The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Chemicals and Characteristics
2.2. Synthesis and Characterization
2.3. Performance Evaluation of Fluids
3. Results and Discussion
3.1. Characterization
3.2. Rheology of LAZ Solutions of Composites
3.3. Rheological Properties of the Composite LAZ as Viscosity Enhancer for Drilling Fluids
3.4. Tackiness Enhancement Mechanism Analyses
4. Conclusions
- Based on the FTIR, XRD, TGA, and SEM characterization, we found that the modification of LMS was achieved via intercalation polymerization and that the interlaminar structures of LMS changed.
- The aqueous solution of the composite LAZ has shear dilution properties; as the shear rate increases, the shear stress becomes larger. The rheological properties of the composite LAZ are suitable for the Herschel–Bulkley model, and the yield stress value of the aqueous solution increases with the increase in the concentration of the composite LAZ. The elastic modulus (G′) is much larger than the viscous modulus (G″) and shows that the aqueous solution of the composite LAZ has weak gel properties.
- The composite LAZ can be used as a viscosity enhancer for drilling fluids. With the increase in the concentration of the composite LAZ, the viscosity and dynamic shear force of the drilling fluid increased significantly. The viscosity-increasing effect of adding 1% LAZ to 4% bentonite slurry was the most obvious, and the AV could be increased by 3.28 times. After hot rolling aging, the drilling fluid’s viscosity had a specific decrease. With the hot rolling aging temperature reaching 180 °C, the drilling fluid’s rheological properties decreased more, indicating that the composite LAZ polymer was degraded and that the chain was broken. The brine drilling fluid containing composite LAZ had temperature and salt resistance, and the change in rheological properties was small before and after the hot rolling aging temperature below 180 °C.
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTAB | Cetyltrimethylammonium bromide |
LMS | Lithium magnesium silicate |
TEM | Transmission electron microscope |
AMPS | 2-acrylamido-2-methyl-propanesulfonic acid |
MA | Maleic anhydride |
AM | Acrylamide |
AA | Acrylic acid |
XRD | X-ray diffractometry |
SEM | Scanning electron microscopy |
FT-IR | Fourier transform infrared spectroscopy |
TGA | Thermogravimetric analysis |
References
- Huang, X.; Sun, J.; Lyu, K.; Dong, X.; Liu, F.; Gao, C. A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid. Pet. Explor. Dev. 2023, 50, 1215–1224. [Google Scholar] [CrossRef]
- Xu, J.; Su, K.; Li, M.; Su, K.; Lyu, X.; Zhu, S.; Huang, Y. Hydration inhibition and physical plugging to enhance shale stability using zwitterionic polymer/nano-silica composite. J. Mol. Liq. 2023, 387, 122642. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Ridha, S.; Mohshim, D.F.; Yusuf, M.; Kamyab, H.; Krishna, S.; Maoinser, M.A. A comprehensive review of nanoparticles: Effect on water-based drilling fluids and wellbore stability. Chemosphere 2022, 308, 136274. [Google Scholar] [PubMed]
- Xu, J.; Luo, T.; Wang, J.; Zhu, S.; Azadbakht, S.; Lyu, X.; Li, M.; Wang, L. Investigation of alcohol-based deep eutectic solvents for inhibiting hydration in shale formations. J. Mol. Liq. 2023, 392, 123551. [Google Scholar] [CrossRef]
- Boyou, N.V.; Ismail, I.; Sulaiman, W.R.W.; Haddad, A.S.; Husein, N.; Hui, H.T.; Nadaraja, K. Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids. J. Pet. Sci. Eng. 2019, 176, 220–231. [Google Scholar] [CrossRef]
- Jain, R.; Paswan, B.K.; Mahto, T.K.; Mahto, V. Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system. Egypt. J. Pet. 2017, 26, 875–883. [Google Scholar] [CrossRef]
