Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation
Abstract
:1. Introduction
1.1. Silver Nanoparticles as Antibacterial Agents
Ref. | Form | Size (nm) | SPR (nm) | Stabilizer | Zeta Potential (mV) | ZoI (mm) | MIC (μg/mL) |
---|---|---|---|---|---|---|---|
[16] | Spherical | 2.3 ± 0.5 | 393 | Citrate | 19.5 | 7.8 | |
12.5 ± 2.2 | 404 | 16.2 | 15.6 | ||||
32.4 ± 6.5 | 423 | 11 | 62.5 | ||||
[31] | Spherical | 40 | 430 | 2.22 ± 0.55 | |||
Hexagonal | 40 | 416/650 | 2.45 ± 0.24 | ||||
Triangular | 40 | 344/600 | 0.08 ± 0.14 | ||||
[24] | Spheres | 60 ± 15 | 430 | 75 ± 2.6 | |||
Cubes | 55 ± 10 | 460 | 37.5 ± 5.3 | ||||
Wires | 60/2–4 μm | 350/390 | 100 ± 5.3 | ||||
[32] | Spherical | 44 | 445 | PEG | 3 | ||
39 | 438 | EDTA | 4 | ||||
35 | 431 | PVP | 6 | ||||
31 | 425 | PVA | 7 | ||||
[33] 1 | Spherical | 10 ± 5 | 1.0 | ||||
30 ± 5 | 2.4 | ||||||
60 ± 5 | 7.2 | ||||||
90 ± 5 | 11.5 | ||||||
[34] | Spherical | 40–50 | 430 | Citrate | 190 | ||
Rod-shaped | 20/90 | 437/346 | 430 | ||||
[17] | Spherical | 5 ± 0.7 | 393 | Citrate | −22.8 ± 0.8 | 12.4 | 20 |
7 ± 1.3 | 394 | −27.3 ± 1.2 | 11.2 | 20 | |||
10 ± 2.0 | 398 | −30.2 ± 1.2 | 11.1 | 30 | |||
15 ± 2.3 | 401 | −34.0 ± 2.0 | 6 | 30 | |||
20 ± 2.5 | 406 | −35.1 ± 0.9 | 40 | ||||
30 ± 5.1 | 411 | −33.7 ± 2.0 | 50 | ||||
50 ± 7.6 | 420 | −41.8 ± 1.3 | 80 | ||||
63 ± 7.4 | 429 | −48.5 ± 0.9 | 90 | ||||
85 ± 8.2 | 449 | −52.4 ± 3.4 | 90 | ||||
100 ± 11.3 | 462 | −53.1 ± 1.8 | 110 | ||||
[26] 3 | Spherical | 7.5 | 400 | Sodium borohydride | −38.0 | 9.7 × 10−8 | |
10.1 | 400 | Rice starch | 0.0 | 4 × 10−9 | |||
9.0 | 400 | 1-dodecyl-3-methylimidazolium | +50.0 | 5.7 × 10−12 | |||
[27] 4 | Spherical | 9.1 ± 4.2 | 390 | Citrato | −26.3 ± 2.6 | 6.4 | |
19.1 ± 6.0 | 404 | Citrato | −33.8 ± 2.2 | 15.7 | |||
43.5 ± 12 | 412 | Citrato | −26.9 ± 1.8 | 40.9 | |||
17.9 ± 7.0 | 402 | PVP | −10.7 ± 1.8 | 5.5 | |||
23.3 ± 15 | 420 | BPEI | +33.3 ± 1.5 | 2.2 | |||
[35] | Spherical | 30–80 | 426 | Tri-sodium citrate | 0.9 ± 0.15 | ||
Triangular | 150 | 392/789 | PVP | 1.4 ± 0.2 | |||
Spherical | 25–70 | 403 | Sodium borohydride | 1.1 ± 0.35 | |||
Spherical | 15–50 | 397 | PVP | 1.5 ± 0.3 | |||
Spherical | 30–200 | 504/678/735 | PVP | 0.7 ± 0.3 | |||
[20] 2 | Spheres | 40–70 | PVP | −6 | ≥12.5–25 | ||
Spheres | 120–180 | −3 | ≥25 | ||||
Platelets | 20–60 | −7 | ≥25 | ||||
cubes | 140–180 | −11 | ≥25–50 |
1.2. Silver Nanoparticles as Surface Modifiers in Adsorption Processes
Ref. | Adsorbent Material | [AgNps] | Nps Size (nm) | SBET (m2/g) | Dpore (nm) | Vpore (cm3/g) | pHPZC | Adsorbent Capacity (mg/g) | Adsorbate |
---|---|---|---|---|---|---|---|---|---|
[41] | Bamboo-Based Cellulose Carbon Aerogel (BCA) | 324.99 | 4.92 | 0.40 | 7.953 | Formaldehyde (HCHO) | |||
Ag/BCA | 1% | 329.97 | 4.25 | 0.35 | 21.56 | ||||
3% | 359.29 | 3.24 | 0.35 | 23.56 | |||||
5% | 25.42 | 394.20 | 3.54 | 0.29 | 26.75 | ||||
[46] | PDMAEMA-g-PET | 5.3 | 0.274 | As (III) | |||||
Ag@PDMAEMA-g-PET | 17.7 ± 3.5 | 6.7 | 0.357 | ||||||
[47] | Sunflower husk biochar (BC) | 7.02 | 3.54 | 0.004 | 6.1 | 6.83 | Tetracycline (TC) | ||
BCA | 500 mg/L | 46 | 0.10 | 17.68 | 0.001 | 5.8 | 9.55 | ||
[44] | Tea activated carbon (TAC) | 322 | 0.0032 | 6.15 | 7.38 | Phosphate | |||
AgNps-TAC | 3.0% | 349 | 0.0036 | 6.52 | 9.87 | ||||
6.0% | 9.40 | ||||||||
9.0% | 9.38 | ||||||||
[45] | Activated carbon (AC) | 691.64 | 0.062 | 4.13 | 38.89 | Methylene blue | |||
AgNPs-AC | 0.5% | 705.32 | 0.065 | 4.91 | 84.81 | ||||
1.5% | 61.11 | ||||||||
[48] | Activated carbon (AC) | 691.64 | 0.062 | 4.13 | 7.61 | Chromium (Cr (VI)) | |||
