Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review
Abstract
:1. Introduction
2. Basics of Residual Stress and Its Formation
3. Experimental Method
3.1. Destructive Methods
3.1.1. Slitting Method
3.1.2. Contour Method
3.1.3. Hole-Drilling Method
3.1.4. Ring Core Method
3.1.5. Deep Hole Method
3.2. Semi-Destructive Methods
3.2.1. X-ray Diffraction
3.2.2. Neutron Diffraction
3.2.3. Nanoindentation
3.3. Non-Destructive Methods
3.3.1. Ultrasonic Method
3.3.2. Barkhausen Noise Method
3.4. Comparison of Different Methods for AM Parts
4. Computational Measurement Methods
4.1. Governing Equations of AM Processes
4.1.1. Thermal Model
4.1.2. Mechanical Model
4.2. Numerical Modeling Using FEA
4.3. Analytical Method
5. Machine Learning Method
6. Future Trends
7. Conclusions
- Experiment-based methods provide accurate results at the expense of the integrity of the part, which is highly undesirable. The development of easily accessible, non-destructive methods based on a matured theory that can measure different stress levels is required.
- Numerical modeling enables the prediction of residual stress and part distortion in three dimensions for various laser additive manufacturing processes. This versatility grants users the freedom to work with intricate geometries. However, it is associated with extended computational times and demands a high level of expertise to ensure model stability and prevent divergence.
- Machine learning and deep learning techniques have been employed to construct fast, predictive models for prediction of residual stresses in AM parts. They also provide the additional flexibility of in situ prediction of residual stresses. However, model accuracy is based on data developed by other methods, creating a dependency on experiment-based and computational methods.
- Future research directions were identified with respect to the potential development of a comprehensive method that incorporates experiment-based approaches, computational techniques, machine learning, and physics-informed neural networks. The interpretability provided by physics-informed algorithms can significantly enhance accuracy and reduce computation time, enabling better integration with experimental and computational models.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liou, F.W. Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Yadroitsava, I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015, 10, 67–76. [Google Scholar] [CrossRef]
- Lai, Y.B.; Liu, W.J.; Zhao, J.B.; Zhao, Y.H.; Wang, F.Y.; Han, W.C. Experimental Study on Residual Stress in Titanium Alloy Laser Additive Manufacturing. Appl. Mech. Mater. 2013, 431, 20–26. [Google Scholar] [CrossRef]
- Parry, L.; Ashcroft, I.A.; Wildman, R.D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Levkulich, N.C. An Experimental Investigation of Residual Stress Development during Selective Laser Melting of Ti-6Al-4V. Master’s Thesis, Wright State University, Dayton, OH, USA, 2017. [Google Scholar]
- Chen, Q.; Liang, X.; Hayduke, D.; Liu, J.; Cheng, L.; Oskin, J.; Whitmore, R.; To, A.C. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering. Addit. Manuf. 2019, 28, 406–418. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.Y.; Fang, X.Y.; Guo, Y.B. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Carpenter, K.; Tabei, A. On residual stress development, prevention, and compensation in metal additive manufacturing. Materials 2020, 13, 255. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.P.; Keshtegar, B.; Qian, G.; Wang, Q. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020, 181, 105685. [Google Scholar] [CrossRef]
- Wang, Y.X.; Hung, C.H.; Pommerenke, H.; Wu, S.H.; Liu, T.Y. Fabrication of crack-free aluminum alloy 6061 parts using laser foil printing process. Rapid Prototyp. J. 2024, in press. [Google Scholar] [CrossRef]
- Wilson, J.M.; Piya, C.; Shin, Y.C.; Zhao, F.; Ramani, K. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 2014, 80, 170–178. [Google Scholar] [CrossRef]
- Singamneni, S.; LV, Y.; Hewitt, A.; Chalk, R.; Thomas, W.; Jordison, D. Additive Manufacturing for the Aircraft Industry: A Review. J. Aeronaut. Aerosp. Eng. 2019, 8, 215. [Google Scholar] [CrossRef]
