Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects
Abstract
:1. Introduction
2. Electrochemistry of Zinc–Iodide Batteries
2.1. Zinc–Iodine Battery Configuration
2.2. Energy Storage Mechanism
3. Shuttle Effect
4. Design of Cathode Material
4.1. Spatial Confinement
4.1.1. Carbon-Based Materials
4.1.2. Other Iodine Hosts
4.2. Heteroatom Doping
4.3. Electrostatic Interactions
4.4. Introduction of Electrocatalysts
5. Electrolyte Optimization
5.1. Electrolyte Additives
5.2. Eutectic Electrolytes
5.3. Quasi-Solid Gel Electrolytes
6. Separator Modification
7. Anode Protection
8. Summary and Outlook
- Cathodes. To construct high-performance aqueous zinc–iodine batteries, “adsorption + catalysis” is the development direction of cathode materials in the future. Judging from the current research results, there is room for improvement in both adsorption and catalysis effects. Firstly, in order to achieve better adsorption effect, functional groups or polymers with polar components can be introduced into materials with spatially restricted domains to stabilize the bonded polyiodide ion intermediates, thus realizing the dual effect of “physical adsorption + chemical adsorption”. It is worth noting that the pore structure, morphology, and surface properties of the adsorbent materials themselves also affect the adsorption effect, but there is a lack of in-depth studies, so the constitutive relationship between them can be further explored in future studies. Secondly, in order to achieve high catalytic activity in cathode materials, the introduction of electrocatalysts is an effective method. However, the current aqueous zinc–iodine cell has only explored the catalytic effect of monoatomic catalysts, Prussian blue analogs containing transition metals, and transition metal family compounds on polyiodide ions while ignoring the potential synergistic effect of bimetallic catalysts, and thus the catalytic effect of bimetallic catalysts on polyiodide ions can be explored in future studies with an understanding of the catalytic mechanism. Finally, to meet the needs of practicalization, a simple and low-cost method to prepare high-performance cathode materials should be actively explored. Moreover, in order to meet the requirements of the wearable field, a cathode material with both high loading capacity and good mechanical properties can be designed.
- Separators. Due to their unique structure and relatively low cost, MOF materials have shown unique advantages in serving as an ion membrane screen to alleviate the shuttle effect of polyiodide ions. However, the current design of ion membrane sieves is relatively simple. In order to further strengthen the binding of polyiodide ions, more in-depth research on MOF materials can be conducted. First, we can consider introducing organic ligands containing polar functional groups when synthesizing MOF materials. These introduced functional groups can enhance the adsorption of polyiodide ions. Secondly, we can develop new conductive MOF materials to avoid the shortcomings of poor conductivity and poor stability that most current MOF materials still have. In addition, we can develop MOF composite materials to give full play to the advantages of a single MOF material, thereby simultaneously solving multiple problems existing in zinc–iodine batteries. In order to accelerate the kinetics of the iodine redox reaction, combining the chemical adsorption effect with the catalytic effect on the separator is also an effective means to inhibit the shuttle effect of polyiodide ions and accelerate the iodine redox kinetics. It is worth noting that the design of the separator must also consider mechanical properties and weight. The modified separator must not only be light and thin but also have good mechanical properties so that a long-life water system can be constructed without losing energy density in zinc–iodine batteries.
- Electrolytes. The electrolyte usually has two strategies in inhibiting the shuttle effect, one is to inhibit the production of polyiodide ion intermediates such as I3− and I5−, and the other is to prevent the diffusion of polyiodide ions. For the first way, electrolyte additives can be used. For the second method, the content of free water in eutectic electrolytes and quasi-solid gel electrolytes is greatly reduced, which can reduce the solubility of polyiodide ion intermediates in them so the shuttle effect can be suppressed to a certain extent. However, eutectic electrolytes and quasi-solid gel electrolytes hinder their industrialization due to their low ionic conductivity and large interfacial resistance. Therefore, exploring a polyiodide-free electrolyte with excellent performance and high ionic conductivity is the development direction to inhibit polyiodide shuttle in aqueous zinc–iodine batteries.
- Anodes. Unlike other aqueous zinc ion batteries, the modified zinc anode of zinc–iodide batteries should not only be able to inhibit the side reactions such as dendrite growth, hydrogen precipitation, and passivation but also give special consideration to the corrosion of the zinc anode due to the shuttling effect of the polyiodides. Construction of artificial coatings or in situ formation of SEI films on zinc anode surfaces can inhibit the shuttle behavior of the polyiodides. Notably, in order to enhance the protective layer’s resistance to polyiodides, it can be enriched with a negative charge to inhibit the shuttling of polyiodides as well as to achieve uniform deposition of Zn2+. However, the current regulation of zinc anodes still has shortcomings such as complex processes and high costs. Therefore, it is necessary to explore a low-cost, industrially produced preparation process in future research to promote the development of highly stable zinc anodes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selvakumaran, D.; Pan, A.; Liang, S.; Cao, G. A Review on Recent Developments and Challenges of Cathode Materials for Rechargeable Aqueous Zn-Ion Batteries. J. Mater. Chem. A 2019, 7, 18209–18236. [Google Scholar] [CrossRef]
