Fixed Yellow-to-Blue Intensity Ratio of Dy3+ in KY(CO3)2 Host for Emission Color Tuning
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structures
3.2. Morphologies and Element Analysis
3.3. Luminescent Properties
3.4. Decay Curves
3.5. Energy Level Diagram
3.6. Chromaticity Coordinates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrappa, V.; Basavapoornima, C.; Venkatramu, V.; Depuru, S.R.; Kaewkhao, J.; Pecharapa, W.; Jayasankar, C.K. A critical review and future prospects of Dy3+-doped glasses for white light emission applications. Optik 2022, 266, 169583. [Google Scholar] [CrossRef]
- Reddy, L. A Review of the Efficiency of White Light (or Other) Emissions in Singly and Co-Doped Dy3+ Ions in Different Host (Phosphate, Silicate, Aluminate) Materials. J. Fluoresc. 2023, 33, 2181–2192. [Google Scholar] [CrossRef]
- Nandanwar, C.M.; Kokode, N.S.; Yerpude, A.N.; Dhoble, S.J. Luminescence properties of BiPO4:Ln (Ln = Dy3+, Tb3+ and Sm3+) orthophosphate phosphors for near-UV-based solid-state lighting. Bull. Mater. Sci. 2023, 46, 51. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Bulus, I.; Yusof, N.N.; Alomar, M.; Ghoshal, S.K. Luminescence properties of Dy3+ doped B2O3–CaMg(CO3)2–TeO2 glasses: A promising host for solid state lighting devices. Opt. Laser Technol. 2024, 170, 110327. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, D.; Gupta, I.; Singh, S.; Nehra, S.; Kumar, R. A study of phase evolution, crystallographic and down-conversion luminescent behaviour of monoclinic Y4Al2O9:Dy3+ nanophosphors for white light applications. Opt. Mater. 2023, 138, 113677. [Google Scholar] [CrossRef]
- Bindhu, A.; Naseemabeevi, J.I.; Ganesanpotti, S. Insights into the crystal structure and photophysical response of Dy3+ doped Li3Y3Te2O12 for ratiometric temperature sensing. J. Sci. Adv. Mater. Dev. 2022, 7, 100444. [Google Scholar] [CrossRef]
- Vu, T.H.Q.; Stefańska, D.; Dereń, P.J. Effect of A-Cation Radius on the Structure, Luminescence, and Temperature Sensing of Double Perovskites A2MgWO6 Doped with Dy3+ (A = Ca, Sr, Ba). Inorg. Chem. 2023, 62, 20020–20029. [Google Scholar] [CrossRef]
- Abbas, M.T.; Khan, S.A.; Mao, J.; Khan, N.Z.; Qiu, L.; Ahmed, J.; Wei, X.; Chen, Y.; Alshehri, S.M.; Agathopoulos, S. Optical thermometry based on the luminescence intensity ratio of Dy3+-doped GdPO4 phosphors. J. Therm. Anal. Calorim. 2022, 147, 11769–11775. [Google Scholar] [CrossRef]
- Vidya Saraswathi, A.; Prabhu, N.S.; Naregundi, K.; Sayyed, M.I.; Murari, M.S.; Almuqrin, A.H.; Kamath, S.D. Thermoluminescence investigations of Ca2Al2SiO7:Dy3+ phosphor for gamma dosimetry applications. Mater. Chem. Phys. 2022, 281, 125872. [Google Scholar] [CrossRef]
- Shashikala, B.S.; Premkumar, H.B.; Sharma, S.C.; Nagabhushana, H.; Daruka Prasad, B.; Darshan, G.P. Dy3+ ions activated CaAl2O4 nanophosphors: Photoluminescent and photometric properties prompted manifold applications. Inorg. Chem. Commun. 2022, 142, 109619. [Google Scholar] [CrossRef]
- Jung, J.-y.; Kim, J.; Shim, Y.-S.; Hwang, D.; Son, C.S. Structure and Photoluminescence Properties of Rare-Earth (Dy3+, Tb3+, Sm3+)-Doped BaWO4 Phosphors Synthesized via Co-Precipitation for Anti-Counterfeiting. Materials 2020, 13, 4165. [Google Scholar] [CrossRef]
- İlhan, M.; Keskin, İ.Ç.; Gültekin, S. Assessing of Photoluminescence and Thermoluminescence Properties of Dy3+ Doped White Light Emitter TTB-Lead Metatantalate Phosphor. J. Electron. Mater. 2020, 49, 2436–2449. [Google Scholar] [CrossRef]
- Luewarasirikul, N.; Kaewkhao, J. Light-emitting CaMoO4:Dy3+ phosphors for photonic materials: Synthesis and luminescence properties. AIP Conf. Proc. 2020, 2279, 060009. [Google Scholar]