- Valiev, S.; Okafor, A.C.; Prakash Hungund, A.; Huang, J. Identification of damage and corrosion effect in aging aircraft data transmission lines. Eng. Fail. Anal. 2024, 157, 107887. [Google Scholar] [CrossRef]
- Wischeropp, T.M.; Hoch, H.; Beckmann, F.; Emmelmann, C. Opportunities for Braking Technology Due to Additive Manufacturing through the Example of a Bugatti Brake Caliper. In Proceedings of the XXXVII International μ-Symposium 2018 Brake Conference 2018, Geneva, Switzerland, 10–19 October 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–193. [Google Scholar] [CrossRef]
- Harrysson, O.L.; Marcellin-Little, D.J.; Horn, T.J. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery. JOM 2015, 67, 647–654. [Google Scholar] [CrossRef]
- Chen, S.g.; Gao, H.j.; Zhang, Y.d.; Wu, Q.; Gao, Z.h.; Zhou, X. Review on residual stresses in metal additive manufacturing: Formation mechanisms, parameter dependencies, prediction and control approaches. J. Mater. Res. Technol. 2022, 17, 2950–2974. [Google Scholar] [CrossRef]
- Bartlett, J.L.; Li, X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019, 27, 131–149. [Google Scholar] [CrossRef]
- Liu, D.; Flewitt, P.E. Raman Measurements of Stress in Films and Coatings; Royal Society of Chemistry: London, UK, 2014; Volume 45, pp. 141–177. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Chen, F.; Zhang, H.; Xiao, X. Numerical simulation on crack–inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals 2023, 13, 1402. [Google Scholar] [CrossRef]
- Shen, Z.; Dong, R.; Li, J.; Su, Y.; Long, X. Determination of gradient residual stress for elastoplastic materials by nanoindentation. J. Manuf. Processes 2024, 109, 359–366. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.; Li, Z.; Luo, Y.; Xiao, X.; Liu, Y. Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks. Adv. Struct. Eng. 2024, 27, 35–50. [Google Scholar] [CrossRef]
- Newkirk, J.W. Multi-Layer Laser Metal Deposition Process. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2014. [Google Scholar]
- Dupont, J.N. Fundamentals of Weld Solidification. Weld. Fundam. Processes 2018, 6, 96–114. [Google Scholar] [CrossRef]
- Sun, L.; Ren, X.; He, J.; Zhang, Z. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing. Mater. Sci. Technol. 2021, 67, 11–22. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zhang, W.; DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017, 126, 360–372. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, S.; Zhang, T.; Zhou, X.; Li, S. Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater. Sci. Eng. A 2020, 771, 138545. [Google Scholar] [CrossRef]
- Todo, M. Mechanics of Materials; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Denlinger, E.R.; Heigel, J.C.; Michaleris, P.; Palmer, T.A. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J. Mater. Process. Technol. 2015, 215, 123–131. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, B.; Qiu, Y.; Wu, J.; Wei, W.; Huang, X.; Luo, X.; Wu, G. Measurement of transient temperature using laser-induced breakdown spectroscopy (LIBS) with the surface temperature effect. J. Anal. At. Spectrom. 2023, 38, 1952–1961. [Google Scholar] [CrossRef]
- Jiang, X.; Bao, S.; Zhang, L.; Zhang, X.; Jiao, L.; Qi, H.; Wang, F. Effect of Zr on microstructure and properties of TC4 alloy fabricated by laser additive manufacturing. J. Mater. Res. Technol. 2023, 24, 8782–8792. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Liou, F. Experimental and numerical investigation in directed energy deposition for component repair. Materials 2021, 14, 1409. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bhadeshia, H.K. Residual stress part 1–Measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Xie, H. Recent progress in residual stress measurement techniques. Acta Mech. Solida Sin. 2013, 26, 570–583. [Google Scholar] [CrossRef]
- Anawa, E.M.; Olabi, A.G. Control of welding residual stress for dissimilar laser welded materials. J. Mater. Process. Technol. 2008, 204, 22–33. [Google Scholar] [CrossRef]
