Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete
Abstract
:1. Introduction
2. Test
2.1. Test Materials
2.2. Mix Ratio Design
2.3. Test Method
2.3.1. Fine Aggregate Size Distribution Test
2.3.2. Compressive Strength Test
2.3.3. NMR Test
2.3.4. Field Emission Scanning Electron Microscope Test
3. Results and Discussion
3.1. Compressive Strength of the Cube
3.2. NMR Analysis
3.2.1. Pore Distribution of Hybrid Fiber Aeolian Sand Concrete
3.2.2. Pore Size Distribution of Hybrid Fiber Aeolian Sand Concrete
3.3. Electron Microscope Analysis
4. Gray Correlation Entropy Analysis and GM (1,N) Model
4.1. Gray Correlation Entropy Analysis
4.2. Establishment of GM (1,3) Prediction Model
5. Conclusions
- (1)
- The addition of low-cost calcium carbonate whisker and polypropylene fibers to high-content aeolian concrete can enhance its density and compressive strength. From an economic perspective, this is crucial for reducing the production cost of fiber-reinforced concrete materials and promoting their practical applications in engineering.
- (2)
- The incorporation of fibers and whisker can effectively improve the compressive strength of ASC. When the replacement rate of aeolian sand is 80% and the content of polypropylene fibers is 0.1%, the compressive strength of ASC increases first and then decreases with an increase in whisker content. When the whisker content is 0.4%, its strength is the highest, which is similar to that of the OC group.
- (3)
- When the fiber content is 0.1%, the spectral area and minimum pore radius of PF first decrease and then increase with an increase in whisker content. The addition of an appropriate amount of whisker can fill the tiny pores and optimize the internal microstructure of ASC, with the macroscopic performance demonstrating increased compressive strength.
- (4)
- In the gray correlation analysis, the main factors affecting the compressive strength of concrete are bound fluid saturation and a pore proportion of r ≤ 0.02 μm. On this basis, a gray model GM (1,3) with compressive strength, bound fluid saturation, and r ≤ 0.02 μm pore ratio was established. The average relative errors of the predicted and tested values were 8.16% and 7.48%, respectively, indicating that the model has good accuracy. Therefore, the NMR nondestructive testing technique can be used to predict the compressive strength of concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, N.; Li, Q.; Zhang, C.L.; Chi-Hua, H.; Wu, Y.; Zhu, B.; Cen, S.; Huang, X. Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of dunefields within a river valley on the southern Tibet Plateau: A case study from the Yarlung Zangbo river valley. Catena 2021, 196, 104794. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Wang, R.; Wang, X.; Cen, S.; Li, Q. Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of northwest China. Catena 2020, 188, 104469. [Google Scholar] [CrossRef]
- Zhu, B.; Yu, J.; Qin, X.; Rioual, P.; Liu, Z.; Xiong, H. Formation and evolution of sand deserts in Xinjiang, Northwest China: I. Provenances of desert sands. J. Geogr. Sci. 2014, 24, 177–190. [Google Scholar] [CrossRef]
- Derbyshire, E.; Meng, X.; Kemp, R.A. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. J. Arid Environ. 1998, 39, 497–516. [Google Scholar] [CrossRef]
- Pastore, G.; Baird, T.; Vermeesch, P.; Bristow, C.; Resentini, A.; Garzanti, E. Provenance and recycling of Sahara Desert sand. Earth-Sci. Rev. 2021, 216, 103606. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liu, G.; Hu, D.; Ma, X. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete. Constr. Build. Mater. 2020, 247, 118538. [Google Scholar] [CrossRef]
- Li, Z.; Yu, X.; Chen, Q.; Dong, S.; Zhang, C. Quantitative tracing of provenance for modern eolian sands with various grain size fractions in the Ulan Buh Desert, northwestern China. Catena 2022, 217, 106487. [Google Scholar] [CrossRef]
- Mescolotti, P.C.; Giannini, P.C.; do Nascimento Pupim, F.; Sawakuchi, A.O.; Ladeira, F.S.; Assine, M.L. The largest Quaternary inland eolian system in Brazil: Eolian landforms and activation/stabilization phases of the Xique-Xique dune field. Geomorphology 2023, 420, 108516. [Google Scholar] [CrossRef]
- Gao, B.; Liu, X.; Liu, J.; Song, L.; Shi, Y.; Yang, Y. Field characterization of dynamic response of geocell-reinforced aeolian sand subgrade under live traffic. Appl. Sci. 2023, 13, 864. [Google Scholar] [CrossRef]
- Feng, T.; Wang, F.; Tan, Y.; Yue, C.; Xu, W.; Liu, Z.; Yang, Z.; Wu, Y.; Jiang, J. Dynamic compression mechanical properties of eco-friendly ultra-high performance concrete produced with aeolian sand: Experimental and three-dimensional mesoscopic investigation. Int. J. Impact Eng. 2022, 164, 104192. [Google Scholar] [CrossRef]
- Yang, X.; Hu, Z.; Wang, Y.; Wang, X. Aeolian sand stabilized by using fiber-and silt-reinforced cement: Mechanical properties, microstructure evolution, and reinforcement mechanism. Constr. Build. Mater. 2024, 411, 134750. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, S.; Li, J.; Zhang, X.; Cai, G.; Tian, L. Interface Mechanism and Splitting Characteristics of Fiber-Reinforced Cement-Solidified Aeolian Sand. Materials 2022, 15, 2860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zheng, S.; Yuan, C.; Chen, S.; Jing, P.; Li, Y. Study on Pore Structure-Strength Model of Aeolian Sand Concrete Based on Grey Entropy Analysis. Int. J. Pavement Res. Technol. 2023, 1–5. [Google Scholar] [CrossRef]