- Meskani, A.; Haddi, A.; Becherif, M. Modeling and Simulation of a Hybrid Energy Source Based on Solar Energy and Battery. Int. J. Hydrogen Energy 2015, 40, 13702–13707. [Google Scholar] [CrossRef]
- Arevalo-Cid, P.; Dias, P.; Mendes, A.; Azevedo, J. Redox Flow Batteries: A New Frontier on Energy Storage. Sustain. Energy Fuels 2021, 5, 5366–5419. [Google Scholar] [CrossRef]
- Novais, H.C.; Jarrais, B.; Mbomekalle, I.-M.; Teillout, A.-L.; de Oliveira, P.; Freire, C.; Fernandes, D.M. Enhanced Oxygen Reduction Reaction Activity of the Wells-Dawson Polyoxometalate P2W12Mo6 Immobilised in Nitrogen and Sulphur-Doped Carbon Nanomaterials. Chemelectrochem 2024, 11, e202300622. [Google Scholar] [CrossRef]
- Thapaliya, B.P.; Ivanov, A.S.; Chao, H.-Y.; Lamm, M.; Meyer, H.M.; Chi, M.; Sun, X.-G.; Aytug, T.; Dai, S.; Mahurin, S.M. Low-Temperature Molten Salt Electrochemical CO2 Upcycling for Advanced Energy Materials. ACS Appl. Mater. Interfaces 2024, 16, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Moni, P.; Hyun, S.; Vignesh, A.; Shanmugam, S. Chrysanthemum Flower-Like NiCO2O4-Nitrogen Doped Graphene Oxide Composite: An Efficient Electrocatalyst for Lithium-Oxygen and Zinc-Air Batteries. Chem. Commun. 2017, 53, 7836–7839. [Google Scholar] [CrossRef] [PubMed]
- Tripti, S.; Anisha, S.; Rajeev, S.; Shalini, S.; Dan Bahadur, P.; Hanaa, M.T.; Rajaa, R.; Steve, H.; Shafiul, H.; Manish, S.; et al. Algal Biohydrogen Production: Impact of Biodiversity and Nanomaterials Induction. Renew. Sustain. Energy Rev. 2023, 183, 113389. [Google Scholar]
- Kannan, N.; Vakeesan, D. Solar Energy for Future World: A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Zafar, Z.A.; Imtiaz, S.; Li, R.; Zhang, J.; Razaq, R.; Xin, Y.; Li, Q.; Zhang, Z.; Huang, Y. A Super-Long Life Rechargeable Aluminum Battery. Solid State Ion. 2018, 320, 70–75. [Google Scholar] [CrossRef]
- Tay, I.R.; Xue, J.; Lee, W.S.V. Methods for Characterizing Intercalation in Aqueous Zinc Ion Battery Cathodes: A Review. Adv. Sci. 2023, 10, 169696. [Google Scholar] [CrossRef]
- Blanc, L.E.; Kundu, D.; Nazar, L.F. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule 2020, 4, 771–799. [Google Scholar] [CrossRef]
- Konarov, A.; Voronina, N.; Jo, J.H.; Bakenov, Z.; Sun, Y.-K.; Myung, S.-T. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Lett. 2018, 3, 2620–2640. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D.T.; Jo, J.; Kim, S.; Baboo, J.P.; Xiu, Z.; et al. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem. Mater. 2017, 29, 1684–1694. [Google Scholar] [CrossRef]
- Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H.N. Layered MgxV2O5•nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Lett. 2018, 3, 2602–2609. [Google Scholar] [CrossRef]
- Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J. The Dominant Role of Mn2+ Additive on the Electrochemical Reaction in ZnMn2O4 Cathode for Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2020, 28, 407–417. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; Huang, K. NaCa0.6V6O16•3H2O as an Ultra-Stable Cathode for Zn-Ion Batteries: The Roles of Pre-Inserted Dual-Cations and Structural Water in V3O8 Layer. Adv. Energy Mater. 2019, 9, 1901968. [Google Scholar] [CrossRef]
- Naskar, S.; Deepa, M. Separator-Free Zn-Ion Battery with Mn:V3O7•H2O Nanobelts and a Zn2+-Polyacrylamide Semisolid Electrolyte with Ultralong Cycle Life. ACS Appl. Mater. Interfaces 2023, 15, 36262–36279. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.G.; Turney, D.; Huang, J.; Wei, X.; Banerjee, S. Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO2-Zn Aqueous Batteries. ACS Energy Lett. 2019, 4, 2144–2146. [Google Scholar] [CrossRef]
- Zampardi, G.; La Mantia, F. Prussian Blue Analogues as Aqueous Zn-Ion Batteries Electrodes: Current Challenges and Future Perspectives. Curr. Opin. Electrochem. 2020, 21, 84–92. [Google Scholar] [CrossRef]
- Kushwaha, R.; Jain, C.; Shekhar, P.; Rase, D.; Illathvalappil, R.; Mekan, D.; Camellus, A.; Vinod, C.P.; Vaidhyanathan, R. Made to Measure Squaramide Cof Cathode for Zinc Dual-Ion Battery with Enriched Storage Via Redox Electrolyte. Adv. Energy Mater. 2023, 13, 2301049. [Google Scholar] [CrossRef]
- Lee, W.S.V.; Xiong, T.; Wang, X.; Xue, J. Unraveling Mos2 and Transition Metal Dichalcogenides as Functional Zinc-Ion Battery Cathode: A Perspective. Small Methods 2021, 5, 2000815. [Google Scholar] [CrossRef]
- Kao-ian, W.; Sangsawang, J.; Kidkhunthod, P.; Wannapaiboon, S.; Suttipong, M.; Khampunbut, A.; Pattananuwat, P.; Nguyen, M.T.; Yonezawa, T.; Kheawhom, S. Unveiling the Role of Water in Enhancing the Performance of Zinc-Ion Batteries Using Dimethyl Sulfoxide Electrolyte and the Manganese Dioxide Cathode. J. Mater. Chem. A 2023, 11, 10584–10595. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Seo, S.-D.; Kim, D.-W. Metal-Organic-Framework-Derived Vanadium(III) Phosphate Nanoaggregates for Zinc-Ion Battery Cathodes with Long-Term Cycle Stability. J. Mater. Chem. A 2022, 10, 10638–10650. [Google Scholar] [CrossRef]
- Tangthuam, P.; Pimoei, J.; Mohamad, A.A.; Mahlendorf, F.; Somwangthanaroj, A.; Kheawhom, S. Carboxymethyl Cellulose-Based Polyelectrolyte as Cationic Exchange Membrane for Zinc-Iodine Batteries. Heliyon 2020, 6, e05391. [Google Scholar] [CrossRef] [PubMed]
- Yeager, C.M.; Amachi, S.; Grandbois, R.; Kaplan, D.I.; Xu, C.; Schwehr, K.A.; Santschi, P.H. Chapter Three—Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. Adv. Appl. Microbiol. 2017, 101, 83–136. [Google Scholar] [PubMed]