- Bahadur, A.; Kumar, B.R.; Kumar, A.S.; Sarkar, G.G.; Rao, J.S. Development and comparison of residual stress measurement on welds by various methods. Mater. Sci. Technol. 2004, 20, 261–269. [Google Scholar] [CrossRef]
- Tabatabaeian, A.; Ghasemi, A.R.; Shokrieh, M.M.; Marzbanrad, B.; Baraheni, M.; Fotouhi, M. Residual Stress in Engineering Materials: A Review. Adv. Eng. Mater. 2022, 24, 2100786. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Zhang, Z.; Cao, J.; Xia, X.; Liu, Y. Integrated modeling for retired mechanical product genes in remanufacturing: A knowledge graph-based approach. Adv. Eng. Inform. 2024, 59, 102254. [Google Scholar] [CrossRef]
- Li, X.K.; Zhu, S.P.; Liao, D.; Correia, J.A.; Berto, F.; Wang, Q. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int. J. Fatigue 2022, 159, 106788. [Google Scholar] [CrossRef]
- Schajer, G.S. Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities. Exp. Mech. 2010, 50, 1117–1127. [Google Scholar] [CrossRef]
- Dive, V.; Lakade, S. Recent Research Progress on Residual Stress Measurement Using Non-Destructive Testing. Mater. Today Proc. 2021, 47, 3282–3287. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, J.; Gou, G.; Chen, H.; Li, P. Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement. J. Mater. Process. Technol. 2017, 246, 267–275. [Google Scholar] [CrossRef]
- Burns, E.; Newkirk, J.; Castle, J.; Creamer, J. Micro-slotting Residual Stress Measurement Technique for Understanding Fatigue Performance of Open-Hole Ti-6Al-4V Samples. J. Mater. Eng. Perform. 2019, 28, 5716–5724. [Google Scholar] [CrossRef]
- Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des. 2012, 35, 572–588. [Google Scholar] [CrossRef]
- Guo, J.; Fu, H.; Pan, B.; Kang, R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Hill, M.R.; Olson, M.D. Repeatability of the Contour Method for Residual Stress Measurement. Exp. Mech. 2014, 54, 1269–1277. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Hao, X.; Wang, M.; Ma, Y.; Xie, J. Microstructure and mechanical properties of novel Ni–Cr–Co-based superalloy GTAW joints. J. Mater. Res. Technol. 2024, 29, 2758–2767. [Google Scholar] [CrossRef]
- Hua, L.; Liu, Y.; Qian, D.; Xie, L.; Wang, F.; Wu, M. Mechanism of void healing in cold rolled aeroengine M50 bearing steel under electroshocking treatment: A combined experimental and simulation study. Mater. Charact. 2022, 185, 111736. [Google Scholar] [CrossRef]
- Schajer, G.S.; Prime, M.B.; Withers, P.J. Why Is It So Challenging to Measure Residual Stresses ? Exp. Mech. 2022, 62, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K. The cosα method for X-ray residual stress measurement using two-dimensional detector. Mech. Eng. Rev. 2019, 6, 18-00378. [Google Scholar] [CrossRef]
- Sarmast, A.; Schubnell, J.; Preußner, J.; Hinterstein, M.; Carl, E. Residual stress analysis in industrial parts: A comprehensive comparison of XRD methods. J. Mater. Sci. 2023, 58, 16905–16929. [Google Scholar] [CrossRef]
- Acevedo, R.; Sedlak, P.; Kolman, R.; Fredel, M. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. J. Mater. Res. Technol. 2020, 9, 9457–9477. [Google Scholar] [CrossRef]
- Burns, E.; Newkirk, J.; Castle, J. Micro-slotting technique for reliable measurement of sub-surface residual stress in Ti-6Al-4V. J. Strain Anal. Eng. Des. 2018, 53, 389–399. [Google Scholar] [CrossRef]
- Castellano, A.; Fraddosio, A.; Marzano, S.; Daniele Piccioni, M. Some advancements in the ultrasonic evaluation of initial stress states by the analysis of the acousto-elastic effect. Procedia Eng. 2017, 199, 1519–1526. [Google Scholar] [CrossRef]
- Gur, C.H. Review of residual stress measurement by magnetic Barkhausen noise technique. Mater. Perform. Charact. 2018, 7, 504–525. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, D.; Wang, F.; Qian, D.; Zhou, Y.; Fu, J.; Chen, M.; Qiu, D.; Jiang, S. Electromagnetic shocking induced fatigue improvement via tailoring the α-grain boundary in metastable β titanium alloy bolts. J. Alloys Compd. 2023, 966, 171536. [Google Scholar] [CrossRef]
- Joy, R.; Wu, S.h.; Tariq, U.; Mahmood, M.A. Effect of Inter-Layer Dwell Time on Residual Stresses in Directed Energy Deposition of High Strength Steel Alloy. In Proceedings of the Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 11–14 August 2024. [Google Scholar]