AgNPs-AC | 2% | 701.65 | 0.061 | 5.09 | 10.33 | ||||
[42] | Spherical activated carbon (SAC) | 1077.84 | 2.14 | 0.58 | 30.28 | Dipropyl sulfide | |||
Ag-SAC | 0.05 | 998.08 | 2.14 | 0.53 | |||||
0.5 | 968.91 | 2.13 | 0.52 | 34.34 | |||||
1 M | 20–30 | 945.17 | 2.12 | 0.50 | ≈32.50 | ||||
[49] | Graphene oxide (GO) | 1060.34 | 469.48 | Methylene blue | |||||
GO/Ag | 0.01 M | 25 ± 3 | 1328.55 | <2 | 588.23 | ||||
[50] | Reduced graphene oxide hydrogel (rGH) | 27.28 | 1.98 | 0.069 | 75.67 | Methylene blue | |||
Ag/rGH | 0.01 M | 163.72 | 1.74 | 0.237 | 100.76 | ||||
[40] | Chitosan-Polyvinyl alcohol (Ch/PVA) hydrogel | 6.57 | 1.98 | 0.011 | 11.02 | 20.75 | Chloroacetamide herbicide butachlor | ||
Ch/PVA-Ag nanocomposite hydrogels | 5 mM | 5–20 | 8.316 | 2.33 | 0.016 | 9.77 | 23.81 | ||
[43] | Activated carbon (UAC) | 667.91 | 2.13 | 0.36 | 0.040 | Formaldehyde | |||
AgNO3-AC | 0.001 M | 10–80 | 1144.88 | 2.34 | 0.66 | 0.468 | |||
0.01 M | 1117.54 | 2.29 | 0.65 | 0.287 | |||||
0.1 M | 1007.67 | 2.16 | 0.54 | 0.203 |
1.3. Silver Nanoparticles as Plasmonic Colorimetric Sensors
Colorimetric Assay | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ref. | AgNps | Morphology | Size (nm) | Stabilizer | Zeta Potential (mV) | SPR (nm) | Solution Color | Linear Interval | LOD | Detected Contaminant |
[63] | AgNPrs | Triangular | 40.3 | Citrate | −30.3 | 335/475/750 | Blue | 0–30 μM | 21.6 nM | Ni2+ pH 8 |
AgNPrs-Ni2+ | Circular nanodisks | ≈20 | −2.49 | 480–500 | Yellow | |||||
[56] | Ag NPRs | Triangular | 1-dodecanethiol | Blue | 10–500 nM (R 0.995) | 3.3 nM | Hg2+ pH 5 | |||
AgNPRs-Hg2+ | Circular | Purple | ||||||||
[64] | AgNPs | Spherical | 20 ± 2 | Casein peptide | 410 | Yellow | 0.08–1.44 μM (R2 = 0.973) | 0.16 μM | Cu2+ | |
AgNPs-Cu2+ | 520 | Red | ||||||||
[65] | AgNPs | Spherical | 15.4 ± 3.9 | Starch | −28.7 ± 1.6 (pH 6.8) | 408 | Yellow | 0.7 to 7 mg/L | 0.1 mg/L | Fe3+ |
AgNPs-Fe3+ | blue shift | Colorless | ||||||||
[62] | AgNPs | Spherical | 10–20 | Alginate | −54.1 | 400 | Pale yellow | 1–10 μM (R2 = 0.985) | Mn2+ | |
AgNPs-Mn2+ | −43.4 | 500 | Brownish yellow | |||||||
[55] | AgNP-S | Spherical | 30 | GSH | 400 | Yellow | 5–400 μM (R2 = 0.99) | Ni2+, Co2+, Cd2+, Pb2+, As3+ | ||
550 | Red | |||||||||
AgNP-P | Nanoplate | 40 | GSH | Blue | ||||||
<40 | Colorless | |||||||||
AgNP-R | Nanorod | 400 | CTAB/GSH | 750 | Pale blue | Co2+ | ||||
<400 | 300–550/750 | Dark green | ||||||||
[58] | AgNPs | Spherical | 32 | Gallic acid | −45 (pH 4.5–5.0) | 429 | Yellow | 0–35 μM | Pb2+ | |
AgNPs-Pb2+ | Aggregates | 456 | Red | |||||||
[60] | AgNPs | Spherical | 12 | ANS | 390 | Bright yellow | 1.0–10 μM (R2 = 0.997) | 87 nM | Cd2+ pH 9.8 | |
AgNPs-Cd2+ | Aggregates | 28 | 580 | Reddish-brown | ||||||
[61] | AgNPs | Pseudo-Spherical | 9.5 ± 2 | Gluconate | −55.2 (pH 7.92) | 395 | Yellow | 0.5–2.25 μM (R2 = 0.984) | 0.2 μM | Pb2+ |
AgNPs-Pb2+ | Aggregates | 524 | Pinkish red | |||||||
[66] | AgNPs | Pseudo-Spherical | 15 nm | Chitosan | 398 | Brownish-yellow | 1–500 μM | 0.53 μM | Fe3+ | |
AgNPs-Fe3+ | Colorless | |||||||||
[67] | AgNPs | Spherical | CCA | 396 | Yellow | 0.22–3.18 μM | 0.13 μM | Cd2+ | ||
AgNPs-Cd2+ | Aggregates | 522 | Orange |
1.4. Silver Nanoparticles as Signal Amplifiers in Infrared and Raman Spectroscopies
Ref. | Technique | Particle Obtention | Base Material | Morphology | Particle Size (nm) | Max. Enhancement Factor |
---|---|---|---|---|---|---|
[90] | SERS | Chemical reduction | Colloidal solution | Spheres | 39–100 | |
[80] | SERS | Chemical reduction | Silver vanadate | Spheres | 25–50 | |
