Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental
2.2.1. Preparation of FeCrO3/FeOOH and FeCrO3/Fe2O3
2.2.2. Preparation of Fe2O3 and Cr/Fe2O3
2.3. Characterization
2.4. CO2 Hydrogenation Test
2.5. Stability Test
3. Results and Discussion
3.1. Detoxification and Targeted Transfer of Cr in Cr-SS
3.2. Formation Mechanism of FeCrO3
3.3. CO2 Hydrogenation Reaction Performance
3.4. Stability Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Li, J.; Zheng, J.; Song, Y.; Shi, Z.; Lin, Z.; Chai, L. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue. Environ. Sci. Technol. 2020, 54, 11971–11979. [Google Scholar] [CrossRef] [PubMed]
- Watts, M.P.; Coker, V.S.; Parry, S.A.; Pattrick, R.A.D.; Thomas, R.A.P.; Kalin, R.; Lloyd, J.R. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue. Appl. Geochem. 2015, 54, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, S.; Zhu, C.; Chen, X.; Hao, Y.; Yan, L.; Li, J.; Chen, X.; Chen, B.; Ma, X.; et al. Immobilization of chromium in real tannery sludge via heat treatment with coal fly ash. Chemosphere 2023, 335, 139180. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, J.; Ou, X.; Liu, X.; Song, Y.; Tian, C.; Rong, W.; Shi, Z.; Dang, Z.; Lin, Z. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. Environ. Sci. Technol. 2018, 52, 13336–13342. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chrysochoou, M. Chemistry and Leaching Behavior of Chromite Ore Processing Residue from the Soda Ash Process. Environ. Eng. Sci. 2018, 35, 1185–1193. [Google Scholar] [CrossRef]
- Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching. Hydrometallurgy 2015, 158, 139–148. [Google Scholar] [CrossRef]
- Guo, S.; Xiao, C.; Zheng, Y.; Li, Y.; Chi, R. Removal and potential mechanisms of Cr(VI) contamination in phosphate mining wasteland by isolated Bacillus megatherium PMW-03. J. Clean. Prod. 2021, 322, 129062. [Google Scholar] [CrossRef]
- Bencheikh-Latmani, R.; Obraztsova, A.; Mackey, M.R.; Ellisman, M.H.; Tebo, B.M. Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ. Sci. Technol. 2007, 41, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Field, E.K.; Blaskovich, J.P.; Peyton, B.M.; Gerlach, R. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. J. Hazard. Mater. 2018, 355, 162–169. [Google Scholar] [CrossRef]
- Fan, C.; Qian, J.; Yang, Y.; Sun, H.; Song, J.; Fan, Y. Green ceramsite production via calcination of chromium contaminated soil and the toxic Cr(VI) immobilization mechanisms. J. Clean. Prod. 2021, 315, 129062. [Google Scholar] [CrossRef]
- Muhammad, F.; Xia, M.; Li, S.; Yu, X.; Mao, Y.; Muhammad, F.; Huang, X.; Jiao, B.; Yu, L.; Li, D. The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. J. Clean. Prod. 2019, 234, 381–391. [Google Scholar] [CrossRef]
- Srivastava, A.N.; Chakma, S. Bioavailability reduction of heavy metals through dual mode anaerobic Co-landfilling of municipal solid waste and industrial organic sludge. Chem. Eng. J. 2022, 439, 135725. [Google Scholar] [CrossRef]
- Tardif, S.; Cipullo, S.; So, H.U.; Wragg, J.; Holm, P.E.; Coulon, F.; Brandt, K.K.; Cave, M. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing. Sci. Total Environ. 2019, 652, 744–754. [Google Scholar] [CrossRef]
- Trzonkowska, L.; Lesniewska, B.; Godlewska-Zylkiewicz, B. Development of Solid Phase Extraction Method Based on Ion Imprinted Polymer for Determination of Cr(III) Ions by ETAAS in Waters. Water 2022, 14, 529. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, L.; Chen, J.; Hou, H.; Yang, J.; Lu, X. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H+ and SO42−. J. Hazard. Mater. 2017, 321, 720–727. [Google Scholar] [CrossRef]
- Zheng, J.; Lv, J.; Liu, W.; Dai, Z.; Liao, H.; Deng, H.; Lin, Z. Selective recovery of Cr from electroplating nanosludge via crystal modification and dilute acid leaching. Environ. Sci. -Nano 2020, 7, 1593–1601. [Google Scholar] [CrossRef]