- Fu, Z.; Yang, B.; Shan, M.; Li, T.; Zhu, Z.; Ma, C.; Zhang, X.; Gou, G.; Wang, Z.; Gao, W. Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros. Sci. 2020, 164, 108337. [Google Scholar] [CrossRef]
- Fang, J.; Ma, G.; Tian, H.; Li, S.; Huang, H.; Liu, Y.; Jiang, Y.; Liu, B. Transformation-induced strain of a low transformation temperature alloy with high hardness during laser metal deposition. J. Manuf. Processes 2021, 68, 1585–1595. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Gouge, M.; Michaleris, P.; Denlinger, E.; Irwin, J. The finite element method for the thermo-mechanical modeling of additive manufacturing processes. In Thermo-Mechanical Modeling of Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–38. [Google Scholar]
- Jiang, Y.; Fang, J.; Ma, G.; Tian, H.; Zhang, D.; Cao, Y. Microstructure and properties of an as-deposited and post treated high strength carbide-free bainite steel fabricated via laser powder deposition. Mater. Sci. Eng. A 2021, 824, 141791. [Google Scholar] [CrossRef]
- Heigel, J.C.; Michaleris, P.; Palmer, T.A. Measurement of forced surface convection in directed energy deposition additive manufacturing. Proc. Inst. Mech. Eng. B Part J. Eng. Manuf. 2016, 230, 1295–1308. [Google Scholar] [CrossRef]
- Virag, Z.; Živić, M.; Krizmanić, S. Cooling of a sphere by natural convection–The applicability of the lumped capacitance method. Int. J. Heat Mass Transf. 2011, 54, 2303–2309. [Google Scholar] [CrossRef]
- Gouge, M.F.; Heigel, J.C.; Michaleris, P.; Palmer, T.A. Modeling forced convection in the thermal simulation of laser cladding processes. Int. J. Adv. Manuf. Technol. 2015, 79, 307–320. [Google Scholar] [CrossRef]
- Dunbar, A.J.; Denlinger, E.R.; Gouge, M.F.; Michaleris, P. Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit. Manuf. 2016, 12, 108–120. [Google Scholar] [CrossRef]
- Lindgren, L.E. Finite element modeling and simulation of welding part 1: Increased complexity. J. Therm. Stress. 2001, 24, 141–192. [Google Scholar] [CrossRef]
- Michaleris, P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem. Anal. Des. 2014, 86, 51–60. [Google Scholar] [CrossRef]
- Ning, J.; Praniewicz, M.; Wang, W.; Dobbs, J.R.; Liang, S.Y. Analytical modeling of part distortion in metal additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 107, 49–57. [Google Scholar] [CrossRef]
- Sadik, S.; Yavari, A. Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids 2017, 22, 1546–1587. [Google Scholar] [CrossRef]
- Khan, K.; Mohan, L.S.; De, A.; DebRoy, T. Rapid calculation of part scale residual stresses in powder bed additive manufacturing. Sci. Technol. Weld. Join. 2023, 28, 145–153. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Guo, Y. Prediction of residual stress and part distortion in selective laser melting. Procedia CIRP 2016, 45, 171–174. [Google Scholar] [CrossRef]
- Kim, T.; Ha, K.; Cho, Y.R.; Jeon, J.B.; Lee, W. Analysis of residual stress evolution during powder bed fusionprocess of AISI 316L stainless steel with experiment and numerical modeling. Int. J. Adv. Manuf. Technol. 2019, 105, 309–323. [Google Scholar] [CrossRef]
- Smith, W.L.; Roehling, J.D.; Strantza, M.; Ganeriwala, R.K.; Ashby, A.S.; Vrancken, B.; Clausen, B.; Guss, G.M.; Brown, D.W.; McKeown, J.T.; et al. Residual stress analysis of in situ surface layer heating effects on laser powder bed fusion of 316L stainless steel. Addit. Manuf. 2021, 47, 102252. [Google Scholar] [CrossRef]
- Cheng, B.; Shrestha, S.; Chou, K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit. Manuf. 2016, 12, 240–251. [Google Scholar]
- Li, Y.; Zhou, K.; Tan, P.; Tor, S.B.; Chua, C.K.; Leong, K.F. Modeling temperature and residual stress fields in selective laser melting. Int. J. Mech. Sci. 2018, 136, 24–35. [Google Scholar] [CrossRef]
- Dai, K.; Shaw, L. Thermal and stress modeling of multi-material laser processing. Acta Mater. 2001, 49, 4171–4181. [Google Scholar] [CrossRef]
- Gu, D.; He, B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy. Comput. Mater. Sci. 2016, 117, 221–232. [Google Scholar] [CrossRef]
