Influence of Eggshell Powder on the Properties of Cement-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Mixing Ratio and Sample Preparation
2.3. Test Methods
2.3.1. Heat of Hydration
2.3.2. Compressive Strength
2.3.3. Ultrasonic Pulse Velocity (UPV) and Surface Resistivity
2.3.4. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR)
2.3.5. Thermogravimetric Analysis (TGA)
3. Results
3.1. Heat of Hydration
3.2. Strength
3.3. Ultrasonic Pulse Speed
3.4. Resistivity
3.5. XRD
3.6. FTIR
3.7. TG-DTG
4. Hydration Model for Cement–Eggshell Powder Binary Blends
4.1. Calibration of Parameters of the Hydration Model
4.2. Evaluation of Strength Development Using the Hydration Model
5. Discussions and Conclusions
5.1. Discussions
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Du, E.; Chang, S.; Ou, X.; Guo, S.; Tian, Z. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environ. Sci. Ecotechnol. 2022, 9, 100134. [Google Scholar] [CrossRef]
- Duan, L.; Hu, W.; Deng, D.; Fang, W.; Xiong, M.; Lu, P.; Li, Z.; Zhai, C. Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China. Environ. Sci. Ecotechnol. 2021, 8, 100125. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Yang, Y.; Hu, Z.; Li, C.; Deng, Y. Global patterns and changes of carbon emissions from land use during 1992–2015. Environ. Sci. Ecotechnol. 2021, 7, 100108. [Google Scholar] [CrossRef]
- Cloete, S.; Giuffrida, A.; Romano, M.C.; Zaabout, A. Economic assessment of the swing adsorption reactor cluster for CO2 capture from cement production. J. Clean. Prod. 2020, 275, 123024. [Google Scholar] [CrossRef]
- Lopez-Arias, M.; Moro, C.; Francioso, V.; Elgaali, H.H.; Velay-Lizancos, M. Effect of nanomodification of cement pastes on the CO2 uptake rate. Constr. Build. Mater. 2023, 404, 133165. [Google Scholar] [CrossRef]
- Harrison, E.; Berenjian, A.; Seifan, M. Recycling of waste glass as aggregate in cement-based materials. Environ. Sci. Ecotechnol. 2020, 4, 100064. [Google Scholar] [CrossRef]
- Ge, Z.; Tawfek, A.M.; Zhang, H.; Yang, Y.; Yuan, H.; Sun, R.; Wang, Z. Influence of an extrusion approach on the fiber orientation and mechanical properties of engineering cementitious composite. Constr. Build. Mater. 2021, 306, 124876. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yehualaw, M.D.; Vo, D.-H.; Huynh, T.-P. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr. Build. Mater. 2019, 218, 519–529. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Butera, A.; Le, K.N.; Li, W. Utilising CO2 technologies for recycled aggregate concrete: A critical review. Constr. Build. Mater. 2020, 250, 118903. [Google Scholar] [CrossRef]
- Lin, R.-S.; Wang, X.-Y.; Yi, H. Effects of cement types and addition of quartz and limestone on the normal and carbonation curing of cement paste. Constr. Build. Mater. 2021, 305, 124799. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X. Use of Carbonation Curing to Improve Mechanical Strength and Durability of Pervious Concrete. ACS Sustain. Chem. Eng. 2020, 8, 3872–3884. [Google Scholar] [CrossRef]
- Campos, H.F.; Klein, N.S.; Marques Filho, J.; Bianchini, M. Low-cement high-strength concrete with partial replacement of Portland cement with stone powder and silica fume designed by particle packing optimization. J. Clean. Prod. 2020, 261, 121228. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Y.; Kang, M.; Ju, Y.; Zeng, C. Durability of reactive powder concrete containing mineral admixtures in seawater erosion environment. Constr. Build. Mater. 2021, 306, 124863. [Google Scholar] [CrossRef]
- Han, Y.; Lin, R.-S.; Wang, X.-Y. Compressive Strength Estimation and CO2 Reduction Design of Fly Ash Composite Concrete. Buildings 2022, 12, 139. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Szudek, W.; Wolka, P.; Zieliński, A. Implementation of Alternative Mineral Additives in Low-Emission Sustainable Cement Composites. Materials 2021, 14, 6423. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, K.; Karthikeyan, J. Effective utilization of waste eggshell powder in cement mortar. Mater. Today Proc. 2022, 61, 428–432. [Google Scholar] [CrossRef]
- Paruthi, S.; Khan, A.H.; Kumar, A.; Kumar, F.; Hasan, M.A.; Magbool, H.M.; Manzar, M.S. Sustainable cement replacement using waste eggshells: A review on mechanical properties of eggshell concrete and strength prediction using artificial neural network. Case Stud. Constr. Mater. 2023, 18, e02160. [Google Scholar] [CrossRef]
- ASTM C188-17; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C91/C91M; Standard Specification for Mortar Cement. ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM C305-13; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- ASTM C186; Standard Test Method for Heat of Hydration of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2009.
