | 0.42 | 0.000 | 0.000 |
Asphaltene-pyrrole | C66H81N | 0.41 | 0.000 | 0.16 |
Asphaltene-phenol | C42H50O | 0.41 | 0.045 | 0.000 |
Squalane | C30H62 | 0.00 | 0.000 | 0.000 |
Hopane | C29H50 | 0.00 | 0.000 | 0.000 |
PHPN (perhydrophe-nanthrene-naphthalene) | C35H44 | 0.41 | 0.000 | 0.000 |
DOCHN (dioctyl-cyclohexane-naph-thalene) | C30H46 | 0.30 | 0.000 | 0.000 |
Quinolinohopane | C34H47N | 0.20 | 0.000 | 0.025 |
Thioisorenieratane | C40H60S | 0.34 | 0.056 | 0.000 |
Trimethylbenzeneoxane | C29H50O | 0.17 | 0.000 | 0.000 |
Pyridinohopane | C30H45N | 0.12 | 0.000 | 0.028 |
Benzobisbenzothiophene | C18H10S2 | 0.74 | 0.22 | 0.000 |
Molecule | AAA-1 | AAK-1 | AAM-1 | Three-Component | Molecule |
---|---|---|---|---|---|
Asphaltene-thiophene | 3 | 3 | 3 | 27 | Dimethylnaphthalene |
Asphaltene-pyrrole | 2 | 2 | 2 | 5 | Asphaltene |
Asphaltene-phenol | 3 | 3 | 3 | 41 | Docosane |
Squalane | 4 | 2 | 1 | ||
Hopane | 4 | 2 | 1 | ||
PHPN | 11 | 10 | 20 | ||
DOCHN | 13 | 10 | 21 | ||
Quinolinohopane | 4 | 4 | 10 | ||
Thioisorenieratane | 4 | 4 | 10 | ||
Trimethylbenzeneoxane | 5 | 5 | 10 | ||
Pyridinohopane | 4 | 4 | 10 | ||
Benzobisbenzothiophene | 15 | 12 | 4 |
θ/k (K) | α (Å) | q (H) (e) | q (O) (e) | q (M)(e) | rOM (Å) | rOH (Å) | ∠HOH (o) | |
---|---|---|---|---|---|---|---|---|
TIP4P-ICE | 106.1 | 3.1668 | 0.5897 | 0 | −1.1794 | 0.15 | 0.9572 | 104.52 |
Density at 272 K (g/cm3) | Glass Transition Temperature (K) | Viscosity at 372 K (cP) | CED/ (J/m3) | |
---|---|---|---|---|
Calculation (12-AAA-1) | 1.01 | 249.52 | 1.72 | 3.310 × 108 |
Calculation (12-AAA-M) | 1.03 | 276.77 | 1.81 | 3.490 × 108 |
Calculation (12-AAA-K) | 0.98 | 271.91 | 1.51 | 3.370 × 108 |
Calculation (3) | 0.95 | 283.19 | 1.42 | 3.420 × 108 |
Experiment | 0.95–1.04 | 250–400 | 1.4–4.0 | 2.34 × 108–5.29 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Yao, Y.; Qiu, H.; Chen, H.; Wu, Y. A Molecular Dynamics Analysis of the Thickness and Adhesion Characteristics of the Quasi-Liquid Layer at the Asphalt–Ice Interface. Materials 2024, 17, 1375. https://doi.org/10.3390/ma17061375
Jiao Y, Yao Y, Qiu H, Chen H, Wu Y. A Molecular Dynamics Analysis of the Thickness and Adhesion Characteristics of the Quasi-Liquid Layer at the Asphalt–Ice Interface. Materials. 2024; 17(6):1375. https://doi.org/10.3390/ma17061375
Chicago/Turabian StyleJiao, Yunhao, Yujin Yao, Heping Qiu, Huaxin Chen, and Yongchang Wu. 2024. "A Molecular Dynamics Analysis of the Thickness and Adhesion Characteristics of the Quasi-Liquid Layer at the Asphalt–Ice Interface" Materials 17, no. 6: 1375. https://doi.org/10.3390/ma17061375
APA StyleJiao, Y., Yao, Y., Qiu, H., Chen, H., & Wu, Y. (2024). A Molecular Dynamics Analysis of the Thickness and Adhesion Characteristics of the Quasi-Liquid Layer at the Asphalt–Ice Interface. Materials, 17(6), 1375. https://doi.org/10.3390/ma17061375