- Marques, B.M.; Andrade, C.M.; Neto, D.M.; Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Numerical analysis of residual stresses in parts produced by selective laser melting process. Procedia Manuf. 2020, 47, 1170–1177. [Google Scholar] [CrossRef]
- Fergani, O.; Berto, F.; Welo, T.; Liang, S. Analytical modelling of residual stress in additive manufacturing. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 971–978. [Google Scholar] [CrossRef]
- Mirkoohi, E.; Li, D.; Garmestani, H.; Liang, S.Y. Analytical modeling of residual stress in laser powder bed fusion considering volume conservation in plastic deformation. Modelling 2020, 1, 242–259. [Google Scholar] [CrossRef]
- Bailey, N.S.; Katinas, C.; Shin, Y.C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses. J. Mater. Process. Technol. 2017, 247, 223–233. [Google Scholar] [CrossRef]
- Lu, X.; Chiumenti, M.; Cervera, M.; Li, J.; Lin, X.; Ma, L.; Zhang, G.; Liang, E. Substrate design to minimize residual stresses in Directed Energy Deposition AM processes. Mater. Des. 2021, 202, 109525. [Google Scholar] [CrossRef]
- Jing, H.; Ge, P.; Zhang, Z.; Chen, J.Q.; Liu, Z.M.; Liu, W.W. Numerical studies of the effects of the substrate structure on the residual stress in laser directed energy additive manufacturing of thin-walled products. Metals 2022, 12, 462. [Google Scholar] [CrossRef]
- Megahed, M.; Mindt, H.W.; N’Dri, N.; Duan, H.; Desmaison, O. Metal additive-manufacturing process and residual stress modeling. Integr. Mater. Manuf. Innov. 2016, 5, 61–93. [Google Scholar] [CrossRef]
- Tariq, U.; Joy, R.; Wu, S.H.; Mahmood, M.A.; Malik, A.W.; Liou, F. A state-of-the-art digital factory integrating digital twin for laser additive and subtractive manufacturing processes. Rapid Prototyp. J. 2023, 29, 2061–2097. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Tariq, U. A novel framework using FEM and machine learning models with experimental verification for Inconel-718 rapid part qualification by laser powder bed fusion. Int. J. Adv. Manuf. Technol. 2023, 129, 1567–1584. [Google Scholar] [CrossRef]
- Wu, S.h.; Joy, R.; Tariq, U.; Mahmood, M.A. Role of In-situ Monitoring Technique for Digital Twin Development using Direct Energy Deposition: Melt Pool Dynamics and Thermal Distribution. In Proceedings of the Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 11–14 August 2024. [Google Scholar]
- Zaid, M.M.; Xu, G.; Amoah, N. Accuracy of low-cost particulate matter sensor in measuring coal mine dust-a wind tunnel evaluation. In Underground Ventilation; CRC Press: Boca Raton, FL, USA, 2023; pp. 274–284. [Google Scholar]
- Zhang, J.; Yu, M.; Li, Z.; Liu, Y.; Zhang, Q.; Jiang, R.; Sun, S. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting. J. Alloys Compd. 2021, 856, 158168. [Google Scholar] [CrossRef]
- Balbaa, M.; Nasr, M.N.; Elgamal, H. A Sensitivity Analysis on the Effect of Laser Power on Residual Stresses When Laser-assisted Machining AISI 4340. Procedia CIRP 2017, 58, 31–36. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2018, 712, 175–187. [Google Scholar] [CrossRef]
- Bian, P.; Shi, J.; Liu, Y.; Xie, Y. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Opt. Laser Technol. 2020, 132, 106477. [Google Scholar] [CrossRef]
- Mugwagwa, L.; Yadroitsev, I.; Matope, S. Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals 2019, 9, 1042. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V. J. Mater. Eng. Perform. 2018, 27, 4059–4068. [Google Scholar] [CrossRef]
- Wang, Z.; Denlinger, E.; Michaleris, P.; Stoica, A.D.; Ma, D.; Beese, A.M. Residual stress mapping in Inconel 625 fabricated through additive manufacturing: Method for neutron diffraction measurements to validate thermomechanical model predictions. Mater. Des. 2017, 113, 169–177. [Google Scholar] [CrossRef]
- Pandey, A.; Gaur, V. Effect of dwell time on fatigue properties of wire-arc additively manufactured IN718 alloy. Int. J. Fatigue 2023, 176, 107863. [Google Scholar] [CrossRef]
- Ivanov, S.; Vildanov, A.; Golovin, P.; Artinov, A.; Karpov, I. Effect of inter-layer dwell time on distortion and residual stresses of laser metal deposited wall. Key Eng. Mater. 2019, 822, 445–451. [Google Scholar] [CrossRef]