- Zhang, G.Y.; Ahn, Y.H.; Lin, R.S.; Wang, X.Y. Effect of Waste Ceramic Powder on Properties of Alkali-Activated Blast Furnace Slag Paste and Mortar. Polymers 2021, 13, 2817. [Google Scholar] [CrossRef] [PubMed]
- ASTM C109; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM C597-09; Standard Test Method for Pulse Velocity through Concrete. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]
- Ahmed, T.; Elchalakani, M.; Karrech, A.; Al-Ameri, R.; Yang, B. Mechanical properties and chloride penetration resistances of very-low-C3A cement based SC-UHP-SFRCs incorporating metakaolin and slag. Constr. Build. Mater. 2022, 341, 127854. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Lin, R.-S.; Wang, X.-Y. Effects of K+ and CO32− on the performance of slag–ceramic blended geopolymers. Polym. Test. 2023, 117, 107816. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Han, Y.; Lin, R.; Wang, X.-Y. Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag. J. Build. Eng. 2022, 47, 103918. [Google Scholar] [CrossRef]
- Acharya, P.K.; Patro, S.K. Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr. Build. Mater. 2015, 94, 448–457. [Google Scholar] [CrossRef]
- Ozturk, M.; Karaaslan, M.; Akgol, O.; Sevim, U.K. Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cem. Concr. Res. 2020, 136, 106177. [Google Scholar] [CrossRef]
- Wang, C.-C.; Wang, H.-Y. Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity. Constr. Build. Mater. 2017, 137, 345–353. [Google Scholar] [CrossRef]
- Jiang, H.; Yi, H.; Yilmaz, E.; Liu, S.; Qiu, J. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature. Ultrasonics 2020, 100, 105983. [Google Scholar] [CrossRef]
- Zajac, M.; Skibsted, J.; Durdzinski, P.; Ben Haha, M. Effect of alkalis on products of enforced carbonation of cement paste. Constr. Build. Mater. 2021, 291, 123203. [Google Scholar] [CrossRef]
- Demirhan, S.; Turk, K.; Ulugerger, K. Fresh and hardened properties of self consolidating Portland limestone cement mortars: Effect of high volume limestone powder replaced by cement. Constr. Build. Mater. 2019, 196, 115–125. [Google Scholar] [CrossRef]
- Tanyildizi, H. Investigation of carbonation performance of polymer-phosphazene concrete using Taguchi optimization method. Constr. Build. Mater. 2021, 273, 121673. [Google Scholar] [CrossRef]
- Shah, A.A.; Alsayed, S.H.; Abbas, H.; Al-Salloum, Y.A. Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network. Constr. Build. Mater. 2012, 29, 42–50. [Google Scholar] [CrossRef]
- Breysse, D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Constr. Build. Mater. 2012, 33, 139–163. [Google Scholar] [CrossRef]
- Shariati, M.; Shariati, A.; Trung, N.T.; Shoaei, P.; Ameri, F.; Bahrami, N.; Zamanabadi, S.N. Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Constr. Build. Mater. 2021, 267, 120886. [Google Scholar] [CrossRef]
- Narimani Zamanabadi, S.; Zareei, S.A.; Shoaei, P.; Ameri, F. Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties. Constr. Build. Mater. 2019, 229, 116911. [Google Scholar] [CrossRef]
- Fahim Huseien, G.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Abdulameer Hussein, A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Gan, Y.; Chang, Z.; Schlangen, E.; Šavija, B. Combined experimental and numerical study of uniaxial compression failure of hardened cement paste at micrometre length scale. Cem. Concr. Res. 2019, 126, 105925. [Google Scholar] [CrossRef]
- Lin, R.-S.; Lee, H.-S.; Han, Y.; Wang, X.-Y. Experimental studies on hydration–strength–durability of limestone-cement-calcined Hwangtoh clay ternary composite. Constr. Build. Mater. 2021, 269, 121290. [Google Scholar] [CrossRef]
