Strengthening Mechanism and Damping Properties of SiCf/Al-Mg Composites Prepared by Combining Colloidal Dispersion with a Squeeze Melt Infiltration Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Fabrication of SiCf/Al-Mg Composites
2.3. Characterization
3. Results and Discussion
3.1. Microstructure
3.2. Phase Analysis
3.3. Mechanical Properties
3.3.1. Hardness
3.3.2. Flexural Strength
3.4. Fracture Morphology Analysis
3.5. Damping Behavior
3.5.1. Damping Capacity at Room Temperature
3.5.2. Damping Capacity at Elevated Temperatures
4. Conclusions
- (1)
- SiCf/Al-Mg composites exhibit a homogeneous distribution of SiC fibers and a high relative density (higher than 97%) when the mass fraction of Mg is less than 20%. Mg could dissolve into the Al matrix, forming the Al12Mg17 precipitate phase. Fibers are well bonded with the Al-Mg matrix and no obvious reactive phase is present at the fiber–matrix interface.
- (2)
- The Vickers hardness of the composites increases with increasing Mg content, and the highest value is 114.06 HV for SiCf/Al-20Mg, which is 35.56% higher than that of SiCf/Al. The enhanced hardness relates to the strengthening effect caused by the introduction of Mg.
- (3)
- SiCf/Al-10Mg has the best flexural strength and elastic modulus, 372 MPa and 161.7 GPa, but the fracture elongation of the composites decreases with the increase in Mg content. This could be attributed to the strengthened interfacial bonding by the introduction of the Mg element.
- (4)
- The damping capacity of SiCf/Al-Mg shows a weak dependence on the strain when the strain amplitude is lower than 0.001%. And then the damping capacity increases dramatically with an increase in the strain (higher than 0.001%), which is better than the alloys with similar composition, demonstrating that the SiC fiber has a positive effect on improving the damping capacity of the composite.
- (5)
- The temperature-dependent damping capacity of the SiCf/Al-Mg composites reveals that all composites exhibited a tendency towards monotonic increase with testing temperature. Such an increase is more obvious at temperatures beyond 200 °C. This is attributed to the second phase, which forms more strong pinning points and increases the dislocation energy needed to break away from new pinning points.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vineet, C.; Himadri, C.; Dora, T.L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Processes. 2020, 56, 1059–1074. [Google Scholar] [CrossRef]
- Alam, M.; Ya, H.; Azeem, M.; Mazli, M.; Mohammad, Y.; Faisal, M.; Roshan, V.M.; Salit, M.S.; Akhter, H.A. Advancements in aluminum matrix composites reinforced with carbides and graphene: A comprehensive review. Nanotech. Rev. 2020, 56, 1059–1074. [Google Scholar] [CrossRef]
- Choy, K.L. Effects of surface modification on the interfacial chemical stability and strength of continuous SiC fibers after exposure to molten aluminium. Scr. Metall. Mater. 1995, 32, 219–224. [Google Scholar] [CrossRef]
- Ha, R.; Xiao, W.K. Development Status of Short Fiber Reinforced Aluminum Matrix Composite. Hot Working Technol. 2022, 51, 10–13. [Google Scholar] [CrossRef]
- Ishikawa, T. Polymeric and inorganic fibers. Materials 2009, 246, 1097–1104. [Google Scholar]
- Bunsell, A.R.; Piant, A. A review of the development of three generations of small diameter silicon carbide fibres. Mater. Sci. 2006, 41, 823–839. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei, A.M.; Seyed, M.F.; Hamid, K.; Amir, H.P.; Ehsan, G.; Mahla, Z.; Khurram, S.M.; Shian, J.; et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70. [Google Scholar] [CrossRef]