- Huo, J.H.; Peng, Z.G.; Ye, Z.B.; Feng, Q.; Zheng, Y.; Zhang, J.; Liu, X. Preparation, characterization, and investigation of poly (AMPS/AM/SSS) on application performance of water-based drilling fluid. J. Appl. Polym. Sci. 2018, 135, 46510. [Google Scholar] [CrossRef]
- Elkatatny, S. Enhancing the rheological properties of water-based drilling fluid using micronized starch. Arab. J. Sci. Eng. 2019, 44, 5433–5442. [Google Scholar] [CrossRef]
- Navarrete, R.C.; Himes, R.E.; Seheult, J.M. Applications of xanthan gum in fluid-loss control and related formation damage. In Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 21–23 March 2000. SPE-59535-MS. [Google Scholar]
- Smith, S.R.; Rafati, R.; Haddad, A.S.; Cooper, A.; Hamidi, H. Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 361–371. [Google Scholar] [CrossRef]
- Vryzas, Z.; Kelessidis, V.C.; Nalbantian, L.; Zaspalis, V.; Gerogiorgis, D.I.; Wubulikasimu, Y. Effect of temperature on the rheological properties of neat aqueous Wyoming sodium bentonite dispersions. Appl. Clay Sci. 2017, 136, 26–36. [Google Scholar] [CrossRef]
- Westland, J.A.; Lenk, D.A.; Penny, G.S. Rheological characteristics of reticulated bacterial cellulose as a performance additive to fracturing and drilling fluids. In Proceedings of the SPE International Conference on Oilfield Chemistry, New Orleans, LA, USA, 2–5 March 1993. SPE-25204-MS. [Google Scholar]
- Cobianco, S.; Bartosek, M.; Lezzi, A.; Massara, E.P.; Guarneri, A. New solids-free drill-in fluid for low permeability reservoirs. In Proceedings of the SPE International Conference on Oilfield Chemistry, Houston, TX, USA, 13–16 February 2001. SPE-64979-MS. [Google Scholar]
- Dobson, J.W.; Harrison, J.C.; Hale, A.H.; Lau, H.C.; Bernardi, L.A.; Kielty, J.M.; Albrecht, M.S.; Bruner, S.D. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells. SPE Drill. Complet. 2000, 15, 105–111. [Google Scholar]
- Huang, X.; Lv, K.; Sun, J.; Lu, Z.; Bai, Y.; Shen, H.; Wang, J. Enhancement of thermal stability of drilling fluid using laponite nanoparticles under extreme temperature conditions. Mater. Lett. 2019, 248, 146–149. [Google Scholar] [CrossRef]
- Mao, H.; Qiu, Z.; Shen, Z.; Huang, W. Hydrophobic associated polymer based silica nanoparticles composite with core–shell structure as a filtrate reducer for drilling fluid at utra-high temperature. J. Pet. Sci. Eng. 2015, 129, 1–14. [Google Scholar] [CrossRef]
- Ponmani, S.; Nagarajan, R.; Sangwai, J.S. Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids. SPE J. 2016, 21, 405–415. [Google Scholar] [CrossRef]
- Chujo, Y. Organic-inorganic hybrid materials. Curr. Opin. Solid State Mater. Sci. 1996, 1, 806–811. [Google Scholar] [CrossRef]
- Pankow, O.; Schmidt-Naake, G. Preparation and Characterization of Organic/Inorganic Polymer Composites Based on Mg-Silicates. Macromol. Mater. Eng. 2004, 289, 990–996. [Google Scholar] [CrossRef]
- Li, J.; Zhou, W.; Qi, Z.; Luo, T.; Yan, W.; Xu, H.; Cheng, K.; Li, H. Morphology and Rheological Properties of Polyacrylamide/Bentonite Organic Crosslinking Composite Gel. Energies 2019, 12, 3648. [Google Scholar] [CrossRef]
- Patel, H.A.; Santra, A. Organically modified layered magnesium silicates to improve rheology of reservoir drilling fluids. Sci. Rep. 2020, 10, 13851. [Google Scholar] [CrossRef]
- Ikram, R.; Jan, B.M.; Ahmad, W.; Sidek, A.; Khan, M.; Kenanakis, G. Rheological investigation of welding waste-derived graphene oxide in water-based drilling fluids. Materials 2022, 15, 8266. [Google Scholar] [CrossRef]
- Wang, Q.; Slaný, M.; Gu, X.; Miao, Z.; Du, W.; Zhang, J.; Gang, C. Lubricity and rheological properties of highly dispersed graphite in clay-water-based drilling fluids. Materials 2022, 15, 1083. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Sun, H.; Zhu, M.; Wei, Y.; Kang, X. Preparation and performances of a cationic modified polyacrylamide viscosity enhancer for water-based drilling fluids. J. Appl. Polym. Sci. 2023, 140, e53644. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Li, X.D.; Fu, F.; Li, Y.N. Performance evaluation of laponite as a mud-making material for drilling fluids. Pet. Sci. 2019, 16, 890–900. [Google Scholar]