- Herterich, J.; Richardson, I.; Moro, F.; Marchi, M.; Black, L. Microstructure and phase assemblage of low-clinker cements during the early stages of carbonation. Cem. Concr. Res. 2022, 152, 106643. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U.; Steenari, B.-M.; Panas, I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009, 39, 433–439. [Google Scholar] [CrossRef]
- Mendes, A.; Gates, W.P.; Sanjayan, J.G.; Collins, F. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Mater. Struct. 2011, 44, 1773–1791. [Google Scholar] [CrossRef]
- Jose, A.; Nivitha, M.R.; Krishnan, J.M.; Robinson, R.G. Characterization of cement stabilized pond ash using FTIR spectroscopy. Constr. Build. Mater. 2020, 263, 120136. [Google Scholar] [CrossRef]
- Nguyen, H.-A.; Chang, T.-P.; Shih, J.-Y.; Chen, C.-T. Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cem. Concr. Compos. 2019, 99, 40–48. [Google Scholar] [CrossRef]
- Barnett, S.; Macphee, D.E.; Lachowski, E.E.; Crammond, N. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem. Concr. Res. 2002, 32, 719–730. [Google Scholar] [CrossRef]
- Moro, C.; Francioso, V.; Velay-Lizancos, M. Impact of nano-TiO2 addition on the reduction of net CO2 emissions of cement pastes after CO2 curing. Cem. Concr. Compos. 2021, 123, 104160. [Google Scholar] [CrossRef]
- Lee, H.-S.; Wang, X.-Y. Hydration Model and Evaluation of the Properties of Calcined Hwangtoh Binary Blends. Int. J. Concr. Struct. Mater. 2021, 15, 11. [Google Scholar] [CrossRef]
- De Weerdt, K.; Haha, M.B.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K. Hydration kinetics and activation energy of cement pastes containing various nanoparticles. Compos. Part B Eng. 2021, 216, 108836. [Google Scholar] [CrossRef]
Identification | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | ZnO | TiO2 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | 19.40 | 4.46 | 64.20 | 3.00 | 2.29 | 0.12 | 0.98 | 0.06 | 0.23 | 3.83 | 1.43 |
Eggshell powder | 0.02 | 0.02 | 74.2 | - | 0.69 | 0.14 | 0.07 | - | - | 0.34 | 24.52 |
Group | OPC | Eggshell Powder | Sand | Water | Water/Binder | |
---|---|---|---|---|---|---|
Paste | ES0 | 100 | 0 | - | 50 | 0.5 |
ES7.5 | 92.5 | 7.5 | - | 50 | 0.5 | |
ES15 | 85 | 15 | - | 50 | 0.5 | |
Mortar | ES0 | 100 | 0 | 200 | 50 | 0.5 |
ES7.5 | 92.5 | 7.5 | 200 | 50 | 0.5 | |
ES15 | 85 | 15 | 200 | 50 | 0.5 |
Wavenumber (cm−1) | Functional Groups | Reference |
---|---|---|
3457–3390 | H–O–H, υ | [44,45] |
1650–1640 | H–O–H, δ | [44,45] |
1400–1500 | C–O, υas | [46] |
997–938 | Si–O–Si, υas | [47,48] |
853–600 | Al–O–H, δ | [47] |
wt% | ES0 | ES7.5 | ES15 |
---|---|---|---|
Combined water (1 day) | 13.15 | 12.76 | 11.99 |
Portlandite (1 day) | 14.80 | 14.59 | 13.57 |
Combined water (28 days) | 19.55 | 18.29 | 16.91 |
Portlandite (28 days) | 18.48 | 17.18 | 15.68 |
Q0 | b0 | b7.5 | b15 | c |
---|---|---|---|---|
456.04 | 7.96 | 7.16 | 6.44 | −0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.-Y.; Oh, S.; Han, Y.; Meng, L.-Y.; Lin, R.; Wang, X.-Y. Influence of Eggshell Powder on the Properties of Cement-Based Materials. Materials 2024, 17, 1705. https://doi.org/10.3390/ma17071705
Zhang G-Y, Oh S, Han Y, Meng L-Y, Lin R, Wang X-Y. Influence of Eggshell Powder on the Properties of Cement-Based Materials. Materials. 2024; 17(7):1705. https://doi.org/10.3390/ma17071705
Chicago/Turabian StyleZhang, Gui-Yu, Seokhoon Oh, Yi Han, Li-Yi Meng, Runsheng Lin, and Xiao-Yong Wang. 2024. "Influence of Eggshell Powder on the Properties of Cement-Based Materials" Materials 17, no. 7: 1705. https://doi.org/10.3390/ma17071705
APA StyleZhang, G. -Y., Oh, S., Han, Y., Meng, L. -Y., Lin, R., & Wang, X. -Y. (2024). Influence of Eggshell Powder on the Properties of Cement-Based Materials. Materials, 17(7), 1705. https://doi.org/10.3390/ma17071705