- Mirkoohi, E.; Dobbs, J.R.; Liang, S.Y. Analytical modeling of residual stress in direct metal deposition considering scan strategy. Int. J. Adv. Manuf. Technol. 2020, 106, 4105–4121. [Google Scholar] [CrossRef]
- Robinson, J.; Ashton, I.; Fox, P.; Jones, E.; Sutcliffe, C. Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018, 23, 13–24. [Google Scholar] [CrossRef]
- Strantza, M.; Ganeriwala, R.K.; Clausen, B.; Phan, T.Q.; Levine, L.E.; Pagan, D.C.; Ruff, J.P.; King, W.E.; Johnson, N.S.; Martinez, R.M.; et al. Effect of the scanning strategy on the formation of residual stresses in additively manufactured Ti-6Al-4V. Addit. Manuf. 2021, 45, 102003. [Google Scholar] [CrossRef]
- Promoppatum, P.; Yao, S.C. Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing: Numerical and experimental studies. J. Manuf. Processes 2020, 49, 247–259. [Google Scholar] [CrossRef]
- Nadammal, N.; Mishurova, T.; Fritsch, T.; Serrano-Munoz, I.; Kromm, A.; Haberland, C.; Portella, P.D.; Bruno, G. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit. Manuf. 2021, 38, 101792. [Google Scholar] [CrossRef]
- He, B.; Bi, C.; Li, X.; Wang, W.; Yang, G. Residual stresses and deformations of laser additive manufactured metal parts: A review. Int. J. Mater. Form. 2023, 16, 7. [Google Scholar] [CrossRef]
- Joy, R.; Wu, S.h.; Tariq, U.; Mahmood, M.A. State-of-the-art Cyber-enabled Physical and Digital Systems Deployed in Distributed Digital Factory Using Additive and Subtractive Manufacturing Systems: Open, Scalable, and Secure Framework. In Proceedings of the Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 11–14 August 2024. [Google Scholar]
- Satpathy, M.P.; Mishra, S.B.; Sahoo, S.K. Ultrasonic spot welding of aluminum-copper dissimilar metals: A study on joint strength by experimentation and machine learning techniques. J. Manuf. Processes 2018, 33, 96–110. [Google Scholar] [CrossRef]
- Gong, L.; Huang, S.; Yang, X.; Zhang, Z.; Liu, K. Effect of welding residual stress on properties of Cr-Mo steel. Bol. Tec. Bull. 2017, 55, 48–53. [Google Scholar]
- Olabi, A.G.; Lostado, R.; Benyounis, K.Y. Review of Microstructures, Mechanical Properties, and Residual Stresses of Ferritic and Martensitic Stainless-Steel Welded Joints; Elsevier: Amsterdam, The Netherlands, 2014; Volume 6, pp. 181–192. [Google Scholar] [CrossRef]
- Das, D.; Das, A.K.; Pratihar, D.; Roy, G. Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 2008–2021. [Google Scholar] [CrossRef]
- Edwin Raja Dhas, J.; Kumanan, S. Evolutionary fuzzy SVR modeling of weld residual stress. Appl. Soft Comput. J. 2016, 42, 423–430. [Google Scholar] [CrossRef]
- Mathew, J.; Griffin, J.; Alamaniotis, M.; Kanarachos, S.; Fitzpatrick, M.E. Prediction of welding residual stresses using machine learning: Comparison between neural networks and neuro-fuzzy systems. Appl. Soft Comput. J. 2018, 70, 131–146. [Google Scholar] [CrossRef]
- Wacker, C.; Köhler, M.; David, M.; Aschersleben, F.; Gabriel, F.; Hensel, J.; Dilger, K.; Dröder, K. Geometry and distortion prediction of multiple layers for wire arc additive manufacturing with artificial neural networks. Appl. Sci. 2021, 11, 4694. [Google Scholar] [CrossRef]
- Wu, Q.; Mukherjee, T.; De, A.; DebRoy, T. Residual stresses in wire-arc additive manufacturing – Hierarchy of influential variables. Addit. Manuf. 2020, 35, 101355. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, H.; Liu, B.; Du, W.; Jin, J.; Lin, J. Residual thermal stress prediction for continuous tool-paths in wire-arc additive manufacturing: A three-level data-driven method. Virtual Phys. Prototyp. 2022, 17, 105–124. [Google Scholar] [CrossRef]
- Hajializadeh, F.; Ince, A. Integration of artificial neural network with finite element analysis for residual stress prediction of direct metal deposition process. Mater. Today Commun. 2021, 27, 102197. [Google Scholar] [CrossRef]
- Zhu, Z.; Ferreira, K.; Anwer, N.; Mathieu, L.; Guo, K.; Qiao, L. Convolutional Neural Network for geometric deviation prediction in Additive Manufacturing. Procedia CIRP 2020, 91, 534–539. [Google Scholar] [CrossRef]