[81] | SERS | Chemical reduction | Colloidal solution | Spheres | 13–37 | |
[82] | SEIRAS | Chemical reduction | Aluminum | Spheres | 10–60 | ×2 |
[74] | SEIRAS/SERS | Chemical reduction | Colloidal solution | Stars, spheres, triangular plates | 110, 50, 38 | |
[83] | SEIRAS/SERS | Electron beam lithography | Glass/Chromium/ITO | Disks | 50–190 | |
[84] | SERS | Chemical reduction | MOF MIL-101 | Icosahedron | 40 | 1.8 × 105 |
[85] | SERS | Photoreduction | Paper/Nylon 6 | Flowers | 1.97 × 104 | |
[86] | SERS | Chemical reduction | Colloidal solution | Flowers/Particles | 470 | 1 × 1012 |
[87] | SERS | Chemical reduction on gold | Colloidal solution | Cubes | 47 × 21 | 272.15 × 106 |
[88] | SERS | Chemical reduction | TiO2 nanotubes | Cubes | 45 | 3.7 × 106 |
[89] | SEIRAS | Chemical reduction/crystallization | Colloidal solution | Rods | 30–70 | 1 × 103 |
[91] | SERS | Electroless deposition | Anodized aluminum oxide | Tentacles | 100–200 | 1.2 × 107 |
1.5. Silver Nanoparticles as Plasmonic Photocatalysts
2. Limitations of the Use of Silver Nanoparticles in Water Remediation
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- López-Martínez, R.M. Biorremediación: El poder en la naturaleza. Revista de Biología Tropical, 19 August 2019. [Google Scholar]
- Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N.; Alanazi, H.S.; Alsyahi, A.A.; Marghany, A.E.; Ahmad, N. Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Sci. Rep. 2020, 10, 20229. [Google Scholar] [CrossRef]
- UNESCO. Informe Mundial de las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos 2017, Aguas Residuales: El Recursos Desaprovechado; UNESCO: Paris, France, 2017. [Google Scholar]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Manyangadze, M.; Chikuruwo, N.H.M.; Chakra, C.S.; Narsaiah, T.B.; Radhakumari, M.; Danha, G. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. S. Afr. J. Chem. Eng. 2020, 31, 25–32. [Google Scholar] [CrossRef]
- Alvarez, P.J.; Chan, C.K.; Elimelech, M.; Halas, N.J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641. [Google Scholar] [CrossRef]
- Silva-Holguín, P.N.; Reyes-López, S.Y. Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response 2020, 18, 1559325820951342. [Google Scholar] [CrossRef]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for environmental remediation: Materials and applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Panda, P.; Chakraborty, S.; Krishna, S.B.N. The use of silver nanoparticles in environmental remediation. Preprints 2023, 2023010330. [Google Scholar] [CrossRef]
- Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008, 77, 233. [Google Scholar] [CrossRef]
- Silva-Holguín, P.N.; Reyes-López, S.Y. Alumina-hydroxyapatite-silver spheres with antibacterial activity. Dose-Response 2021, 19, 15593258211011337. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 2020, 8, 26. [Google Scholar] [CrossRef]
- Barbillon, G. Latest Advances in Metasurfaces for SERS and SEIRA Sensors as Well as Photocatalysis. Int. J. Mol. Sci. 2022, 23, 10592. [Google Scholar] [CrossRef] [PubMed]
- Belessiotis, G.V.; Kontos, A.G. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives. Renew. Energy 2022, 195, 497–515. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv. Powder Technol. 2018, 29, 407–415. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 2011, 45, 4422–4428. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, G.A.; Pratsinis, S.E. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Helmlinger, J.; Sengstock, C.; Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T.A.; Köller, M.; Epple, M. Silver nanoparticles with different size and shape: Equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016, 6, 18490–18501. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. A Eur. J. 2005, 11, 454–463. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. 2016, 23, 4489–4497. [Google Scholar] [CrossRef]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 16, 53. [Google Scholar] [CrossRef]
- Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D.; et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 2014, 8, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.M.E.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Miesen, T.J.; Engstrom, A.M.; Frost, D.C.; Ajjarapu, R.; Ajjarapu, R.; Lira, C.N.; Mackiewicz, M.R. A hybrid lipid membrane coating “shape-locks” silver nanoparticles to prevent surface oxidation and silver ion dissolution. RSC Adv. 2020, 10, 15677–15693. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ. Sci. Technol. 2013, 47, 10293–10301. [Google Scholar] [CrossRef]
- El-Zahry, M.R.; Mahmoud, A.; Refaat, I.H.; Mohamed, H.A.; Bohlmann, H.; Lendl, B. Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta 2015, 138, 183–189. [Google Scholar] [CrossRef]
- Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S.; Jeon, H.J.; Ahn, C.W. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv. 2016, 6, 36171–36179. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens. PLoS ONE 2019, 14, e0222322. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Singha, K.M.; Pandey, P.; Mohanta, B.; Rajkumari, J.; Singha, L.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci. Rep. 2018, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Pakade, Y.B. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution. Environ. Sci. Pollut. Res. 2015, 22, 10919–10929. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Kadhi, N. The synthesis and effect of silver nanoparticles on the adsorption of Cu2+ from aqueous solutions. Appl. Sci. 2020, 10, 4840. [Google Scholar] [CrossRef]
- Attatsi, I.K.; Nsiah, F. Application of silver nanoparticles toward Co (II) and Pb (II) ions contaminant removal in groundwater. Appl. Water Sci. 2020, 10, 152. [Google Scholar] [CrossRef]
- Pathirana, C.; Ziyath, A.M.; Jinadasa, K.B.S.N.; Egodawatta, P.; Sarina, S.; Goonetilleke, A. Quantifying the influence of surface physico-chemical properties of biosorbents on heavy metal adsorption. Chemosphere 2019, 234, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Goyal, D.; Agnihotri, S. Chitosan/PVA silver nanocomposite for butachlor removal: Fabrication, characterization, adsorption mechanism and isotherms. Carbohydr. Polym. 2021, 262, 117906. [Google Scholar] [CrossRef]
- Jing, W.; Yang, C.; Luo, S.; Lin, X.; Tang, M.; Zheng, R.; Lian, D.; Luo, X. One-Pot Method to Synthesize Silver Nanoparticle-Modified Bamboo-Based Carbon Aerogels for Formaldehyde Removal. Polymers 2022, 14, 860. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, T.; Ren, J.; Li, J.; Ge, J.; Shan, H.; Ji, T.; Xu, M.; Liu, Q. Nano-silver functionalized spherical activated carbon with enhanced dipropyl sulfide adsorption capacity and antibacterial properties. RSC Adv. 2022, 12, 9933–9943. [Google Scholar] [CrossRef]
- Chang, S.M.; Hu, S.C.; Shiue, A.; Lee, P.Y.; Leggett, G. Adsorption of silver nano-particles modified activated carbon filter media for indoor formaldehyde removal. Chem. Phys. Lett. 2020, 757, 137864. [Google Scholar] [CrossRef]