- Binqiang, X.; Huaizhi, T.; Jun, Z.; Jindong, C.; Junxian, L.; Lin, Z. Regulation of comb-type thermo-sensitive polymer on high-temperature rheological properties of solid-free water-based drilling fluid. Acta Pet. Sin. 2024, 45, 427. [Google Scholar]
- Dai, Z.; Sun, J.; Liu, J.; Lv, K.; Zhang, X.; Wang, Z.; Xu, Z. Study on the Inhibition Mechanism of Hydration Expansion of Yunnan Gas Shale using Modified Asphalt. Materials 2024, 17, 645. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Qin, X.; Sun, K.; Zhang, C. Hydrophobic association copolymer as viscosifier for high-temperature high-pressure anti-sedimentation performance of water-based drilling fluid. Polym. Eng. Sci. 2022, 62, 3363–3376. [Google Scholar] [CrossRef]
- Xie, B.; Ting, L.; Zhang, Y.; Liu, C. Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier. J. Pet. Sci. Eng. 2018, 164, 302–310. [Google Scholar] [CrossRef]
- Zhao, H.; Geng, Y.; Djouonkep LD, W.; Wen, J.; Fan, Q. A novel crosslinked poly (AMPS-co-VA-co-DVB) viscosifier for high temperature water-based drilling muds. J. Polym. Res. 2022, 29, 277. [Google Scholar] [CrossRef]
- Haino, T.; Nitta, N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024, e202400014. [Google Scholar] [CrossRef]
- Bosman, A.W.; Sijbesma, R.P.; Meijer, E.W. Supramolecular polymers at work. Mater. Today 2004, 7, 34–39. [Google Scholar] [CrossRef]
- O’donnell, A.D.; Salimi, S.; Hart, L.R.; Babra, T.S.; Greenland, B.W.; Hayes, W. Applications of supramolecular polymer networks. React. Funct. Polym. 2022, 172, 105209. [Google Scholar] [CrossRef]
Concentration (%) | τ0 (Pa) | K (Pa·sn) | n | R2 |
---|---|---|---|---|
0.5 | 1.17 | 3.77 | 0.16 | 0.993 |
1.0 | 8.09 | 0.53 | 0.57 | 0.992 |
2.0 | 19.73 | 2.09 | 0.54 | 0.999 |
3.0 | 34.27 | 5.42 | 0.48 | 0.997 |
Concentration (%) | AV (mPa·s) | PV (mPa·s) | YP (Pa) |
---|---|---|---|
0.0 | 12.5 | 4.0 | 8.69 |
0.1 | 15.0 | 6.0 | 9.20 |
0.3 | 17.5 | 7.0 | 10.73 |
0.5 | 22.0 | 9.0 | 13.29 |
1.0 | 41.0 | 20.0 | 21.46 |
2.0 | 40.0 | 18.0 | 22.48 |
Temperature (°C) | AV (mPa·s) | PV (mPa·s) | YP (Pa) |
---|---|---|---|
Before aging | 41.0 | 20.0 | 21.46 |
120 | 39.0 | 24.0 | 15.33 |
150 | 35.0 | 23.0 | 12.26 |
180 | 12.5 | 4.0 | 8.69 |
Salt Concentration (%) | Test Condition | AV (mPa·s) | PV (mPa·s) | YP (Pa) | YP/PV |
---|---|---|---|---|---|
0.0 | Before aging | 41.0 | 20 | 21.46 | 1.07 |
After aging | 35.0 | 23 | 12.26 | 0.53 | |
1.0 | Before aging | 38.0 | 19 | 19.42 | 1.02 |
After aging | 33.5 | 20 | 13.80 | 0.69 | |
2.0 | Before aging | 34.0 | 16 | 18.40 | 1.15 |
After aging | 36.0 | 21 | 15.33 | 0.73 | |
3.0 | Before aging | 46.0 | 23 | 23.51 | 1.02 |
After aging | 42.5 | 28 | 14.82 | 0.53 | |
5.0 | Before aging | 43.0 | 21 | 22.48 | 1.07 |
After aging | 40.0 | 26 | 14.31 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, T.; Li, J.; Xu, J.; Wang, J.; Zhang, L.; Yu, Z. The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids. Materials 2024, 17, 1564. https://doi.org/10.3390/ma17071564
Luo T, Li J, Xu J, Wang J, Zhang L, Yu Z. The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids. Materials. 2024; 17(7):1564. https://doi.org/10.3390/ma17071564
Chicago/Turabian StyleLuo, Taotao, Jun Li, Jiangen Xu, Jun Wang, Lianxi Zhang, and Zeya Yu. 2024. "The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids" Materials 17, no. 7: 1564. https://doi.org/10.3390/ma17071564
APA StyleLuo, T., Li, J., Xu, J., Wang, J., Zhang, L., & Yu, Z. (2024). The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids. Materials, 17(7), 1564. https://doi.org/10.3390/ma17071564