Application of Alcohols to Inhibit the Formation of Ca(II) Dodecyl Sulfate Precipitate in Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SDS in Various Alcohol–Water Mixtures
3.1.1. Determination of CMC of SDS in Alcohol–Water Mixtures
3.1.2. Measurement of Micelle Size Values in the Presence of Alcohols
3.2. Inhibition Effect of Alcohols on the Precipitation of DS− with Calcium Ions
3.2.1. Determination the Inhibition Effects of Alcohols on the Precipitation Using Turbidimetry
3.2.2. Measurement of Micelle Diameters in SDS Solutions Containing Calcium and Alcohol
3.2.3. Measurement of Surface Tension Samples of Calcium- and Alcohol-Containing SDS Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2007, 3, 197–211. [Google Scholar] [CrossRef]
- Sheng, J.J. Comparison of the effects of wettability alteration and IFT reduction on oil recovery in carbonate reservoirs. Asia-Pac. J. Chem. Eng. 2013, 8, 154–161. [Google Scholar] [CrossRef]
- de Aguiar, H.B.; de Beer, A.G.F.; Strader, M.L.; Roke, S. The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant. J. Am. Chem. Soc. 2010, 132, 2122–2123. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.J. Status of surfactant EOR technology. Petroleum 2015, 1, 97–105. [Google Scholar] [CrossRef]
- Sheng, J.J. Optimum phase type and optimum salinity profile in surfactant flooding. J. Pet. Sci. Eng. 2010, 75, 143–153. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S. Prediction of barium sulfate precipitation in dynamic tube blocking tests and its inhibition for waterflooding application using response surface methodology. J. Pet. Explor. Prod. Technol. 2023, 13, 2267–2281. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dac, P.; Sivapathasekaran, C.; Sen, R. Antimicrobial biosurfactants from marine Bacillus circulans: Extracellular synthesis and purification. Lett. Appl. Microbiol. 2009, 48, 281–288. [Google Scholar] [CrossRef]
- Jakubowska, A. Interactions of univalent counterions with headgroups of monomers and dimers of an anionic surfactant. Langmuir 2015, 31, 3293–3300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nguyen, Q.P.; Flaaten, A.K.; Pope, A.G. Mechanisms of Enhanced Natural Imbibition with Novel Chemicals. SPE Reserv. Eval. Eng. 2009, 12, 912–920. [Google Scholar] [CrossRef]
- Elraies, K.A. The effect of a new in situ precipitation inhibitor on chemical EOR. J. Pet. Explr. Prod. Technol. 2013, 3, 133–137. [Google Scholar] [CrossRef]
- Amjad, Z. Effect of precipitation inhibitors on calcium phosphate scale formation. Can. J. Chem. 1989, 67, 850–856. [Google Scholar] [CrossRef]
- Miyazaki, N.; Sugai, Y.; Sasaki, K.; Okamoto, Y.; Yanagisawa, S. Screening of the Effective Additive to Inhibit Surfactin from Forming Precipitation with Divalent Cations for Surfactin Enhanced Oil Recovery. Energies 2020, 13, 2430. [Google Scholar] [CrossRef]
- Shinoda, K. The Effect of Alcohols on the Critical Micelle Concentrations of Fatty Acid Soaps and the Critical Micelle Concentration of Soap Mixtures. J. Phys. Chem. 1954, 58, 1136–1141. [Google Scholar] [CrossRef]
- Páhi, A.B.; Varga, D.; Király, Z.; Mastalir, Á. Thermodynamics of micelle formation of the ephedrine-based chiral cationic surfactant DMEB in water, and the intercalation of DMEB in montmorillonite. Colloid Surf. A 2008, 319, 77–83. [Google Scholar] [CrossRef]
- Zana, R.; Eljebari, M.J. Fluorescence probing investigation of the self-association of alcohols in aqueous solution. J. Phys. Chem. 1993, 97, 11134–11136. [Google Scholar] [CrossRef]