- Trinh, V.T.; Nguyen, T.M.P.; Van, H.T.; Hoang, L.P.; Nguyen, T.V.; Ha, L.T.; Vu, X.H.; Pham, T.T.; Nguyen, T.N.; Quang, N.V.; et al. Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Sci. Rep. 2020, 10, 3634. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Nguyen, T.M.P.; Thao, V.T.; Vu, X.H.; Nguyen, T.V.; Nguyen, L.H. Applying activated carbon derived from coconut shell loaded by silver nanoparticles to remove methylene blue in aqueous solution. Water Air Soil Pollut. 2018, 229, 393. [Google Scholar] [CrossRef]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly (2-(Dimethylamino) Ethyl Methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As (III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Szewczuk-Karpisz, K. Effect of biochar modification by vitamin c, hydrogen peroxide or silver nanoparticles on its physicochemistry and tetracycline removal. Materials 2022, 15, 5379. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Nguyen, T.M.P.; Van, H.T.; Vu, X.H.; Ha, T.L.A.; Nguyen, T.H.V.; Nguyen, X.H.; Nguyen, X.C. Treatment of hexavalent chromium contaminated wastewater using activated carbon derived from coconut shell loaded by silver nanoparticles: Batch experiment. Water Air Soil Pollut. 2019, 230, 68. [Google Scholar] [CrossRef]
- Aboelfetoh, E.F.; Gemeay, A.H.; El-Sharkawy, R.G. Effective disposal of methylene blue using green immobilized silver nanoparticles on graphene oxide and reduced graphene oxide sheets through one-pot synthesis. Environ. Monit. Assess. 2020, 192, 355. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.L.T.; Phromsatit, T.; Boonyuen, S.; Andou, Y. Synthesis of silver nanoparticles/porphyrin/reduced graphene oxide hydrogel as dye adsorbent for wastewater treatment. FlatChem 2020, 23, 100174. [Google Scholar] [CrossRef]
- El Badawy, A.M.; Silva, R.G.; Morris, B.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011, 45, 283–287. [Google Scholar] [CrossRef]
- Stankus, D.P.; Lohse, S.E.; Hutchison, J.E.; Nason, J.A. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238–3244. [Google Scholar] [CrossRef]
- Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev. 2018, 119, 664–699. [Google Scholar] [CrossRef]
- Ain, Q.U.; Zhang, H.; Yaseen, M.; Rasheed, U.; Liu, K.; Subhan, S.; Tong, Z. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb (II), Cd (II), and crystal violet from aqueous solution. J. Clean. Prod. 2020, 247, 119088. [Google Scholar] [CrossRef]
- Sung, H.K.; Oh, S.Y.; Park, C.; Kim, Y. Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 2013, 29, 8978–8982. [Google Scholar] [CrossRef]
- Chen, L.; Fu, X.; Lu, W.; Chen, L. Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl. Mater. Interfaces 2013, 5, 284–290. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D.F. Ag nanostructures as the surface plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Yoosaf, K.; Ipe, B.I.; Suresh, C.H.; Thomas, K.G. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 2007, 111, 12839–12847. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018, 114, 52–65. [Google Scholar] [CrossRef]
- Huang, P.; Liu, B.; Jin, W.; Wu, F.; Wan, Y. Colorimetric detection of Cd2+ using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles. J. Nanoparticle Res. 2016, 18, 327. [Google Scholar] [CrossRef]
- Choudhury, R.; Misra, T.K. Gluconate stabilized silver nanoparticles as a colorimetric sensor for Pb2+. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 179–187. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Han, S.S. Colorimetric detection of manganese (II) ions using alginate-stabilized silver nanoparticles. Res. Chem. Intermed. 2017, 43, 5665–5674. [Google Scholar] [CrossRef]