- Zou, Y.; Liu, T.; Du, Q.; Li, Y.; Yi, H.; Zhou, X.; Li, Z.; Gao, L.; Zhang, L.; Liang, X. A Four-Electron Zn-I2 Aqueous Battery Enabled by Reversible I−/I2/I+ Conversion. Nat. Commun. 2021, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, M.; He, Y.; Zhang, J. Iodine Redox Chemistry in Rechargeable Batteries. Angew. Chem.-Int. Ed. 2021, 60, 12636–12647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Li, X.; Chen, C.; Yu, D.; Zhao, G. Enabling High-Areal-Capacity Zinc-Iodine Batteries: Constructing High-Density Microporous Carbon Framework with Large Surface Area. J. Alloys Compd. 2024, 976, 173041. [Google Scholar] [CrossRef]
- Aizudin, M.; Fu, W.; Pottammel, R.P.; Dai, Z.; Wang, H.; Rui, X.; Zhu, J.; Li, C.C.; Wu, X.-L.; Ang, E.H. Recent Advancements of Graphene-Based Materials for Zinc-Based Batteries: Beyond Lithium-Ion Batteries. Small 2024, 20, e2305217. [Google Scholar] [CrossRef]
- Park, H.; Bera, R.K.; Ryoo, R. Microporous 3D Graphene-Like Carbon as Iodine Host for Zinc-Based Battery-Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Adv. Energy Sustain. Res. 2021, 2, 2100076. [Google Scholar] [CrossRef]
- Machhi, H.K.; Sonigara, K.K.; Bariya, S.N.; Soni, H.P.; Soni, S.S. Hierarchically Porous Metal-Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc-I2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 21426–21435. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, T.; Xu, C.; Lei, C.; Jiang, P.; He, X.; Liang, X. A Twelve-Electron Conversion Iodine Cathode Enabled by Interhalogen Chemistry in Aqueous Solution. Nat. Commun. 2023, 14, 5508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, J.; Guo, H.; Ge, L.; Tian, Z.; Zhang, M.; Wang, J.; He, G.; Liu, T.; Hofkens, J.; et al. Tuning Ion Transport at the Anode-Electrolyte Interface Via a Sulfonate-Rich Ion-Exchange Layer for Durable Zinc-Iodine Batteries. Adv. Energy Mater. 2023, 13, 2203790. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, G.; Liu, H.; Lou, Y.; Wang, N.; Liu, H.; Dou, S. Advancements in Aqueous Zinc-Iodine Batteries: A Review. Chem. Sci. 2024, 15, 3071–3092. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, X.; Fang, K.; Wang, H.; Ning, J.; Hu, Y. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism. Adv. Energy Mater. 2023, 13, 2302187. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Zhong, J.; Ma, Z.; Liu, W.; Zhang, R.; Li, M.; Jiang, F.; Kang, L. Cathode Material Design of Static Aqueous Zn-I2 Batteries. J. Energy Storage 2024, 84, 110765. [Google Scholar] [CrossRef]
- Pan, H.; Li, B.; Mei, D.; Nie, Z.; Shao, Y.; Li, G.; Li, X.S.; Han, K.S.; Mueller, K.T.; Sprenkle, V.; et al. Controlling Solid-Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc-Iodine Battery. ACS Energy Lett. 2017, 2, 2674–2680. [Google Scholar] [CrossRef]
- Yang, X.; Fan, H.; Hu, F.; Chen, S.; Yan, K.; Ma, L. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts. Nano-Micro Lett. 2023, 15, 126. [Google Scholar] [CrossRef]
- Liu, T.; Wang, H.; Lei, C.; Mao, Y.; Wang, H.; He, X.; Liang, X. Recognition of the Catalytic Activities of Graphitic N for Zinc-Iodine Batteries. Energy Storage Mater. 2022, 53, 544–551. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Huang, Z.; Chen, Z.; Liang, G.; Yang, Q.; Li, M.; Zhao, Y.; Ma, L.; Dong, B.; et al. Enhanced Redox Kinetics and Duration of Aqueous I2/I− Conversion Chemistry by MXene Confinement. Adv. Mater. 2021, 33, 2006897. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Q.; Zhou, Q.; Zhang, W.; Yu, Y.; Chen, S.; Ren, Z. Enhancing I0/I− Conversion Efficiency by Starch Confinement in Zinc-Iodine Battery. Energy Environ. Mater. 2023, 7, e12522. [Google Scholar] [CrossRef]
- Nimkar, A.; Chae, M.S.; Wee, S.; Bergman, G.; Gavriel, B.; Turgeman, M.; Malchik, F.; Levi, M.D.; Sharon, D.; Lukatskaya, M.R.; et al. What about Manganese? Toward Rocking Chair Aqueous Mn-Ion Batteries. ACS Energy Lett. 2022, 7, 4161–4167. [Google Scholar] [CrossRef]
- Dang, H.X.; Sellathurai, A.J.; Barz, D.P.J. An Ion Exchange Membrane-Free, Ultrastable Zinc-Iodine Battery Enabled by Functionalized Graphene Electrodes. Energy Storage Mater. 2023, 55, 680–690. [Google Scholar] [CrossRef]
- Tawiah, B.; Ofori, E.A.; Chen, D.; Jia, H.; Fei, B. Sciento-Qualitative Study of Zinc-Iodine Energy Storage Systems. J. Energy Storage 2024, 79, 110086. [Google Scholar] [CrossRef]
- Lyu, Y.; Yuwono, J.A.; Wang, P.; Wang, Y.; Yang, F.; Liu, S.; Zhang, S.; Wang, B.; Davey, K.; Mao, J.; et al. Organic Ph Buffer for Dendrite-Free and Shuttle-Free Zn-I2 Batteries. Angew. Chem.-Int. Ed. 2023, 62, e202303011. [Google Scholar] [CrossRef] [PubMed]
- Prehal, C.; Fitzek, H.; Kothleitner, G.; Presser, V.; Gollas, B.; Freunberger, S.A.; Abbas, Q. Persistent and Reversible Solid Iodine Electrodeposition in Nanoporous Carbons. Nat. Commun. 2020, 11, 4838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.; Guo, H.; Tian, Z.; Ge, L.; He, G.; Huang, J.; Wang, J.; Liu, T.; Parkin, I.P.; et al. A Universal Polyiodide Regulation Using Quaternization Engineering toward High Value-Added and Ultra-Stable Zinc-Iodine Batteries. Adv. Sci. 2022, 9, 2105598. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Gong, Z.; Bai, C.; Cai, F.; Yuan, Z.; Liu, X. High Performance Zn-I2 Battery with Acetonitrile Electrolyte Working at Low Temperature. Nano Res. 2022, 15, 3170–3177. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Zong, W.; Huang, Y.; Huang, J.; He, G.; Liu, T.; Hofkens, J.; Lai, F. Metal-Iodine Batteries: Achievements, Challenges, and Future. Energy Environ. Sci. 2023, 16, 4872–4925. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Guo, Y.; Li, C.; Hou, Y.; Cui, H.; Zhang, R.; Huang, Z.; Zhao, Y.; Li, Q.; et al. Highly Thermally/Electrochemically Stable I−/I3− Bonded Organic Salts with High I Content for Long-Life Li-I2 Batteries. Adv. Energy Mater. 2022, 12, 2103648. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Cao, X.; Tan, D.; Ma, J.; Zhang, J. Physicochemical Confinement Effect Enables High-Performing Zinc-Iodine Batteries. J. Am. Chem. Soc. 2022, 144, 21683–21691. [Google Scholar] [CrossRef]