- Rams, J.; Urena, A.; Escalera, M.D.; Sanchez, M. Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos. Part A 2007, 38, 566–575. [Google Scholar] [CrossRef]
- Singha, B.; Balasubramanian, M. Processing and properties of copper-coated carbon fibre-reinforced aluminium alloy composites. J. Mater. Process. Technol. 2009, 209, 2104–2110. [Google Scholar] [CrossRef]
- Updike, C.A.; Bhagat, R.B.; Pechersky, M.J.; Amateau, M.F. The damping performance of aluminum based composites. JOM 1990, 42, 42–46. [Google Scholar] [CrossRef]
- Morelli, E.C.; Urreta, S.E.; Schaller, R. Mechanical spectroscopy of thermal stress relaxation at metal-ceramic interfaces in aluminium-based composites. Acta Mater. 2000, 48, 4725–4733. [Google Scholar] [CrossRef]
- Singh, S.; Pal, K. Effect of texture evolution on mechanical and damping properties of SiC/ZnAl2O4/Al composite through friction stir processing. J. Market. Res. 2019, 8, 222–232. [Google Scholar] [CrossRef]
- Theo, O.J.; Kenneth, K.A.; Michael, O.B. On the microstructure, mechanical behaviour and damping characteristics of Al-Zn based composites reinforced with martensitic stainless steel (410L) and silicon carbide particulates. Int. J. Lightweight Mater. Manuf. 2022, 5, 279–288. [Google Scholar] [CrossRef]
- Bhagat, R.B.; Amateau, M.F.; Smith, E.C. Damping Behavior of Planar Random Carbon Fiber Reinforced 6061 Al Matrix Composites Fabricated by High-Pressure Infiltration Casting. J. Compos. Tech. Res. 1989, 11, 113–116. [Google Scholar] [CrossRef]
- Stanley, E.N.; Vinod, B.; Ramakrishna, A. Energy Dissipation Behaviour of Bamboo Leaf Ash reinforced Aluminium Metal Matrix Composites. J. Inst. Eng. India Ser. 2022, 103, 149–155. [Google Scholar] [CrossRef]
- Reddy, K.V.; Naik, R.B.; Rao, G.R.; Reddy, G.M.; Kumar, R.A. Microstructure and damping capacity of AA6061/graphite surface composites produced through friction stir processing. Comp. Commun. 2020, 20, 100352. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Jafaar, L.; Bodunrin, M.O. Structural characteristics, mechanical behaviour and Damping properties of Ni modified high zinc Al-Zn alloys. Mater. Res. Express. 2019, 6, 1065–1671. [Google Scholar] [CrossRef]
- Xu, Y.J. Effect of Matrix Alloy on Microstructure and Mechanical Properties of Continuous SiCf/Al Composites; Nan-chang Hangkong University: Nanchang, China, 2014; p. 42. [Google Scholar]
- Chu, D.S.; Ma, Y.; Li, P.; Huang, H.; Tang, P.J. Microstructure and Damping Behavior of Continuous W-Core-SiC Fiber-Reinforced Aluminum Matrix Composites. Appl. Compos. Mater. 2021, 28, 1631–1651. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, H.W.; Li, H.Z. Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Trans. Nonferrous Met. Soc. Chin. 2010, 20, 1851–1855. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Yan, H.; Guan, L.N.; Huang, L.J. Achieving high damping and excellent ductility of Al-Mg alloy sheet by the coupling effect of Mg content and fine grain structure. Mater. Charact. 2021, 174, 110974. [Google Scholar] [CrossRef]
- Lv, Z.Z.; Sha, J.J.; Lin, G.Z.; Wang, J.; Guo, Y.C.; Dong, S.Q. Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers. J. Alloys Compd. 2023, 947, 169550. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, J.; Yan, Z.; Lin, Y.J.; Liu, M.P.; Hans, J.R.; Arne, K.D. Enhanced ductility and strength in a cast Al-Mg alloy with high Mg content. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 140, 806. [Google Scholar] [CrossRef]
- Mitar, R.; Chalapathi, R.V.S.; Maiti, R.; Chakraborty, M. Stability and response to rolling of the interfaces in cast Al-SiCp and Al-Mg alloy-SiCp composites. Mater. Sci. Eng. A 2004, 379, 391–400. [Google Scholar] [CrossRef]