- Zana, R. Aqueous surfactant-alcohol systems: A review. Adv. Colloid Interface Sci. 1995, 57, 1–65. [Google Scholar] [CrossRef]
- Rao, I.V.; Ruckenstein, E. Micellization Behavior in the Presence of Alcohols. Colloid Interface Sci. 1986, 113, 375–388. [Google Scholar] [CrossRef]
- Flockhart, B.D. The critical micelle concentration of sodium dodecyl sulfate in ethanol-water mixtures. J. Colloid Sci. 1957, 12, 557–565. [Google Scholar] [CrossRef]
- Ray, A.; Nemethy, G. Micelle formation by nonionic detergents in water-ethylene glycol mixtures. J. Phys. Chem. 1971, 75, 809–815. [Google Scholar]
- Kalyanasundaram, K.; Thoma, J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1997, 99, 2039–2044. [Google Scholar] [CrossRef]
- Scholz, N.; Behnke, T.; Resch-Genger, U. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison. J. Fluoresc. 2018, 28, 465–476. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.; Prieto, G.; Rega, C.; Varela, L.M.; Sarmiento, F.; Mosquera, V. A Comparative Study of the Determination of the Critical Micelle Concentration by Conductivity and Dielectric Constant Measurements. Langmuir 1998, 14, 4422–4426. [Google Scholar] [CrossRef]
- Paillet, S.; Grassl, B.; Desbriéres, J. Rapid and quantitative determination of critical micelle concentration by automatic continuous mixing and static light scattering. Anal. Chim. Acta 2009, 636, 236–241. [Google Scholar] [CrossRef]
- Aguiar, J.; Carpena, P.; Molina-Bolívar, A.; Carnero Ruiz, C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
- Cai, L.; Gochin, M.; Liu, K. A facile surfactant critical micelle concentration determination. Chem. Commun. 2011, 47, 5527. [Google Scholar] [CrossRef]
- Fluksman, A.; Benny, O. A robust method for critical micelle concentration determination using coumarin-6 as a fluorescent probe. Anal. Methods 2019, 11, 3810–3818. [Google Scholar] [CrossRef]
- Tanhaei, B.; Seghatoleslami, N.; Chenar, M.P.; Ayati, A.; Hesampour, M.; Mänttäri, M. Experimental Study of CMC Evaluation in Single and Mixed Surfactant Systems, Using the UV-Vis Spectroscopic Method. J. Surfact. Deterg. 2013, 16, 357–362. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, L. Solubilization of pyrene by anionicnonionic mixed surfactants. J. Hazard. Mater. 2004, 109, 213–220. [Google Scholar] [CrossRef]
- Austad, T.; Matre, B.; Milter, J.; Saevareid, A.; Øyno, L. Chemical flooding of oil reservoirs 8. Spontaneous oil expulsion from oil- and water-wet low permeable chalk material by imbibition of aqueous surfactant solutions. Colloids Surfaces A Physicochem. Eng. Aspects 1998, 137, 117–129. [Google Scholar] [CrossRef]
- Ádám, A.A.; Ziegenheim, S.; Janovák, L.; Szabados, M.; Bús, C.; Kukovecz, Á.; Kónya, Z.; Dékány, I.; Sipos, P.; Kutus, B. Binding of Ca2+ Ions to Alkylbenzene Sulfonates: Micelle Formation, Second Critical Concentration and Precipitation. Materials 2023, 16, 494. [Google Scholar] [CrossRef]
- Shirahama, K.; Kashiwabara, T.J. The CMC-decreasing effects of some added alcohols on the aqueous sodium dodecyl sulfate solutions. Colloid Interface Sci. 1971, 36, 65. [Google Scholar] [CrossRef]
- Yoshimura, T.; Ohno, A.; Esumi, K. Mixed micellar properties of cationic trimeric-type quaternary ammonium salts and anionic sodium n-octyl sulfate surfactants. J. Colloid Interface Sci. 2004, 272, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Vaidya, S.; Ahmad, T.; Ganguli, A.K. Optimizing the hydrodynamic radii and polydispersity of reverse micelles in the Triton X-100/water/cyclohexane system using dynamic light scattering and other studies. Colloids and Surfaces A Physicochem. Eng. Aspects 2007, 293, 162–166. [Google Scholar] [CrossRef]