- Wu, W.; Li, C.; Wang, Z.; Shi, H.-Y.; Song, Y.; Liu, X.-X.; Sun, X. Electrode and Electrolyte Regulation to Promote Coulombic Efficiency and Cycling Stability of Aqueous Zinc-Iodine Batteries. Chem. Eng. J. 2022, 428, 131283. [Google Scholar] [CrossRef]
- He, J.; Mu, Y.; Wu, B.; Wu, F.; Liao, R.; Li, H.; Zhao, T.; Zeng, L. Synergistic Effects of Lewis Acid-Base and Coulombic Interactions for High-Performance Zn-I2 Batteries. Energy Environ. Sci. 2024, 17, 323–331. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Ge, L.; Sun, J.; Ma, W.; Ren, M.; Cai, X.; Liu, W.; Yao, J. ZIF-8 Derived Porous Carbon to Mitigate Shuttle Effect for High Performance Aqueous Zinc–Iodine Batteries. J. Colloid Interface Sci. 2022, 610, 98–105. [Google Scholar] [CrossRef]
- Xu, J.; Ma, W.; Ge, L.; Ren, M.; Cai, X.; Liu, W.; Yao, J.; Zhang, C.; Zhao, H. Confining Iodine into a Biomass-Derived Hierarchically Porous Carbon as Cathode Material for High Performance Zinc–Iodine Battery. J. Alloys Compd. 2022, 912, 165151. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Sun, X.; Yang, Y.; Chen, N.; Qu, L. In Situ Synthesis of Cathode Materials for Aqueous High-Rate and Durable Zn-I2 Batteries. ACS Mater. Lett. 2022, 4, 1872–1881. [Google Scholar] [CrossRef]
- Chai, L.; Wang, X.; Hu, Y.; Li, X.; Huang, S.; Pan, J.; Qian, J.; Sun, X. In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries. Adv. Sci. 2022, 9, 2105063. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ying, Y.; Chen, S.; Huang, Z.; Li, X.; Huang, H.; Zhi, C. Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. Angew. Chem.-Int. Ed. 2021, 60, 3791–3798. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Cheng, S.; Zhang, Y.; Xie, E.; Fu, J. Efficient Charge Storage in Zinc-Iodine Batteries Based on Pre-Embedded Iodine-Ions with Reduced Electrochemical Reaction Barrier and Suppression of Polyiodide Self-Shuttle Effect. Adv. Funct. Mater. 2023, 33, 2211979. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Hao, J.; Li, H.; Zhang, P.-F.; Yin, Z.-W.; Li, Y.-Y.; Zhang, B.; Lin, Z.; Qiao, S.-Z. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries. Adv. Mater. 2022, 34, 2201716. [Google Scholar] [CrossRef]
- Zishuai, Z.; Wei, L.; Ninggui, M.; Jiaqi, W.; Xiaoyang, C.; Jun, F.; Miao, Y.; Yan, H. Ultralong Cycle Life and High Rate of Zn‖I2 Battery Enabled by Mbene-Hosted I2 Cathode. Adv. Funct. Mater. 2024, 34, 2310294. [Google Scholar]
- Yu, D.; Kumar, A.; Tuan Anh, N.; Nazir, M.T.; Yasin, G. High-Voltage and Ultrastable Aqueous Zinc-Iodine Battery Enabled by N-Doped Carbon Materials: Revealing the Contributions of Nitrogen Configurations. ACS Sustain. Chem. Eng. 2020, 8, 13769–13776. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Lyu, Y.; Wen, J.; Hao, R.; Zheng, J.; Liu, K.; Li, Y.-J.; Wang, S. Advanced Zn-I2 Battery with Excellent Cycling Stability and Good Rate Performance by a Multifunctional Iodine Host. ACS Appl. Mater. Interfaces 2022, 14, 8955–8962. [Google Scholar] [CrossRef]
- He, Y.; Liu, M.; Chen, S.; Zhang, J. Shapeable Carbon Fiber Networks with Hierarchical Porous Structure for High-Performance Zn-I2 Batteries. Sci. China-Chem. 2022, 65, 391–398. [Google Scholar] [CrossRef]
- Gong, Z.; Song, C.; Bai, C.; Zhao, X.; Luo, Z.; Qi, G.; Liu, X.; Wang, C.; Duan, Y.; Yuan, Z. Anchoring High-Mass Iodine to Nanoporous Carbon with Large-Volume Micropores and Rich Pyridine-N Sites for High-Energy-Density and Long-Life Zn-I2 Aqueous Battery. Sci. China-Mater. 2023, 66, 556–566. [Google Scholar] [CrossRef]
- Zeng, X.; Meng, X.; Jiang, W.; Liu, J.; Ling, M.; Yan, L.; Liang, C. Anchoring Polyiodide to Conductive Polymers as Cathode for High-Performance Aqueous Zinc-Iodine Batteries. ACS Sustain. Chem. Eng. 2020, 8, 14280–14285. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Li, Q.; Hu, B.; Kang, J.; Meng, Y.; Zhao, Z.; Lu, H. Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries. Nano-Micro Lett. 2022, 14, 208. [Google Scholar] [CrossRef]
- Yang, F.; Long, J.; Yuwono, J.A.; Fei, H.; Fan, Y.; Li, P.; Zou, J.; Hao, J.; Liu, S.; Liang, G.; et al. Single Atom Catalysts for Triiodide Adsorption and Fast Conversion to Boost the Performance of Aqueous Zinc-Iodine Batteries. Energy Environ. Sci. 2023, 16, 4630–4640. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, G.; Wang, Z.; Zhu, A.; Wu, K.; Peng, B.; Xu, J.; Wang, D.; Jin, Z. Long-Lasting Zinc-Iodine Batteries with Ultrahigh Areal Capacity and Boosted Rate Capability Enabled by Nickel Single-Atom Electrocatalysts. Nano Lett. 2023, 23, 5272–5280. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, Q.; Chen, S.; Tian, Y.; Zhang, J. The Dispersion of Iron Nitride among Porous Carbon Fibers to Enhance Redox Conversion for High-Performance Zinc-Iodine Batteries. Chin. Chem. Lett. 2023, 34, 108232. [Google Scholar] [CrossRef]
- Chen, S.; He, Y.; Ding, S.; Zhang, J. In Situ Formation of Tungsten Nitride among Porous Carbon Polyhedra for High Performance Zinc-Iodine Batteries. J. Phys. Chem. C 2023, 127, 7609–7617. [Google Scholar] [CrossRef]
- Li, Z.; Cao, W.; Hu, T.; Hu, Y.; Zhang, R.; Cui, H.; Mo, F.; Liu, C.; Zhi, C.; Liang, G. Deploying Cationic Cellulose Nanofiber Confinement to Enable High Iodine Loadings Towards High Energy and High-Temperature Zn-I2 Battery. Angew. Chem.-Int. Ed. 2023, 65, e202317652. [Google Scholar]
- Memetova, A.; Tyagi, I.; Karri, R.R.; Kumar, V.; Tyagi, K.; Suhas; Memetov, N.; Zelenin, A.; Pasko, T.; Gerasimova, A.; et al. Porous Carbon-Based Material as a Sustainable Alternative for the Storage of Natural Gas (Methane) and Biogas (Biomethane): A Review. Chem. Eng. J. 2022, 446, 137373. [Google Scholar] [CrossRef]
- Wu, Y.; Weckhuysen, B.M. Separation and Purification of Hydrocarbons with Porous Materials. Angew. Chem.-Int. Ed. 2021, 60, 18930–18949. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Yang, K.; Dong, X.; Han, Y. Adsorption-Based Capture of Iodine and Organic Iodides: Status and Challenges. J. Mater. Chem. A 2023, 11, 5460–5475. [Google Scholar] [CrossRef]