- Lodi, T.A.; Dantas, N.F.; Gonçalves, T.S.; de Camargo, A.S.S.; Pedrochi, F.; Steimacher, A. Dy3+ doped calcium boroaluminate glasses and Blue Led for smart white light generation. J. Lumin. 2019, 207, 378–385. [Google Scholar] [CrossRef]
- Chidthong, R.; Insiripong, S.; Angnanon, A.; Tipwan, J.; Rajaramakrishna, R.; Kaewkhao, J. Photoluminescence properties of Bi2MoO6:Dy3+ phosphors fabricated by solid state reactions. AIP Conf. Proc. 2020, 2279, 060007. [Google Scholar]
- Fu, Y.; Zhang, Z.; Zhang, F.; Li, C.; Liu, B.; Li, G. Electronic structure, energy transfer mechanism and thermal quenching behavior of K3YB6O12:Dy3+,Eu3+ phosphor. Opt. Mater. 2020, 99, 109519. [Google Scholar] [CrossRef]
- Meena, M.L.; Som, S.; Singh, R.K.; Lu, C.-H. Synthesis, spectroscopic characterization and estimation of Judd-Ofelt parameters for Dy3+ activated Li2MgZrO4 double perovskite materials. Polyhedron 2020, 177, 114322. [Google Scholar] [CrossRef]
- Sehrawat, P.; Khatkar, A.; Boora, P.; Kumar, M.; Singh, S.; Malik, R.K.; Khatkar, S.P.; Taxak, V.B. Fabrication of single-phase BaLaAlO4:Dy3+ nanophosphors by combustion synthesis. Mater. Manuf. Process. 2020, 35, 1259–1267. [Google Scholar] [CrossRef]
- Kaewnuam, E.; Wantana, N.; Kim, H.J.; Kaewkhao, J. Study on structure and luminescence properties of LaBMoO6:Dy3+ phosphor for photonic material applications. J. Meta Mater. Min. 2018, 28, 63–68. [Google Scholar]
- Gupta, S.K.; Jafar, M.; Thekke Parayil, R.; Bahadur, J.; Sudarshan, K. White light emitting nanocrystalline Y1−xGdxPO4:Dy3+ and improved PLQY on Gd3+ co-doping. Inorg. Chem. Commun. 2024, 159, 111908. [Google Scholar] [CrossRef]
- Girisha, H.R.; Krushna, B.R.R.; Prasad, B.D.; Sharma, S.C.; Srikanth, C.; Kumar, J.B.P.; Nagabhushana, H. A novel single phase La2CaZnO5:Dy3+ phosphor for potential applications in WLED’s, latent fingerprint and cheiloscopy. J. Lumin. 2023, 255, 119539. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Chen, X.; Xu, S.; Xiong, D.; Deng, W. Preparation, characterization and optical properties of Dy-doped yttrium aluminum garnet. Int. J. Mod. Phys. B 2017, 31, 1744071. [Google Scholar] [CrossRef]
- Koseva, I.; Tzvetkov, P.; Ivanov, P.; Gancheva, M.; Nikolov, V. Dysprosium doped calcium germanate (Ca2GeO4) as a candidate for LED application. J. Int. Sci. Publ. Mater. Methods Technol. 2019, 13, 18–24. [Google Scholar]
- Cao, L.; Peng, G.; Yan, T.; Luo, M.; Lin, C.; Ye, N. Three alkaline-rare earth cations carbonates with large birefringence in the deep UV range. J. Alloys Compd. 2018, 742, 587–593. [Google Scholar] [CrossRef]
- Li, D.; Zhu, G. Quantum Cutting in Ultraviolet B-Excited KY(CO3)2:Tb3+ Phosphors. Materials 2022, 15, 6160. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Kutlu, I.; Kalz, H.-J.; Wartchow, R.; Ehrhardt, H.; Seidel, H.; Meyer, G. Kalium-Lanthanoid-Carbonate, KM(CO3)2 (M = Nd, Gd, Dy, Ho, Yb). Z. Anorg. Allg. Chem. 1997, 623, 1753–1758. [Google Scholar] [CrossRef]
- Song, R.; Zhang, Z.; Li, H.; Luo, Z.; Yang, J.; Ma, J.; Xiang, X.; Zeng, Q.; Zhu, J. A single-phase white-emitting La(BO3,PO4):Dy3+ phosphor with high thermostability. Ceram. Int. 2023, 49, 6965–6973. [Google Scholar] [CrossRef]