- Kumar, P.; Patra, S.K.; Tripathy, S.K.; Sahu, N. Efficient utilization of nickel rich Chromite Ore Processing Tailings by carbothermic smelting. J. Clean. Prod. 2021, 315, 128046. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, J.; Wu, Z.; Liu, Z.; Lin, Z. The Application of Micro-Mechanism of Crystal Changes under the Surface/Interface Control in Treating Chromium-Containing Residues. Prog. Chem. 2017, 29, 1053–1061. [Google Scholar] [CrossRef]
- Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides. J. Hazard. Mater. 2014, 264, 490–497. [Google Scholar] [CrossRef]
- Lacerda, L.H.d.S.; de Lazaro, S.R. A broad theoretical investigation of R–3, R3c, and R–3c polymorphs of FeCrO3. J. Am. Ceram. Soc. 2020, 103, 5688–5699. [Google Scholar] [CrossRef]
- Lacerda, L.H.S.; Lazaro, S.R.d. Surface and morphology investigation of FeCrO3 material in ilmenite-, corundum- and lithium niobate-polymorphs. Surf. Interfaces 2021, 22, 100837. [Google Scholar] [CrossRef]
- Ateia, E.E.; Soliman, F.S. Multiferroic properties of Gd/Er doped chromium ferrite nano sized particles synthesized by citrate auto combustion method. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2019, 244, 29–37. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, L.; Li, X.; Liu, W.; Su, X.; Lin, Z. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe2+(Cr3+X, Fe3+2-X)O4 and its magnetic separation. Sci. Total Environ. 2022, 813, 152637. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chu, S.; Zhang, S.; Ivanets, A.; Zhang, L.; Su, X. Facile synthesis of Cr-doped ferrite catalyst from Cr-containing electroplating sludge with activated persulfate for efficient degradation of tetracycline. J. Environ. Chem. Eng. 2022, 10, 108805. [Google Scholar] [CrossRef]
- GB7467-87; Water Quality-Determination of Hexavalent Chromium-Diphenylcarbazide Spectrophotometric Method. National Environmental Protection Agency; Beijing, China, 1987.
- GB/T15555.4-1995; Solid Waste-Determination of Hexavalent Chromium-Diphenylcarbazide Spectrophotometric Method. National Environmental Protection Agency: Beijing, China, 1995.
- Pasupulety, N.; Alzahrani, A.A.; Daous, M.A.; Alhumade, H. CO2-FT activity of Fe7C3 in FeZnK/ZrO2 catalysts synthesized by using citric acid: Effect of pretreatment gas. Fuel 2024, 360, 130596. [Google Scholar] [CrossRef]
- Shao, J.; Yuan, X.; Leng, L.; Huang, H.; Jiang, L.; Wang, H.; Chen, X.; Zeng, G. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge. Bioresour. Technol. 2015, 198, 16–22. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, X.-Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-Z.; Tang, Y.; Lee, P.-H.; Liu, C.; Shih, K.; Li, F. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. J. Hazard. Mater. 2017, 321, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, W.; Chu, S.; Liu, Z.; Wu, Z.; Lan, Y.; Galvita, V.V.; Zhang, L.; Su, X. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal. J. Hazard. Mater. 2022, 440, 129754. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Zheng, J.; Li, L.; Liu, W.; Lin, L.; Lin, Z. Simultaneous separation and immobilization of Cr(VI) from layered double hydroxide via reconstruction of the key phases. J. Hazard. Mater. 2021, 416, 125807. [Google Scholar] [CrossRef]
- Xiao, C.; Li, S.; Yi, F.; Zhang, B.; Chen, D.; Zhang, Y.; Chen, H.; Huang, Y. Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin-FeOOH system for the degradation of organic dyes. Rsc Adv. 2020, 10, 18704–18714. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Tang, Y.; Jia, B.; Zhang, Z.; Li, C.; Bao, R.; Li, C.; Yi, J.; Wang, J.; Ma, T. Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe-Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation. Adv. Funct. Mater. 2023, 33, 2305243. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. Angew. Chem. -Int. Ed. 2018, 57, 2248–2252. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Yun, Y.-S.; Park, J.M. XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J. Colloid Interface Sci. 2008, 317, 54–61. [Google Scholar] [CrossRef]
- Bagus, P.S.; Nelin, C.J.; Brundle, C.R.; Crist, B.V.; Lahiri, N.; Rosso, K.M. Covalency in Fe2O3 and FeO Consequences for XPS satellite intensity. J. Chem. Phys. 2020, 153, 194702. [Google Scholar] [CrossRef] [PubMed]