- Chun, B.J.; Choi, J.I.; Jang, S.S. Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A Physicochem. Eng. Aspects 2015, 474, 36–43. [Google Scholar] [CrossRef]
- Mirgorod, Y.; Chekadanov, A.; Dolenko, T. Structure of micelles of sodium dodecyl sulphate in water: X-ray and dynamic light scattering study. Chem. J. Mold. 2019, 14, 107–119. [Google Scholar] [CrossRef]
- Candau, S.; Zana, R. Effect of alcohols on the properties of micellar systems: III. Elastic and quasielastic light scattering study. J. Colloid Interface Sci. 1981, 84, 206–219. [Google Scholar] [CrossRef]
- Almgrem, M.; Swarup, S. Size of sodium dodecyl sulfate micelles in the presence of additives i. alcohols and other polar compounds. J. Colloid Interface Sci. 1983, 91, 256–266. [Google Scholar] [CrossRef]
Solvent | ||||
---|---|---|---|---|
Alcohol V/V% | Methanol | Ethanol | n-Propanol | n-Butanol |
0 | 0.63 g/L (2.4 mM) | |||
5.0 | 0.17 g/L (0.7 mM) | 0.16 g/L (0.6 mM) | 0.17 g/L (0.7 mM) | 0.03 g/L (0.1 mM) |
10.0 | 0.34 g/L (1.3 mM) | 0.21 g/L (0.8 M) | 0.14 g/L (0.5 mM) | – – |
20.0 | 0.35 g/L (1.3 mM) | 0.29 g/L (1.1 mM) | – |
Sample Composition | Particle Size/nm | Polydispersity Index (PdI) |
---|---|---|
0.1 g/L SDS | 167 * | 0.3 |
0.5 g/L SDS | 181 * | 0.2 |
1.0 g/L SDS | 6.6 | 0.5 |
2.5 g/L SDS | 4.6 | 0.5 |
5.0 g/L SDS | 2.9 | 0.5 |
Solvent | ||||||
---|---|---|---|---|---|---|
c (SDS)/g/L | 5.0 V/V% Methanol | 10.0 V/V% Methanol | 20.0 V/V% Methanol | 5.0 V/V% Ethanol | 10.0 V/V% Ethanol | 20.0 V/V% Ethanol |
0.5 | 123.4 (0.2) | 17.8 (0.2) | 24.4 (0.2) | 191.4 (0.4) | 83.8 (0.21) | 21.8 (0.05) |
1.0 | 4.9 (0.3) | 5.9 (0.4) | 6.5 (0.5) | 5.0 (0.6) | 4.5 (0.49) | 3.6 (0.10) |
2.5 | 3.5 (0.4) | 3.7 (0.3) | 18.0 (0.2) | 3.0 (0.4) | 2.7 (0.35) | 58.0 (0.7) |
5.0 | 2.3 (0.6) | 2.3 (0.5) | 2.0 (0.1) | 2.0 (0.4) | 1.7 (0.23) | 89.3 (0.5) |
Solvent | ||||
---|---|---|---|---|
c (g/L) | 5.0 V/V% n-Propanol | 10.0 V/V% n-Propanol | 20.0 V/V% n-Propanol | 5.0 V/V% n-Butanol |
0.1 | 139.9 (0.7) | 149.0 (0.6) | 156.6 (0.3) | 0.70 (0.8) |
0.5 | 51.0 (0.5) | 25.6 (0.5) | 56.5 (0.8) | 0.9 (0.5) |
1.0 | 3.1 (0.5) | 53.8 (0.5) | 23.2 (0.6) | 1.4 (0.42) |
2.5 | 1.7 (0.4) | 1.5 (0.7) | 1.5 (0.6) | 1.3 (0.4) |
5.0 | 1.2 (0.3) | 1.0 (0.4) | 0.9 (0.4) | 1.0 (0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bús, C.; Kocsis, M.; Ágoston, Á.; Kukovecz, Á.; Kónya, Z.; Sipos, P. Application of Alcohols to Inhibit the Formation of Ca(II) Dodecyl Sulfate Precipitate in Aqueous Solutions. Materials 2024, 17, 1806. https://doi.org/10.3390/ma17081806
Bús C, Kocsis M, Ágoston Á, Kukovecz Á, Kónya Z, Sipos P. Application of Alcohols to Inhibit the Formation of Ca(II) Dodecyl Sulfate Precipitate in Aqueous Solutions. Materials. 2024; 17(8):1806. https://doi.org/10.3390/ma17081806
Chicago/Turabian StyleBús, Csaba, Marianna Kocsis, Áron Ágoston, Ákos Kukovecz, Zoltán Kónya, and Pál Sipos. 2024. "Application of Alcohols to Inhibit the Formation of Ca(II) Dodecyl Sulfate Precipitate in Aqueous Solutions" Materials 17, no. 8: 1806. https://doi.org/10.3390/ma17081806
APA StyleBús, C., Kocsis, M., Ágoston, Á., Kukovecz, Á., Kónya, Z., & Sipos, P. (2024). Application of Alcohols to Inhibit the Formation of Ca(II) Dodecyl Sulfate Precipitate in Aqueous Solutions. Materials, 17(8), 1806. https://doi.org/10.3390/ma17081806