- Jeong, H.T.; Kim, W.J. Strain hardening behavior and strengthening mechanism in Mg-rich Al–Mg binary alloys subjected to aging treatment. Mater. Sci. Eng. A 2020, 794, 139862. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N.; Li, X.; Wang, H. Study on damping capacity aluminum composite reinforced with in situ TiAl3 rod. Mater. Des. 2008, 29, 1057–1066. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N.; Wang, H.; Le, Y.; Li, X. Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. 2007, 28, 628–650. [Google Scholar] [CrossRef]
- Madeira, S.; Carvalho, O.; Carneiro, V.H.; Soares, D.; Silva, F.S.; Miranda, G. Damping capacity and dynamic modulus of hot pressed AlSi composites reinforced with different SiC particle sized. Compos. Part B Eng. 2016, 90, 399–405. [Google Scholar] [CrossRef]
- Granato, A.V.; Lucke, K. Theory of Mechanical Damping Due to Dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Jiang, H.J.; Liu, C.Y.; Zhang, B.P.; Xue, P.; Ma, Z.Y.; Luo, K.; Ma, M.Z.; Liu, R.P. Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing. Mater. Character. 2017, 131, 425–430. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Chen, J.; Xia, W.J.; Zhu, H.M.; Su, B.; Lia, X.Y.; Song, M. Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling. J. Alloys Compd. 2022, 908, 164677. [Google Scholar] [CrossRef]
- Subhash, S.; Kaushik, P. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl2O4-SiC core-shell microcomposites. Mater. Char. 2017, 123, 244–255. [Google Scholar] [CrossRef]
- Subhash, S.; Keerti, R.; Kaushik, P. Synthesis, characterization of graphene oxide wrapped silicon carbide for excellent mechanical and damping performance for aerospace application. J. Alloys Compd. 2018, 740, 436–445. [Google Scholar] [CrossRef]
- Girish, B.M.; Prakash, K.R.; Satish, B.M.; Jain, P.K.; Prabhakar, P. An investigation into the effects of graphite particles on the damping behavior of ZA-27 alloy composite material. Mater. Des. 2011, 32, 1050–1056. [Google Scholar] [CrossRef]
Composite | SiCf/Al | SiCf/Al-5Mg | SiCf/Al-10Mg | SiCf/Al-15Mg | SiCf/Al-20Mg |
---|---|---|---|---|---|
Bulk density | 2.59 | 2.62 | 2.59 | 2.53 | 2.41 |
Relative density | 96.64% | 98.36% | 98.27% | 97.27% | 94.21% |
Composite | Young’s Modulus (GPa) | Flexural Strength (MPa) |
---|---|---|
SiCf/Al | 114.8 ± 3.6 | 309 ± 9 |
SiCf/Al-5Mg | 125.1 ± 1.0 | 324 ± 12 |
SiCf/Al-10Mg | 161.7 ± 2.0 | 372 ± 16 |
SiCf/Al-15Mg | 160.3 ± 1.7 | 331 ± 10 |
SiCf/Al-20Mg | 162.6 ± 5.6 | 283 ± 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Sha, J.; Zu, Y.; Dai, J.; Su, C.; Lv, Z. Strengthening Mechanism and Damping Properties of SiCf/Al-Mg Composites Prepared by Combining Colloidal Dispersion with a Squeeze Melt Infiltration Process. Materials 2024, 17, 1600. https://doi.org/10.3390/ma17071600
Lin G, Sha J, Zu Y, Dai J, Su C, Lv Z. Strengthening Mechanism and Damping Properties of SiCf/Al-Mg Composites Prepared by Combining Colloidal Dispersion with a Squeeze Melt Infiltration Process. Materials. 2024; 17(7):1600. https://doi.org/10.3390/ma17071600
Chicago/Turabian StyleLin, Guanzhang, Jianjun Sha, Yufei Zu, Jixiang Dai, Cheng Su, and Zhaozhao Lv. 2024. "Strengthening Mechanism and Damping Properties of SiCf/Al-Mg Composites Prepared by Combining Colloidal Dispersion with a Squeeze Melt Infiltration Process" Materials 17, no. 7: 1600. https://doi.org/10.3390/ma17071600
APA StyleLin, G., Sha, J., Zu, Y., Dai, J., Su, C., & Lv, Z. (2024). Strengthening Mechanism and Damping Properties of SiCf/Al-Mg Composites Prepared by Combining Colloidal Dispersion with a Squeeze Melt Infiltration Process. Materials, 17(7), 1600. https://doi.org/10.3390/ma17071600