- Ralph, B.J.; Hartl, K.; Sorger, M.; Schwarz-Gsaxner, A.; Stockinger, M. Machine learning driven prediction of residual stresses for the shot peening process using a finite element based grey-box model approach. J. Manuf. Mater. Process. 2021, 5, 39. [Google Scholar] [CrossRef]
- Peter, N.; Pitts, Z.; Thompson, S.; Saharan, A. Benchmarking build simulation software for laser powder bed fusion of metals. Addit. Manuf. 2020, 36, 101531. [Google Scholar] [CrossRef]
- Thakur, S.; Talla, G.; Verma, P. Residual stress, distortion, and porosity analysis of LED heat sink printed by SLM process using machine learniNg. Eng. Res. Express 2021, 3, 045043. [Google Scholar] [CrossRef]
- Khadilkar, A.; Wang, J.; Rai, R. Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int. J. Adv. Manuf. Technol. 2019, 102, 2555–2569. [Google Scholar] [CrossRef]
- Dong, G.; Wong, J.C.; Lestandi, L.; Mikula, J.; Vastola, G.; Jhon, M.H.; Dao, M.H.; Kizhakkinan, U.; Ford, C.S.; Rosen, D.W. A part-scale, feature-based surrogate model for residual stresses in the laser powder bed fusion process. J. Mater. Process. Technol. 2022, 304, 117541. [Google Scholar] [CrossRef]
- Francis, J.; Bian, L. Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing using Big Data. Manuf. Lett. 2019, 20, 10–14. [Google Scholar] [CrossRef]
- Ansari, M.A.; Crampton, A.; Parkinson, S. A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images. Materials 2022, 15, 7166. [Google Scholar] [CrossRef]
- Chen, Q. Multiscale Process Modeling of Residual Deformation and Defect Formation for Laser Powder Bed Fusion Additive Manufacturing. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2021. [Google Scholar]
- Koeppe, A.; Hernandez Padilla, C.A.; Voshage, M.; Schleifenbaum, J.H.; Markert, B. Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manuf. Lett. 2018, 15, 147–150. [Google Scholar] [CrossRef]
- Gong, X.; Zeng, D.; Groeneveld-Meijer, W.; Manogharan, G. Additive manufacturing: A machine learning model of process-structure-property linkages for machining behavior of Ti-6Al-4V. Mater. Sci. Addit. Manuf. 2022, 1, 6. [Google Scholar] [CrossRef]
- Liao, S.; Xue, T.; Jeong, J.; Webster, S.; Ehmann, K.; Cao, J. Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification. Comput. Mech. 2023, 72, 499–512. [Google Scholar] [CrossRef]
- Salvati, E.; Tognan, A.; Laurenti, L.; Pelegatti, M.; De Bona, F. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing. Mater. Des. 2022, 222, 111089. [Google Scholar] [CrossRef]
- Almeida, H.A.; Vasco, J.C.; Marto, A.; Capela, C.; Freitas, D.; Craveiro, F.; Bártolo, H.; Coelho, L.; Correia, M.; Vieira, M. Progress in Digital and Physical Manufacturing; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
Method | Principle | Stress Type | Advantages | Limitations |
---|---|---|---|---|
Slitting Method | Strain release + elastic mechanics | Type I | Stress profile over entire specimen depth | Specimen destroyed; only stresses normal to cut surface |
Contour Method | Strain release + Bueckner’s superposition principle | Type II | Wide range of materials; larger components; high-resolution maps | Destructive; immature theory; complex interpretation of data |
Hole Drilling | Strain release + elastic mechanics | Type I | 3 in-plane stresses; fast and easily available method; handheld equipment | Specimen destroyed; strain gauge affects accuracy |
Ring Core | Strain release + elastic mechanics | Type I | Large depth measurement range; high accuracy | Significant damage to specimen; specialized equipment needed |
Deep Hole Drilling | Strain release + elastic mechanics | Type I | Deep interior stress measurement; thick sections; wide range of materials | Specimen destroyed; interpretation of data; limited strain sensitivity |
X-ray Diffraction | Lattice spacing variation + elastic mechanics | Type II | Matured technology; widely used method; high resolution | Works for crystalline materials with grains up to 100 microns; specimen texture controls accuracy; laboratory equipment |
Slitting Method | Strain release + elastic mechanics | Type I | Stress profile over entire specimen depth | Specimen destroyed; only stresses normal to cut surface |