- Bagus, P.S.; Nelin, C.J.; Brundle, C.R.; Crist, B.V.; Lahiri, N.; Rosso, K.M. Combined multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and Fe2O3. J. Chem. Phys. 2021, 154, 094709. [Google Scholar] [CrossRef] [PubMed]
- Raeburn, S.P.; Ilton, E.S.; Veblen, D.R. Quantitative determination of the oxidation state of iron in biotite using X-ray photoelectron spectroscopy: II. In situ analyses. Geochim. Cosmochim. Acta 1997, 61, 4531–4537. [Google Scholar] [CrossRef]
- Lotfian, N.; Nourbakhsh, A.; Mirsattari, S.N.; Saberi, A.; Mackenzie, K.J.D. A comparison of the effect of nanostructured MgCr2O4 and FeCr2O4 additions on the microstructure and mechanical properties of direct-bonded magnesia-chrome refractories. Ceram. Int. 2020, 46, 747–754. [Google Scholar] [CrossRef]
- Downie, L.J.; Goff, R.J.; Kockelmann, W.; Forder, S.D.; Parker, J.E.; Morrison, F.D.; Lightfoot, P. Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, In). J. Solid State Chem. 2012, 190, 52–60. [Google Scholar] [CrossRef]
- Wu, C.; Tu, J.; Tian, C.; Geng, J.; Lin, Z.; Dang, Z. Defective magnesium ferrite nano-platelets for the adsorption of As(V): The role of surface hydroxyl groups. Environ. Pollut. 2018, 235, 11–19. [Google Scholar] [CrossRef]
- Bourzami, R.; Guediri, M.K.; Chetoui, A.; Messai, Y.; Benkouachi, O.R.; Chebli, D. Design a Novel Type-II Heterojunction SnO2-FeTiO3 Decorated with Metallic Ag0, Effect of Electronic and Structural Properties on Adsorptive and Photocatalytic under Visible Light Performances. Russ. J. Phys. Chem. A 2023, 97, 2682–2692. [Google Scholar] [CrossRef]
- Sharma, M.; Rani, J.; Bhardwaj, S.; Agrawal, A.; Ghosh, R.K.; Kuanr, B.K. Effect of annealing temperature on structural, optical, magnetic and electrical properties of CrFeO3 multiferroic nanoparticles: A validation to first-principle calculations. J. Alloys Compd. 2022, 929, 167338. [Google Scholar] [CrossRef]
- Franken, T.; Heel, A. Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? J. CO2 Util. 2020, 39, 101175. [Google Scholar] [CrossRef]
- Seuser, G.; Martinelli, M.; Garcia, E.S.; Upton, G.F.; Ayala, M.; Villarreal, J.; Rajabi, Z.; Cronauer, D.C.; Kropf, A.J.; Jacobs, G. Reverse water-gas shift: Na doping of m-ZrO2 supported Pt for selectivity control. Appl. Catal. A-Gen. 2023, 650, 119000. [Google Scholar] [CrossRef]
- Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C.-J. Highly Active Ir/In2O3 Catalysts for Selective Hydrogenation of CO2 to Methanol: Experimental and Theoretical Studiese. Acs Catal. 2021, 11, 4036–4046. [Google Scholar] [CrossRef]
- Xie, H.; Liu, N.; Huang, J.; Chen, S.; Zhou, G. CoCe composite catalyst for the CH4/CO2 reforming reaction: Synergistic effects between Co and Ce species. J. Energy Inst. 2023, 111, 101389. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, M.; Ma, L.; Yang, B.; Chen, J.; Lv, Z.; Liang, Q.; Yang, P. Evaluation of migration of heavy metals and performance of product during co-pyrolysis process of municipal sewage sludge and walnut shell. Environ. Sci. Pollut. Res. 2017, 24, 22082–22090. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.-H.; Tran, H.; Wang, D.-Q.; Zhu, Y.-N. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environ. Sci. Pollut. Res. 2011, 18, 1623–1632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chu, S.; Xu, Y.; Chen, X.; Zhou, H.; Li, J.; Ren, Y.; Su, X. Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction. Materials 2024, 17, 1598. https://doi.org/10.3390/ma17071598
Liu Y, Chu S, Xu Y, Chen X, Zhou H, Li J, Ren Y, Su X. Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction. Materials. 2024; 17(7):1598. https://doi.org/10.3390/ma17071598
Chicago/Turabian StyleLiu, Yongqi, Shasha Chu, Yuebing Xu, Xinyu Chen, Hao Zhou, Jinlin Li, Yanjie Ren, and Xintai Su. 2024. "Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction" Materials 17, no. 7: 1598. https://doi.org/10.3390/ma17071598
APA StyleLiu, Y., Chu, S., Xu, Y., Chen, X., Zhou, H., Li, J., Ren, Y., & Su, X. (2024). Upcycling of Cr-Containing Sulfate Waste into Efficient FeCrO3/Fe2O3 Catalysts for CO2 Hydrogenation Reaction. Materials, 17(7), 1598. https://doi.org/10.3390/ma17071598