- Yoon, S.J.; Nam, Y.S.; Lee, H.J.; Lee, Y.; Lee, K.B. Colorimetric probe for Ni2+ based on shape transformation of triangular silver nanoprisms upon H2O2 etching. Sens. Actuators B Chem. 2019, 300, 127045. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Shinde, S.K.; Saratale, R.G.; Kadam, A.A.; Saratale, G.D.; Syed, A.; Ameen, F.; Kim, D.Y. Colorimetric detection of Cu2+ based on the formation of peptide–copper complexes on silver nanoparticle surfaces. Beilstein J. Nanotechnol. 2018, 9, 1414–1422. [Google Scholar] [CrossRef]
- Vasileva, P.; Dobrev, S.; Karadjova, I. Colorimetric detection of iron (III) based on sensitive and selective plasmonic response of starch-coated silver nanoparticles. In International Conference on Quantum, Nonlinear, and Nanophotonics; SPIE: Philadelphia, PA, USA, 2019; Volume 11332, pp. 45–53. [Google Scholar]
- Tashkhourian, J.; Sheydaei, O. Chitosan capped silver nanoparticles as colorimetric sensor for the determination of iron (III). Anal. Bioanal. Chem. Res. 2017, 4, 249–260. [Google Scholar]
- Dong, Y.; Ding, L.; Jin, X.; Zhu, N. Silver nanoparticles capped with chalcon carboxylic acid as a probe for colorimetric determination of cadmium (II). Microchim. Acta 2017, 184, 3357–3362. [Google Scholar] [CrossRef]
- Etchegoin, P.G.; Le Ru, E.C. Basic electromagnetic theory of SERS. In Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications; Wiley VCH GmbH: Weinheim, Germany, 2010; pp. 1–37. [Google Scholar]
- Le Ru, E.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier: Amsterdam, The Netherlands, 2008; Available online: https://lib.ugent.be/catalog/rug01:001875827 (accessed on 14 April 2024).
- Langer, J.; Novikov, S.M.; Liz-Marzán, L.M. Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 2015, 26, 322001. [Google Scholar] [CrossRef]
- Malassis, L.; Dreyfus, R.; Murphy, R.J.; Hough, L.A.; Donnio, B.; Murray, C.B. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Adv. 2016, 6, 33092–33100. [Google Scholar] [CrossRef]
- Krzyczmonik, P.; Socha, E.; Ranoszek-Soliwoda, K.; Tomaszewska, E.; Celichowski, G.; Grobelny, J.; Ignaczak, A.; Orłowski, P.; Krzyzowska, M. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanoparticle Res. 2017, 19, 273. [Google Scholar]
- Rheima, A.M.; Mohammed, M.A.; Jaber, S.H.; Hameed, S.A. Synthesis of silver nanoparticles using the UV-irradiation technique in an antibacterial application. J. Southwest Jiaotong Univ. 2019, 54. [Google Scholar] [CrossRef]
- Reyes Gomez, F.; Rubira, R.J.; Camacho, S.A.; Martin, C.S.; Da Silva, R.R.; Constantino, C.J.; Alessio, P.; Oliveira, O.N., Jr.; Mejía-Salazar, J.R. Surface plasmon resonances in silver nanostars. Sensors 2018, 18, 3821. [Google Scholar] [CrossRef]
- Ringe, E.; Langille, M.R.; Sohn, K.; Zhang, J.; Huang, J.; Mirkin, C.A.; Van Duyne, R.P.; Marks, L.D. Plasmon length: A universal parameter to describe size effects in gold nanoparticles. J. Phys. Chem. Lett. 2012, 3, 1479–1483. [Google Scholar] [CrossRef]
- Liu, S.; Cui, R.; Ma, Y.; Yu, Q.; Kannegulla, A.; Wu, B.; Fan, H.; Wang, A.X.; Kong, X. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117664. [Google Scholar] [CrossRef]
- Joshi, P.; Santhanam, V. based SERS active substrates on demand. RSC Adv. 2016, 6, 68545–68552. [Google Scholar] [CrossRef]
- Cui, G.; Qi, S.; Wang, X.; Tian, G.; Sun, G.; Liu, W.; Yan, X.; Wu, D.; Wu, Z.; Zhang, L. Interfacial growth of controllable morphology of silver patterns on plastic substrates. J. Phys. Chem. B 2012, 116, 12349–12356. [Google Scholar] [CrossRef]