Neutron Diffraction | Lattice spacing variation | Type I & Type II | Deep penetration and high resolution | Neutron source availability; lab-based system |
Nanoindentation | Hardness variation, Hertz contact theory | Type II | High resolution for mapping of localized stress variation | Limited to surface stresses and thin films |
Ultrasonic Method | Acoustoelastic effect | Type I | Independent of material, geometry, and texture; quick process; handheld equipment | Limited resolution; bulk measurements over large volume |
Barkhausen Noise Method | Magnetoelastic interaction | Type I | Rapid process; no specimen contact; suitable for circular geometry | Only ferromagnetic materials; Microstructure affects measurement; MBN signal saturation limits range of measurable stresses |
Dimensions (mm3) | Simulation Details | Single-Core Run Time (h) | |||
---|---|---|---|---|---|
Computed Layers | Nodes | Elements | Numerical | Analytical | |
35 × 15 × 0.15 | 1 | 111,908 | 63,820 | 8.4 [73] | 0.0003 |
50 × 5 × 50 | 100 | 495,504 | 494,010 | 29.4 [74] | 0.0833 |
20 × 10 × 10 | 200 | 344,750 | 329,250 | 9280 [75] | 0.015 |
Technology | Beam Dia (mm) | Scale (mm3) | Method | Elements | Computer | Compute Time (h) | Ref. |
---|---|---|---|---|---|---|---|
SLM | 0.4 | 6 × 6 × 0.09 | Numerical/Abaqus | 20,800 | Xeon E5 | 72 (thermal) + 20 (mechanical) | [76] |
SLM | 0.08 | 0.5 × 0.5 × 0.2 | Numerical/ANSYS (APDL) | * | * | * | [77] |
SLM | 2 | 20 × 20 × 4 | Numerical/ANSYS | 200 | * | * | [78] |
SLM | 0.07 | 1.19 × 0.315 × 0.2175 | Numerical/ANSYS (APDL) | * | * | * | [79] |
SLM | 0.05 | 1.92 × 0.48 × 0.08 | Numerical/In-house developed | * | * | * | [80] |
SLM | 0.07 | 3 × 3 × 0.05 3 × 3 × 0.250 3 × 3 × 1.250 | Analytical | NA | * | * | [81] |
PBF | 0.15 | 40 × 5 × 2 | Analytical/Matlab | NA | 2.8 GHz | 7.26 s | [70] |
PBF | 0.054 | 10 × 5 × 5 | Analytical | NA | * | * | [82] |
PBF | * | 20 × 10 × 3 | Analytical | NA | 4 cores | 45 s | [82] |
LPDED | 0.74 | 12 × 5 × 12 | Numerical/Abaqus | 343,728 | 8 cores 2.1 GHz | 216 | [83] |
SLM | 0.4 | 6 × 6 × 0.09 | Numerical/Abaqus | 20,800 | Xeon E5 | 72 (thermal) + 20 (mechanical) | [76] |
SLM | 0.08 | 0.5 × 0.5 × 0.2 | Numerical/ANSYS (APDL) | * | * | * | [77] |
LPDED | 3 | 20 × 80 × 4 | Numerical/COMET | 19,040 | * | * | [84] |
LPDED | 5 | 100 × 5 × 3 | Numerical/Abaqus | * | * | * | [85] |
Process | Material | Data Source | Prediction | Algorithm | Ref. |
---|---|---|---|---|---|
Welding | Al Alloy | Experiments | Distortion | Linear regression | [107] |
EBW | SS304 | Experiments | RSS | M5P, SVR | [110] |
Welding | Mild Steel | FEM | RSS | FSVG | [111] |
Welding | Stainless Steel | Experiments | RSS | ANN, FNN | [112] |
WAAM | Iron | Experiments | Distortion | Enhanced ANN | [113] |
WAAM | SS316, IN718 | Experiments FEM | RSS | RF, ANN | [114] |
WAAM | ER308L | FEM | RSS | Three-level ANNs | [115] |
LPBF | AlSi10Mg | FEM | Distortion | Multiple regression | [120] |
LPBF | Unspecified | CAD Drawings | RSS | 3D U-Net CNN | [127] |
LPBF | Ti-6Al-4V | Experiments | Distortion | CNN | [123] |
LPBF | AlSi10MG | Experiments | Distortion | CNN | [124] |
LP-DED | SS304L | FEM | RSS | ANN | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-H.; Tariq, U.; Joy, R.; Sparks, T.; Flood, A.; Liou, F. Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review. Materials 2024, 17, 1498. https://doi.org/10.3390/ma17071498
Wu S-H, Tariq U, Joy R, Sparks T, Flood A, Liou F. Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review. Materials. 2024; 17(7):1498. https://doi.org/10.3390/ma17071498
Chicago/Turabian StyleWu, Sung-Heng, Usman Tariq, Ranjit Joy, Todd Sparks, Aaron Flood, and Frank Liou. 2024. "Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review" Materials 17, no. 7: 1498. https://doi.org/10.3390/ma17071498
APA StyleWu, S. -H., Tariq, U., Joy, R., Sparks, T., Flood, A., & Liou, F. (2024). Experimental, Computational, and Machine Learning Methods for Prediction of Residual Stresses in Laser Additive Manufacturing: A Critical Review. Materials, 17(7), 1498. https://doi.org/10.3390/ma17071498