- Kesavulu, C.R.; Kim, H.J.; Lee, S.W.; Kaewkhao, J.; Chanthima, N.; Tariwong, Y. Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. J. Alloys Compd. 2017, 726, 1062–1071. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, S.; Wu, X.; Zhu, D.; Chen, J.; Mu, Z. KCaLa(PO4)2:Ce3+,Dy3+ Phosphorsfor White Light-Emitting Diodes with Abnormal Thermal Quenching and High Quantum Efficiency. J. Electron. Mater. 2021, 50, 6283–6290. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, S.; Zhu, D. Tunable emission, energy transfer and thermal stability of a single-phased Sr(1-x-y)MgP2O7:xCe3+,yDy3+ phosphor for ultraviolet converted white LEDs. J. Alloys Compd. 2019, 783, 19–27. [Google Scholar]
- Choubey, S.R.; Gedam, S.C.; Dhoble, S.J. Resonant and non-resonant energy transfer from Ce3+→X (X=Tb3+, Eu3+ or Dy3+) in NaMgSO4F material. Luminescence 2017, 32, 253–256. [Google Scholar] [CrossRef]
- Richhariya, T.; Brahme, N.; Bisen, D.P.; Badapanda, T.; Tiwari, K.; Jain, A. Investigation of photoluminescence, thermoluminescence, and energy transfer mechanism in Ce/Dy co-doped Sr2Al2SiO7. Mater. Sci. Semicon. Proc. 2023, 159, 107396. [Google Scholar] [CrossRef]
- Hargunani, S.P.; Sonekar, R.P.; Singh, A.; Khosla, A.; Arya, S. Structural and spectral studies of Ce3+ doped Sr3Y(BO3)3 nano phosphors prepared by combustion synthesis. Mater. Technol. 2022, 37, 450–461. [Google Scholar] [CrossRef]
- Karacaoglu, E. Synthesis and effects of co-dopants (La3+, Sm3+, Mn2+, Nd3+, V5+, Y3+) on photoluminescence of SrAl2O4:Dy3+ phosphor. Luminescence 2022, 37, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Bandi, V.R.; Nien, Y.-T.; Chen, I.-G. Enhancement of white light emission from novel Ca3Y2Si3O12:Dy3+ phosphors with Ce3+ ion codoping. J. Appl. Phys. 2010, 108, 023111. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Durmus, D. Correlated color temperature: Use and limitations. Light. Res. Technol. 2021, 54, 363–375. [Google Scholar] [CrossRef]
Parameter | KY(CO3)2 [24] | KYC:3%Dy3+,5%Ce3+ [This Work] |
---|---|---|
Crystal System | Monoclinic | Monoclinic |
Space group | C2/c | C2/c |
a (Å) | 8.488 | 8.489 |
b (Å) | 9.442 | 9.447 |
c (Å) | 6.913 | 6.922 |
α (°) | 90.00 | 90.00 |
β (°) | 110.963 | 110.94 |
γ (°) | 90.00 | 90.00 |
Cell Volume (Å3) | 517.4 | 518.340 |
No. | y% | τ1 (μs) | τ2 (μs) | τ (μs) |
---|---|---|---|---|
1 | 1% | 274.3 | 949.1 | 826.1 |
2 | 2% | 277.4 | 950.2 | 827.4 |
3 | 3% | 290.1 | 974.7 | 844.5 |
4 | 4% | 300.2 | 985.6 | 859.2 |
5 | 5% | 308.4 | 993.3 | 858.7 |
6 | 6% | 292.9 | 974.4 | 851.0 |
7 | 7% | 311.5 | 985.9 | 850.7 |
NO. | Samples | x | y | CCT (K) |
---|---|---|---|---|
1 | KYC: 3%Dy3+ | 0.3517 | 0.3524 | 4762 |
2 | KYC: 3%Dy3+,1%Ce3+ | 0.3038 | 0.2743 | 8067 |
3 | KYC:3%Dy3+,2%Ce3+ | 0.3034 | 0.2737 | 8129 |
4 | KYC: 3%Dy3+,3%Ce3+ | 0.3174 | 0.2919 | 6527 |
5 | KYC: 3%Dy3+,4%Ce3+ | 0.3138 | 0.2860 | 6879 |
6 | KYC:3%Dy3+,5%Ce3+ | 0.3204 | 0.2972 | 6270 |
7 | KYC: 3%Dy3+,6%Ce3+ | 0.3149 | 0.2869 | 6777 |
8 | KYC: 3%Dy3+,7%Ce3+ | 0.3129 | 0.2840 | 6984 |
9 | KYC: 5%Ce3+ | 0.2078 | 0.0632 | 1759 |
10 | Daylight | 0.33 | 0.33 | 5616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Qian, J.; Sun, S.; Li, D. Fixed Yellow-to-Blue Intensity Ratio of Dy3+ in KY(CO3)2 Host for Emission Color Tuning. Materials 2024, 17, 1438. https://doi.org/10.3390/ma17061438
Huang L, Qian J, Sun S, Li D. Fixed Yellow-to-Blue Intensity Ratio of Dy3+ in KY(CO3)2 Host for Emission Color Tuning. Materials. 2024; 17(6):1438. https://doi.org/10.3390/ma17061438
Chicago/Turabian StyleHuang, Lei, Jian Qian, Shijian Sun, and Dechuan Li. 2024. "Fixed Yellow-to-Blue Intensity Ratio of Dy3+ in KY(CO3)2 Host for Emission Color Tuning" Materials 17, no. 6: 1438. https://doi.org/10.3390/ma17061438
APA StyleHuang, L., Qian, J., Sun, S., & Li, D. (2024). Fixed Yellow-to-Blue Intensity Ratio of Dy3+ in KY(CO3)2 Host for Emission Color Tuning. Materials, 17(6), 1438. https://doi.org/10.3390/ma17061438