- Yu, J.; Shen, M.; Liu, S.; Li, F.; Sun, D.; Wang, T. A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Appl. Surf. Sci. 2017, 406, 285–293. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Y.; Faiz, Y.; Yuan, W.T.; Sun, C.; Wang, S.M.; Deng, Y.-H.; Zhuang, Y.; Li, Y.; Wang, X.-M. Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis. Appl. Catal. B Environ. 2015, 163, 288–297. [Google Scholar] [CrossRef]
- Blanco-Formoso, M.; Turino, M.; Rivas-Murias, B.; Guerrini, L.; Shavel, A.; de la Rica, R.; Correa-Duarte, M.; Salgueiriño, V.; Pazos-Perez, N.; Alvarez-Puebla, R.A. Iron-assisted synthesis of highly monodispersed and magnetic citrate-stabilized small silver nanoparticles. J. Phys. Chem. C 2020, 124, 3270–3276. [Google Scholar] [CrossRef]
- Eid, S.M.; Hassan, S.A.; Nashat, N.W.; Elghobashy, M.R.; Abbas, S.S.; Moustafa, A.A. Optimization of localized surface plasmon resonance hot spots in surface-enhanced infrared absorption spectroscopy aluminum substrate as an optical sensor coupled to chemometric tools for the purity assay of quinary mixtures. Microchim. Acta 2021, 188, 195. [Google Scholar] [CrossRef]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; De Marco, L.; De Giorgi, M.; Nicotra, G.; Carbone, L.; Sanvitto, D. Nanoscale study of the tarnishing process in electron beam lithography-fabricated silver nanoparticles for plasmonic applications. J. Phys. Chem. C 2016, 120, 24314–24323. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, P.; Yang, L.; Huang, C.; Li, Y. Facile in situ synthesis of silver nanoparticles on the surface of metal–organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine. Anal. Chem. 2015, 87, 12177–12182. [Google Scholar] [CrossRef]
- Díaz-Liñán, M.C.; García-Valverde, M.T.; López-Lorente, A.I.; Cárdenas, S.; Lucena, R. Silver nanoflower-coated paper as dual substrate for surface-enhanced Raman spectroscopy and ambient pressure mass spectrometry analysis. Anal. Bioanal. Chem. 2020, 412, 3547–3557. [Google Scholar] [CrossRef]
- Barveen, N.R.; Wang, T.J.; Chang, Y.H. In-situ deposition of silver nanoparticles on silver nanoflowers for ultrasensitive and simultaneous SERS detection of organic pollutants. Microchem. J. 2020, 159, 105520. [Google Scholar] [CrossRef]
- Guo, P.; Sikdar, D.; Huang, X.; Si, K.J.; Xiong, W.; Gong, S.; Yap, L.W.; Premaratne, M.; Cheng, W. Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: Size-and shape-dependent Raman enhancement. Nanoscale 2015, 7, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- Ambroziak, R.; Krajczewski, J.; Pisarek, M.; Kudelski, A. Immobilization of cubic silver plasmonic nanoparticles on TiO2 nanotubes, reducing the coffee ring effect in surface-enhanced raman spectroscopy applications. ACS Omega 2020, 5, 13963–13972. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yin, H.; Zhuo, X.; Yang, B.; Zhu, X.M.; Wang, J. Infrared-Responsive Colloidal Silver Nanorods for Surface-Enhanced Infrared Absorption. Adv. Opt. Mater. 2018, 6, 1800436. [Google Scholar] [CrossRef]
- Messina, E.; Donato, M.G.; Zimbone, M.; Saija, R.; Iatì, M.A.; Calcagno, L.; Fragalà, M.E.; Compagnini, G.; D’Andrea, C.; Foti, A.; et al. Optical trapping of silver nanoplatelets. Opt. Express 2015, 23, 8720–8730. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89, 2424–2431. [Google Scholar] [CrossRef] [PubMed]
- Garibay-Alvarado, J.A.; Ruiz-Esparza-Rodríguez, M.A.; Zaragoza-Contreras, E.A.; Reyes-López, S.Y. Ag Nanoparticle-Decorated SiO2–Al2O3–ZrO2 Composites as a Low-Cost Substrate for Enhanced Signal Infrared Spectroscopy. ACS Appl. Nano Mater. 2024, 7, 4658–4666. [Google Scholar] [CrossRef]