- Bai, C.; Cai, F.; Wang, L.; Guo, S.; Liu, X.; Yuan, Z. A Sustainable Aqueous Zn-I2 Battery. Nano Res. 2018, 11, 3548–3554. [Google Scholar] [CrossRef]
- Chakraborty, R.; Vilya, K.; Pradhan, M.; Nayak, A.K. Recent Advancement of Biomass-Derived Porous Carbon Based Materials for Energy and Environmental Remediation Applications. J. Mater. Chem. A 2022, 10, 6965–7005. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhou, T.; Lai, Q.; Egabaierdi, G.; Chen, S.; Song, H.; Zhang, S.; Shi, C.; Yang, S.; et al. Platanus acerifolia (Aiton) Willd. Fruit-Derived Nitrogen-Doped Porous Carbon as an Electrode Material for the Capacitive Deionization of Brackish Water. J. Environ. Chem. Eng. 2023, 11, 109914. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Lee, J.; Park, J.-S. Biomass-Derived Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reaction: A Review. J. Energy Chem. 2022, 65, 149–172. [Google Scholar] [CrossRef]
- Han, W.; Li, X. Electrode and Electrolyte Additive Synergy Effect for Improving the Capacity and Supporting a High Voltage Plateau of Aqueous Rechargeable Zinc Iodine Batteries. J. Power Sources 2023, 580, 233296. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, J.; Wang, Z.; Ren, M.; Wu, Y.; Liu, W.; Yao, J.; Zhang, C.; Zhao, H. Nitrogen-Doped Litchi-Shell Derived Porous Carbon as an Efficient Iodine Host for Zinc-Iodine Batteries. J. Electroanal. Chem. 2023, 931, 117188. [Google Scholar] [CrossRef]
- Wu, Y.; Qian, Y.; Huang, C.; Zhang, Y.; Yang, Y.; Hu, A.; Tang, Q.; Chen, X. Hierarchical Porous Soft Carbon Host for the Cathode of an Aqueous Zinc-Iodine Battery with Ultra-Long Cycle Life. Electrochim. Acta 2023, 460, 142593. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, W.; Guo, H.; Tian, Z.; Zhang, L.; Wang, J.; Liu, T.; Lai, F.; Huang, J. Tightly Confined Iodine in Surface-Oxidized Carbon Matrix toward Dual-Mechanism Zinc-Iodine Batteries. Energy Storage Mater. 2023, 59, 102760. [Google Scholar] [CrossRef]
- Cai, S.; Meng, Z.; Tang, H.; Wang, Y.; Tsiakaras, P. 3D Co-N-Doped Hollow Carbon Spheres as Excellent Bifunctional Electrocatalysts for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Appl. Catal. B-Environ. 2017, 217, 477–484. [Google Scholar] [CrossRef]
- Sun, J.; Ma, H.; Wang, D. Heavily Heteroatoms Doped Carbons with Tunable Microstructure as the Iodine Hosts for Rechargeable Zinc-Iodine Aqueous Batteries. J. Alloys Compd. 2023, 947, 169696. [Google Scholar] [CrossRef]
- Jin, X.; Song, L.; Dai, C.; Xiao, Y.; Han, Y.; Li, X.; Wang, Y.; Zhang, J.; Zhao, Y.; Zhang, Z.; et al. A Flexible Aqueous Zinc-Iodine Microbattery with Unprecedented Energy Density. Adv. Mater. 2022, 34, 2109450. [Google Scholar] [CrossRef]
- Baster, D.; Kondracki, L.; Oveisi, E.; Trabesinger, S.; Girault, H.H. Prussian Blue Analogue-Sodium-Vanadium Hexacyanoferrate as a Cathode Material for Na-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 9758–9765. [Google Scholar] [CrossRef]
- Lucero, M.; Armitage, D.B.; Yang, X.; Sandstrom, S.K.; Lyons, M.; Davis, R.C.; Sterbinsky, G.E.; Kim, N.; Reed, D.M.; Ji, X.; et al. Ball Milling-Enabled Fe2.4+ to Fe3+ Redox Reaction in Prussian Blue Materials for Long-Life Aqueous Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 36366–36372. [Google Scholar] [CrossRef]
- Lee, G.S.; Yun, T.; Kim, H.; Kim, I.H.; Choi, J.; Lee, S.H.; Lee, H.J.; Hwang, H.S.; Kim, J.G.; Kim, D.-W.; et al. Mussel Inspired Highly Aligned Ti3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano 2020, 14, 11722–11732. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Eom, W.; Lee, K.H.; Jeong, W.; Kang, D.J.; Han, T.H. Highly Electroconductive and Mechanically Strong Ti3C2Tx Mxene Fibers Using a Deformable Mxene Gel. ACS Nano 2021, 15, 3320–3329. [Google Scholar] [CrossRef] [PubMed]
- Solangi, N.H.; Karri, R.R.; Mazari, S.A.; Mubarak, N.M.; Jatoi, A.S.; Malafaia, G.; Azad, A.K. Mxene as Emerging Material for Photocatalytic Degradation of Environmental Pollutants. Coord. Chem. Rev. 2023, 477, 214965. [Google Scholar] [CrossRef]
- Kshetri, T.; Tran, D.T.; Le, H.T.; Nguyen, D.C.; Hoa, H.V.; Kim, N.H.; Lee, J.H. Recent Advances in Mxene-Based Nanocomposites for Electrochemical Energy Storage Applications. Prog. Mater Sci. 2021, 117, 100733. [Google Scholar] [CrossRef]
- Bury, D.; Jakubczak, M.; Purbayanto, M.A.K.; Rybak, M.; Birowska, M.; Wojcik, A.; Moszczynska, D.; Eisawi, K.; Prenger, K.; Presser, V.; et al. Wet-Chemical Etching and Delamination of Moalb into Mbene and Its Outstanding Photocatalytic Performance. Adv. Funct. Mater. 2023, 33, 2308156. [Google Scholar] [CrossRef]
- Helmer, P.; Halim, J.; Zhou, J.; Mohan, R.; Wickman, B.; Bjork, J.; Rosen, J. Investigation of 2D Boridene from First Principles and Experiments. Adv. Funct. Mater. 2022, 32, 2109060. [Google Scholar] [CrossRef]
- Sahu, R.; Bogdanovski, D.; Achenbach, J.-O.; Zhang, S.; Hans, M.; Primetzhofer, D.; Schneider, J.M.; Scheu, C. Direct Mob Mbene Domain Formation in Magnetron Sputtered Moalb Thin Films. Nanoscale 2021, 13, 18077–18083. [Google Scholar] [CrossRef]
- Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Shen, J.; Cai, Y.; Zhou, C.; Pinnau, I.; et al. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity. Angew. Chem.-Int. Ed. 2021, 60, 22432–22440. [Google Scholar] [CrossRef]
- Yildirim, O.; Tsaturyan, A.; Damin, A.; Nejrotti, S.; Crocella, V.; Gallo, A.; Chierotti, M.R.; Bonomo, M.; Barolo, C. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS Appl. Mater. Interfaces 2023, 15, 15819–15831. [Google Scholar] [CrossRef]
- Chai, S.; Yao, J.; Wang, Y.; Zhu, J.; Jiang, J. Mediating Iodine Cathodes with Robust Directional Halogen Bond Interactions for Highly Stable Rechargeable Zn-I2 Batteries. Chem. Eng. J. 2022, 439, 135676. [Google Scholar] [CrossRef]
- Singh, S.K.; Takeyasu, K.; Nakamura, J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Adv. Mater. 2019, 31, 1804297. [Google Scholar] [CrossRef]
- Rangraz, Y.; Heravi, M.M.; Elhampour, A. Recent Advances on Heteroatom-Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. Chem. Rec. 2021, 21, 1985–2073. [Google Scholar] [CrossRef]
- Byeon, A.; Yun, W.C.; Kim, J.M.; Lee, J.W. Recent Progress in Heteroatom-Doped Carbon Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chem. Eng. J. 2023, 456, 141042. [Google Scholar] [CrossRef]
- Choong, Z.-Y.; Lin, K.-Y.A.; Lisak, G.; Lim, T.-T.; Oh, W.-D. Multi-Heteroatom-Doped Carbocatalyst as Peroxymonosulfate and Peroxydisulfate Activator for Water Purification: A Critical Review. J. Hazard. Mater. 2022, 426, 128077. [Google Scholar] [CrossRef]
- Gutru, R.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Thimmappa, R.; Mamlouk, M.; Desforges, A.; Vigolo, B. Recent Progress in Heteroatom Doped Carbon Based Electrocatalysts for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 3593–3631. [Google Scholar] [CrossRef]
- Lu, K.; Hu, Z.; Ma, J.; Ma, H.; Dai, L.; Zhang, J. A Rechargeable Iodine-Carbon Battery That Exploits Ion Intercalation and Iodine Redox Chemistry. Nat. Commun. 2017, 8, 527. [Google Scholar] [CrossRef]
- Chang, J.; Yu, C.; Song, X.; Tan, X.; Ding, Y.; Zhao, Z.; Qiu, J. A C-S-C Linkage-Triggered Ultrahigh Nitrogen-Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angew. Chem.-Int. Ed. 2021, 60, 3587–3595. [Google Scholar] [CrossRef]
- He, Y.; Liu, M.; Zhang, J. Rational Modulation of Carbon Fibers for High-Performance Zinc-Iodine Batteries. Adv. Sustain. Syst. 2020, 4, 2000138. [Google Scholar] [CrossRef]
- Miao, X.; Chen, Q.; Liu, Y.; Zhang, X.; Chen, Y.; Lin, J.; Chen, S.; Zhang, Y. Performance Comparison of Electro-Polymerized Polypyrrole and Polyaniline as Cathodes for Iodine Redox Reaction in Zinc-Iodine Batteries. Electrochim. Acta 2022, 415, 140206. [Google Scholar] [CrossRef]
- Xue, Z.-H.; Luan, D.; Zhang, H.; Lou, X.W. Single-Atom Catalysts for Photocatalytic Energy Conversion. Joule 2022, 6, 92–133. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Powar, N.S.; Lee, J.; In, S.-I. Single-Atom Catalysts (Sacs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small 2022, 18, 2201428. [Google Scholar] [CrossRef]
- Batool, M.; Hameed, A.; Nadeem, M.A. Recent Developments on Iron and Nickel-Based Transition Metal Nitrides for Overall Water Splitting: A Critical Review. Coord. Chem. Rev. 2023, 480, 215029. [Google Scholar] [CrossRef]
- Kumar, Y.; Mooste, M.; Tammeveski, K. Recent Progress of Transition Metal-Based Bifunctional Electrocatalysts for Rechargeable Zinc-Air Battery Application. Curr. Opin. Electrochem. 2023, 38, 101229. [Google Scholar] [CrossRef]
- Das, C.; Sinha, N.; Roy, P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. Small 2022, 18, 2202033. [Google Scholar] [CrossRef]
- Samanta, P.; Ghosh, S.; Kundu, A.; Samanta, P.; Murmu, N.C.; Kuila, T. Recent Progress on the Performance of Zn-Ion Battery Using Various Electrolyte Salt and Solvent Concentrations. ACS Appl. Electron. Mater. 2023, 5, 100–116. [Google Scholar] [CrossRef]
- Xiao, T.; Yang, J.-L.; Zhang, B.; Wu, J.; Li, J.; Mai, W.; Fan, H.J. All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery. Angew. Chem.-Int. Ed. 2024, 63, e202318470. [Google Scholar] [CrossRef]
- Zhang, J.; Dou, Q.; Yang, C.; Zang, L.; Yan, X. Polyiodide Shuttle Inhibition in Ethylene Glycol-Added Aqueous Electrolytes for High Energy and Long-Term Cyclability of Zinc-Iodine Batteries. J. Mater. Chem. A 2023, 11, 3632–3639. [Google Scholar] [CrossRef]
- Chen, G.; Kang, Y.; Yang, H.; Zhang, M.; Yang, J.; Lv, Z.; Wu, Q.; Lin, P.; Yang, Y.; Zhao, J. Toward Forty Thousand-Cycle Aqueous Zinc-Iodine Battery: Simultaneously Inhibiting Polyiodides Shuttle and Stabilizing Zinc Anode through a Suspension Electrolyte. Adv. Funct. Mater. 2023, 33, 2300656. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Eutectic Electrolyte Based on N-Methylacetamide for Highly Reversible Zinc-Iodine Battery. Energy Environ. Sci. 2022, 15, 1192–1200. [Google Scholar] [CrossRef]
- Hao, J.; Yuan, L.; Zhu, Y.; Bai, X.; Ye, C.; Jiao, Y.; Qiao, S.-Z. Low-Cost and Non-Flammable Eutectic Electrolytes for Advanced Zn-I2 Batteries. Angew. Chem.-Int. Ed. 2023, 62, e202310284. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, S.; Pan, Y.; Lu, B.; Liang, S.; Zhou, J. Dual Mechanism of Ion (De)Intercalation and Iodine Redox towards Advanced Zinc Batteries. Energy Environ. Sci. 2023, 16, 2358–2367. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Zhang, H.; Wei, F.; Zhang, T.; Wu, Y.; Huang, L.; Fu, J.; Jing, C.; Cheng, J.; et al. Designing Ternary Hydrated Eutectic Electrolyte Capable of Four-Electron Conversion for Advanced Zn-I2 Full Batteries. Energy Environ. Sci. 2023, 16, 4502–4510. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, S.; Ding, S.; Chen, Q.; Zhang, J. A Highly Conductive Gel Electrolyte with Favorable Ion Transfer Channels for Long-Lived Zinc-Iodine Batteries. Chem. Sci. 2023, 14, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Zhu, J.; Liu, Y.; Kang, L.; Liu, S.; Huang, B.; Song, J.; Li, X.; Jiang, F.; Du, W.; et al. Establishing High-Performance Quasi-Solid Zn/I2 Batteries with Alginate-Based Hydrogel Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 24756–24764. [Google Scholar] [CrossRef] [PubMed]
- Sonigara, K.K.; Zhao, J.; Machhi, H.K.; Cui, G.; Soni, S.S. Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn-I2 Battery. Adv. Energy Mater. 2020, 10, 2001997. [Google Scholar] [CrossRef]
- Azmi, S.; Klimek, A.; Frackowiak, E. Anticorrosive Performance of Green Deep Eutectic Solvent for Electrochemical Capacitor. Chem. Eng. J. 2022, 444, 136594. [Google Scholar] [CrossRef]
- Hardin, N.Z.; Duca, Z.; Imel, A.; Ward, P.A. Methyl Carbamate-Lithium Salt Deep Eutectic Electrolyte for Lithium-Ion Batteries. ChemElectroChem 2022, 9, e202200628. [Google Scholar] [CrossRef]