- Kowalska, E.; Endo, M.; Wei, Z.; Wang, K.; Janczarek, M. Noble metal nanoparticles for water purification. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 553–579. [Google Scholar]
- Rueda-Marquez, J.J.; Levchuk, I.; Ibañez, P.F.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Krishna, V.; Bai, W.; Han, Z.; Yano, A.; Thakur, A.; Georgieva, A.; Tolley, K.; Navarro, J.; Koopman, B.; Moudgil, B. Contaminant-activated visible light photocatalysis. Sci. Rep. 2018, 8, 1894. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Bledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O.V.; Khavryuchenko, V.D.; Ricci, P.C.; Strunk, J.; Cremer, T.; Kolbeck, C.; Beranek, R. Visible-light photocurrent response of TiO2–polyheptazine hybrids: Evidence for interfacial charge-transfer absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511–21519. [Google Scholar] [CrossRef] [PubMed]
- Fanourakis, S.K.; Peña-Bahamonde, J.; Bandara, P.C.; Rodrigues, D.F. Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 2020, 3, 1. [Google Scholar] [CrossRef]
- Koprivanac, N.; Kušić, H. Hazardous Organic Pollutants in Colored Wastewaters; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, H.Y.; Zhao, J.C.; Zheng, Z.F.; Gao, X.P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem. Int. Ed. Engl. 2008, 47, 5353. [Google Scholar] [CrossRef] [PubMed]
- Jaast, S.; Grewal, A. Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity. Curr. Res. Green Sustain. Chem. 2021, 4, 100195. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Solorio-Grajeda, D.; de Jesús Ruíz-Baltazar, Á.; Zalapa-Garibay, M.A.; Zaragoza-Contreras, E.A.; Reyes-López, S.Y. TiO2–SiO2–Ag electrospun fibers for oxytetracycline detection by SERS. Mater. Chem. Phys. 2023, 305, 127968. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, L.R.; Torres-Pérez, J.; Medellín-Castillo, N.; Reyes-López, S.Y. Photocatalytic degradation of oxytetracycline by SiO2–TiO2–Ag electrospun fibers. Solid State Sci. 2023, 140, 107188. [Google Scholar] [CrossRef]
- Mosleh, S.; Rahimi, M.R.; Ghaedi, M. New materials and equipment for photocatalytic degradation processes. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 32, pp. 673–723. [Google Scholar]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef]
- Rajan, R.; Huo, P.; Chandran, K.; Dakshinamoorthi, B.M.; Yun, S.I.; Liu, B. A review on the toxicity of silver nanoparticles against different biosystems. Chemosphere 2022, 292, 133397. [Google Scholar] [CrossRef]
- Silva-Holguín, P.N.; Medellín-Castillo, N.A.; Zaragoza-Contreras, E.A.; Reyes-López, S.Y. Alumina–Hydroxyapatite Millimetric Spheres for Cadmium (II) Removal in Aqueous Medium. ACS Omega 2023, 8, 44675–44688. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Holguín, P.N.; Garibay-Alvarado, J.A.; Reyes-López, S.Y. Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. Materials 2024, 17, 1939. https://doi.org/10.3390/ma17091939
Silva-Holguín PN, Garibay-Alvarado JA, Reyes-López SY. Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. Materials. 2024; 17(9):1939. https://doi.org/10.3390/ma17091939
Chicago/Turabian StyleSilva-Holguín, Pamela Nair, Jesús Alberto Garibay-Alvarado, and Simón Yobanny Reyes-López. 2024. "Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation" Materials 17, no. 9: 1939. https://doi.org/10.3390/ma17091939
APA StyleSilva-Holguín, P. N., Garibay-Alvarado, J. A., & Reyes-López, S. Y. (2024). Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. Materials, 17(9), 1939. https://doi.org/10.3390/ma17091939