- Hariyanto, Y.; Ng, Y.K.; Siew, Z.Z.; Soon, C.Y.; Fisher, A.C.; Kloyer, L.; Wong, C.W.; Chan, E.W.C. Deep Eutectic Solvents for Batteries and Fuel Cells: Biosubstitution, Advantages, Challenges, and Future Directions. Energy Fuels 2023, 37, 18395–18407. [Google Scholar] [CrossRef]
- Kar, M.; Pozo-Gonzalo, C. Emergence of Nonaqueous Electrolytes for Rechargeable Zinc Batteries. Curr. Opin. Green Sustain. Chem. 2021, 28. [Google Scholar] [CrossRef]
- Lu, X.; Hansen, E.J.; He, G.; Liu, J. Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small 2022, 18, 2200550. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (Dess) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Morales-Narvaez, E. Transforming Nature into the Next Generation of Bio-Based Flexible Devices: New Avenues Using Deep Eutectic Systems. Matter 2021, 4, 2141–2162. [Google Scholar] [CrossRef]
- Hong, J.J.; Zhu, L.; Chen, C.; Tang, L.; Jiang, H.; Jin, B.; Gallagher, T.C.; Guo, Q.; Fang, C.; Ji, X. A Dual Plating Battery with the Iodine/[ZnIx(OH2)4−X]2−X Cathode. Angew. Chem.-Int. Ed. 2019, 58, 15910–15915. [Google Scholar] [CrossRef]
- Wang, P.; Trueck, J.; Hacker, J.; Schlosser, A.; Kuester, K.; Starke, U.; Reinders, L.; Buchmeiser, M.R. A Design Concept for Halogen-Free Mg2+/Li+-Dual Salt-Containing Gel-Polymer-Electrolytes for Rechargeable Magnesium Batteries. Energy Storage Mater. 2022, 49, 509–517. [Google Scholar] [CrossRef]
- Samanta, P.; Ghosh, S.; Kolya, H.; Kang, C.-W.; Murmu, N.C.; Kuila, T. Molecular Crowded “Water-in-Salt” Polymer Gel Electrolyte for an Ultra-Stable Zn-Ion Battery. ACS Appl. Mater. Interfaces 2022, 14, 1138–1148. [Google Scholar] [CrossRef]
- Lee, B.-S.; Cui, S.; Xing, X.; Liu, H.; Yue, X.; Petrova, V.; Lim, H.-D.; Chen, R.; Liu, P. Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Appl. Mater. Interfaces 2018, 10, 38928–38935. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.; Lehmann, M.L.; Wu, C.; Zhao, L.; Saito, T.; Liang, Y.; Nanda, J.; Yao, Y. Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Lett. 2021, 21, 10446–10452. [Google Scholar] [CrossRef]
- Williams, A.A.; Wang, X.T.; Davis, E.M.; Roberts, M.E. Leveraging Sulfonated Poly(Ether Ether Ketone) for Superior Performance in Zinc Iodine Redox Flow Batteries. J. Energy Storage 2023, 73, 108937. [Google Scholar] [CrossRef]
- Hou, Y.; Kong, F.; Wang, Z.; Ren, M.; Qiao, C.; Liu, W.; Yao, J.; Zhang, C.; Zhao, H. High Performance Rechargeable Aqueous Zinc-Iodine Batteries via a Double Iodine Species Fixation Strategy with Mesoporous Carbon and Modified Separator. J. Colloid Interface Sci. 2023, 629, 279–287. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wang, H.; Dou, S.; Gan, W.; Ci, L.; Huang, Y.; Yuan, Q. Mof-Based Ionic Sieve Interphase for Regulated Zn2+ Flux toward Dendrite-Free Aqueous Zinc-Ion Batteries. J. Mater. Chem. A 2022, 10, 4366–4375. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, G.; Hua, H.; Zhang, M.; Yang, J.; Lin, P.; Yang, H.; Lv, Z.; Wu, Q.; Zhao, J.; et al. A Janus Separator Based on Cation Exchange Resin and Fe Nanoparticles-Decorated Single-Wall Carbon Nanotubes with Triply Synergistic Effects for High-Areal Capacity Zn−I2 Batteries. Angew. Chem.-Int. Ed. 2023, 62, e202300418. [Google Scholar] [CrossRef]
- Li, Z.; Wu, X.; Yu, X.; Zhou, S.; Qiao, Y.; Zhou, H.; Sun, S.-G. Long-Life Aqueous Zn-I2 Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Lett. 2022, 22, 2538–2546. [Google Scholar] [CrossRef]
- Lin, D.; Li, Y. Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects. Adv. Mater. 2022, 34, 2108856. [Google Scholar] [CrossRef]
- Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W. Ambipolar Zinc-Polyiodide Electrolyte for a High-Energy Density Aqueous Redox Flow Battery. Nat. Commun. 2015, 6, 6303. [Google Scholar] [CrossRef]
- Mousavi, M.; Dou, H.Z.; Fathiannasab, H.; Silva, C.J.; Yu, A.P.; Chen, Z.W. Elucidating and Tackling Capacity Fading of Zinc-Iodine Redox Flow Batteries. Chem. Eng. J. 2021, 412, 128499. [Google Scholar] [CrossRef]
- Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. Adv. Mater. 2020, 32, 2004240. [Google Scholar] [CrossRef]
- Song, Y.; Ruan, P.; Mao, C.; Chang, Y.; Wang, L.; Dai, L.; Zhou, P.; Lu, B.; Zhou, J.; He, Z. Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries. Nano-Micro Lett. 2022, 14, 218. [Google Scholar] [CrossRef]
- Su, T.-T.; Le, J.-B.; Wang, K.; Liu, K.-N.; Shao, C.-Y.; Ren, W.-F.; Sun, R.-C. Tetraethyl Orthosilicate Steam Induced Silicon-Based Anticorrosion Film Enables Highly Reversible Zinc Metal Anodes for Zinc-Iodine Batteries. J. Power Sources 2022, 550, 232136. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Q.; Ma, J.; Wang, J.; Hui, K.S.; Zhang, J. Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries. Small 2022, 18, 2200168. [Google Scholar] [CrossRef]
- Shang, W.; Li, Q.; Jiang, F.; Huang, B.; Song, J.; Yun, S.; Liu, X.; Kimura, H.; Liu, J.; Kang, L. Boosting Zn∥I2 Battery’s Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer. Nano-Micro Lett. 2022, 14, 82. [Google Scholar] [CrossRef]
Strategy Type | Cathode | Electrolyte | Separator | Specific Capacity | Cycling Stability | Refs. |
---|---|---|---|---|---|---|
Spatial confinement | ZPC/I2 | 1 M ZnSO4 | filter paper | 192 mAhg−1 at 0.1 A g−1 | 78.8% after 100 cycles at 0.1 A g−1 | [54] |
BCHP/I2 | 1 M ZnSO4 | GF | 100 mAhg−1 at 0.1 A g−1 | 78.8% after 100 cycles at 0.1 A g−1 | [55] | |
CMK-3@I2 | 2 M ZnSO4 | GF | 116 mAhg−1 at 0.2 A g−1 | 80.6% after 39,000 cycles at 10 A g−1 | [56] | |
HCNS/I0.5 | 0.5 M ZnSO4 + 0.5 M H2SO4 | Nafion | 295.7 mAhg−1 at 0.5 A g−1 | 87.0% after 1500 cycles at 1 A g−1 | [57] | |
Co[Co1/4Fe3/4(CN)6]/I2 | 2 M ZnSO4 | GF | 236.8 mAhg−1 at 0.1 A g−1 | 80.2% after 2000 cycles at 4 A g−1 | [58] | |
PBI | 1 M ZnSO4 + 0.5 mM KI | GF | 242.0 mAhg−1 at 0.2 A g−1 | 94.0% after 1500 cycles at 4 A g−1 | [59] | |
I2-Nb2CTx MXene | 1 M ZnSO4 | GF | 205.0 mAhg−1 at 1 A g−1 | 80.0% after 23,000 cycles at 6 A g−1 | [40] | |
Starch | Catholyte: 0.1 M I2 + 1 M LiI Anolyte: 0.5 M ZnSO4 + 0.5 M Li2SO4 | GF | 180.5 mAhg−1 at 0.2 A g−1 | 90.5% after 50,000 cycles at 10 A g−1 | [60] | |
MBene | 1 M Zn(OTf) + 21 M LiTFSI | GF | 201.0 mAhg−1 at 0.2 A g−1 | decay ratio of 0.68% per 10,000 cycles within 23,000 cycles at 25 A g−1 | [61] | |
Heteroatom Doping | I2/NPC-900 | 1 M ZnSO4 | GF | 345.5 mAhg−1 at 0.2 C | 80.9% after 10,000 cycles at 10.0 C | [62] |
NCCs/I2 | 2 M ZnSO4 | GF | 259.0 mAhg−1 at 0.1 A g−1 | 100.0% after 1000 cycles at 0.1 A g−1 | [63] | |
PNC-1000-I2 | 0.05 M ZnI2 + 0.05 M I2 | GF | 252.0 mAhg−1 at 0.2 A g−1 | 89.0% after 10,000 cycles at 1.0 A g−1 | [39] | |
I2@NPCNFs-800 | 2 M ZnSO4 | GF | 228.5 mAhg−1 at 2.0 C | 77.0% after 6000 cycles at 2.0 C | [64] | |
I2@NHPC | 1 M ZnSO4 | GF | 219.3 mAhg−1 at 1.0 C | decay ratio of 0.00147% per cycle within 10,000 cycles at 5.0 C | [65] | |
Electrostatic Interactions | GC-PAN/I | 2 M ZnSO4 | GF | 146.1 mAhg−1 at 1.0 C | 97.24% after 2000 cycles at 20 C | [47] |
PANI-I2 | 2 M ZnSO4 | GF | 230.0 mAhg−1 at 0.3 A g−1 | 79.0% after 700 cycles at 1.5 A g−1 | [66] | |
G/PVP@ZnI2 | 2 M ZnSO4 + 5 mM ZnI2 + 10 mM I2 | GF | 145.6 mAhg−1 at 0.2 A g−1 | 80.0% after 1000 cycles at 1.0 A g−1 | [67] | |
Introduction of Electrocatalysts | Fe SAC-MNC/I2 | 2 M ZnSO4 + 0.04 M I3− | GF | 188.2 mAhg−1 at 0.3 A g−1 | 79.5% after 50,000 cycles at 5.0 A g−1 | [38] |
SACu@NKB | Catholyte: 0.1 M I2 + 1 M LiI Anolyte: 0.5 M ZnSO4 + 0.5 M Li2SO4 | GF | 212.2 mAhg−1 at 0.2 A g−1 | 92.5% after 5000 cycles at 5.0 A g−1 | [68] | |
NiSAs-HPC/I2 | 2 M ZnSO4 | GF | 202.0 mAhg−1 at 0.5 C | decay ratio of 0.00049% per cycle within 10,000 cycles at 20.0 C | [69] | |
I2/Fe-NCF-700–500 | 2 M ZnSO4 | GF | 214.0 mAhg−1 at 2.0 C | 79.0% after 1500 cycles at 2.0 C | [70] | |
I2@W2N/N-C | 2 M ZnSO4 | GF | 235.0 mAhg−1 at 10.0 C | 85.0% after 2000 cycles at 5.0 C | [71] |
Strategy Type | Cathode | Electrolyte | Separator | Specific Capacity | Specific Stability | Refs. |
---|---|---|---|---|---|---|
Electrolyte Additives | I2@activated carbon | 2 M ZnSO4 + 0.2M [EMIM][OAc] | GF | 223.61 mAh g−1 at 0.4 A g−1 | decay ratio of 0.01% per cycle after over 18,000 cycles at 4 A g−1 | [114] |
HOPG | ZnI2 + ZnSO4/ H2O + EG | filter paper | 388.8 mAh cm−3 at 1 A g−1 | 97.6% after 15,000 cycles at 5 A g−1 | [115] | |
I2/ACC | 1 M ZnSO4 with VS | GF | 311 mAh g−1 at 0.2 C | 91.0% after 13,000 cycles at 5 C | [116] | |
Super P | Anolyte: Saturated pyridine−2 M ZnSO4 electrolyte Catholyte: 0.1 M I2 and 1 M LiI | GF | 165.8 mAh g−1 at 0.2 A g−1 | 92% after 10,000 cycles at 2 A g−1 | [45] | |
Anolyte: Saturated imidazole−2 M ZnSO4 electrolyte Catholyte: 0.1 M I2 and 1 M LiI | GF | 164.1 mAh g−1 at 0.2 A g−1 | over 25,000 cycles at 10 A g−1 | |||
Eutectic Electrolytes | AC | 1 M Zn(CF3SO3)2/4 M N-methylacetamide/0.5 M KI in 20% volume fractions of H2O | glass microfiber filters | 2.81 mAh cm−2 at 1 mA cm−2 | 98.7% after 5000 cycles at 4 mA cm−2 | [117] |
I2@PC | ZnSO4/PG /H2O | - | 210 mAh g−1 at 1 C | 97.9% after 2000 cycles at 5 C | [118] | |
NH4V4O10-PAC | EG-H2O-Zn[CF3SO3]2-ZnI2 | glass microfiber filters | 0.507 mAh at 0.2 A g−1 | ∼80% after 500 cycles at 0.2 A g−1 | [119] | |
I2@C | NA + DMS + Zn(ClO4)2·6H2O | GF | 395 mAh g−1 at 1 A g−1 | 80% after 2000 cycles at 2 A g−1 | [120] | |
Quasi-solid Gel Electrolytes | PCM−NP/I2 | Iota-carrageenan gel electrolyte | GF | 242 mAh g−1 at 0.5 C | 91.9% after 5000 cycles at 5 C | [121] |
I2@AC | Alginate-Based Hydrogel | GF | 196.4 mAh g−1 at 0.1 A g−1 | 66.8% after 2000 cycles at 2 A g−1 | [122] | |
Carbon cloth | Anolyte: 0.5 M ZnSO4/PEO53–PPO34–PEO53; catholyte: 0.1 M I2/1 M KI/PEO53–PPO34–PEO53 | - | 252 mAh g−1 at 0.1 C | 94.3% after 500 cycles at 1 C | [123] |
Cathode | Electrolyte | Separator | Specific Capacity | Specific Stability | Refs. |
---|---|---|---|---|---|
MPC/I2 | 1 M ZnSO4 | KB@CF | 142 mAh g−1 at 0.1 A g−1 | average capacity decay rate of 0.030% per cycle over 2000 cycles at 1 A g−1 | [137] |
KB | Catholyte: 0.5 M ZnSO4, 1 M LiI, and 0.1 M I2 Anolyte: 0.5 M ZnSO4 and 0.5 M Li2SO4 | Zn–BTC | 203 mAh g−1 at 160 mA g−1 | 84.6% after 6000 cycles at 1.92 A g−1 | [138] |
I2/ACC | 1 M ZnSO4 | Dowex + Fe–SCNT/GF | 1.72 mAh cm−2 at 0.2 A g−1 | average capacity decay of 0.0008% per cycle at 5 A g−1 after more than 30,000 cycles | [139] |
KB | Anolyte: 0.5 M ZnSO4/0.5 M Li2SO4; catholyte: 0.5 M ZnSO4/1 M LiI/0.1 M I2 | Zeolite membrane of Na12(AlO2)12(SiO2)12·xH2O | 123.4 mAh g−1 at 0.2 A g−1 | 91.0% after 30,000 cycles at 4 A g−1 | [140] |
Cathode | Anode | Electrolyte | Separator | Specific Capacity | Specific Stability | Refs. |
---|---|---|---|---|---|---|
GC-PAN/I | SC-PPS@Zn | 2 M ZnSO4 | GF | 130.4 mAh g−1 at 1 C | 90.2% after over 6000 cycles at 3.2 A g−1 | [33] |
KB | Zn@Ts | Anolyte, 0.5 M Li2SO4/0.5 M ZnSO4; catholyte, 1 M LiI/0.1 M I2/0.5 M ZnSO4 | GF | 150 mAh g−1 at 0.4 A g−1 | 93% after 20,000 cycles at 6 A g−1 | [146] |
I2/N, P co-doped carbon | PA−Zn | 2 M ZnSO4 | GF | 261.1 mAh g−1 at 0.5 C | 5000 cycles at 5 C | [147] |
I2@AC | Zeolite−Zn discs | 1 M ZnSO4 | GF | 203−196 mAh g−1 at 0.2 A g−1 | 91.92% after 5600 cycles at 2 A g−1 | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wu, J.; Li, H.; Wang, Y. Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects. Materials 2024, 17, 1646. https://doi.org/10.3390/ma17071646
Li M, Wu J, Li H, Wang Y. Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects. Materials. 2024; 17(7):1646. https://doi.org/10.3390/ma17071646
Chicago/Turabian StyleLi, Mengyao, Juan Wu, Haoyu Li, and Yude Wang. 2024. "Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects" Materials 17, no. 7: 1646. https://doi.org/10.3390/ma17071646
APA StyleLi, M., Wu, J., Li, H., & Wang, Y. (2024). Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects. Materials, 17(7), 1646. https://doi.org/10.3390/ma17071646