- Cavalieri, F.; Bellotti, D.; Caruso, M.; Nascimbene, R. Comparative evaluation of seismic performance and environmental impact of traditional and dissipation-based retrofitting solutions for precast structures. J. Build. Eng. 2023, 79, 107918. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, M. A Study of the Damage Mechanism and Microstructures of Aeolian Sand Concrete Specimens Undergoing Salt-Freezing Effects. JOM 2023, 75, 5290–5299. [Google Scholar] [CrossRef]
- Dong, W.; Wang, J.; Hang, M.; Qu, S. Research on printing parameters and salt frost resistance of 3D printing concrete with ferrochrome slag and aeolian sand. J. Build. Eng. 2024, 84, 108508. [Google Scholar] [CrossRef]
- Cao, M.; Wei, J. Microstructure and mechanical properties of CaCO3 whisker-reinforced cement. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 2011, 26, 1004–1009. [Google Scholar] [CrossRef]
- Kachouh, N.; El-Hassan, H.; El-Maaddawy, T. Influence of steel fibers on the flexural performance of concrete incorporating recycled concrete aggregates and dune sand. J. Sustain. Cem. -Based Mater. 2021, 10, 165–192. [Google Scholar] [CrossRef]
- Banyhussan, Q.S.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; Şahmaran, M. Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 2016, 125, 41–52. [Google Scholar] [CrossRef]
- Wang, L.; Chi, Y.; Xu, L.; Liu, S.; Yin, C. Size Effect of Mec hanical Properties of Hybrid Fiber Ultra-high Performance Concrete. J. Build. Mater. 2022, 25, 781–788. (In Chinese) [Google Scholar]
- Yang, C.; Huang, C.; Che, Y.; Wang, B. Mechanical Properties and Impermeability of hybrid Fiber Reinforced Concrete. J. Build. Mater. 2008, 1, 89–93. (In Chinese) [Google Scholar]
- Bai, J.; Zhao, Y.; Shi, J.; He, X. Cross-scale study on the mechanical properties and frost resistance durability of aeolian sand concrete. KSCE J. Civ. Eng. 2021, 25, 4386–4402. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, S.; Wang, H.; Liu, G. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze–thaw conditions. Constr. Build. Mater. 2022, 340, 127433. [Google Scholar] [CrossRef]
- Bao, J.; Xing, Y.; Liu, L.; Yan, L. Basic mechanical properties of the aeolian sand polypropylene fiber concretecomposite materials. Concrete 2016, 12, 146–150. (In Chinese) [Google Scholar]
- Xue, H.; Shen, X.; Hou, Y.; Liu, Z.; Zheng, J. Mechanical properties and pore characteristics of aeolian sand concrete. J. Drain. Irrig. Mach. Eng. 2021, 39, 720–726. (In Chinese) [Google Scholar]
- GB/T50081-2019; Standard for Test Methods of Mechanical Properties of Ordinary Concrete. National Standards of the People’s Republic of China: Beijing, China, 2019.
- Guo, H.; Wang, H.; Li, H.; Wei, L.; Li, Y. Effect of whisker toughening on the dynamic properties of hybrid fiber concrete. Case Stud. Constr. Mater. 2023, 19, e02517. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, M. Mechanical Property test of a multi-scale fiber reinforced cementitious composites. Acta Mater. Compos. Sin. 2014, 31, 661–668. (In Chinese) [Google Scholar]
- Cao, M.; Khan, M.; Ahmed, S. Effectiveness of calcium carbonate whisker in cementitious composites. Period. Polytech. Civ. Eng. 2020, 64, 265–275. [Google Scholar] [CrossRef]
- Wu, Z.; Lian, H. High Performance Concrete; China Railway Publishing House: Beijing, China, 1999; pp. 41–43. [Google Scholar]
- Guo, H.; Li, H.; Wang, H.; Wei, L.; Li, Y. Mechanisms of whisker-toughened hybrid fiber concrete based on fractal dimension and radar model. Constr. Build. Mater. 2024, 416, 134877. [Google Scholar] [CrossRef]
- Guo, H. Experimental Study on Mechanical Properties and Durability of Whisker-Toughened Hybrid Fiber Concrete; College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University: Hohhot, China, 2022. [Google Scholar]
- Zarzuela, R.; Luna, M.; Carrascosa, L.M.; Yeste, M.P.; Garcia-Lodeiro, I.; Blanco-Varela, M.T.; Cauqui, M.A.; Rodríguez-Izquierdo, J.M.; Mosquera, M.J. Producing CSH gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials. Cem. Concr. Res. 2020, 130, 106008. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Dai, L.; Wen, X.; Wang, R.; Zhang, D.; Song, X. Study on corrosion mechanism of different concentrations of Na2SO4 solution on early-age cast-in-situ concrete. Materials 2021, 14, 2018. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Yin, J.; Yu, Y.; Wang, Q. Experimental study on the effect of calcium carbonate whisker on the mechanical performance of cement mortar. Build. Struct. 2020, 50, 832–836. (In Chinese) [Google Scholar]
- Xiong, Z.; Wang, W.; Wu, Y.; Liu, W. Sensitivity Analysis of Factors Influencing Blast-like Loading on Reinforced Concrete Slabs Based on Grey Correlation Degree. Materials 2023, 16, 5678. [Google Scholar] [CrossRef] [PubMed]
Fineness/% | Density/g·cm−3 | Standard Water Consumption/% | Initial Set/min | Final Set/min | Stability | Firing Loss/% |
---|---|---|---|---|---|---|
1.4 | 3.12 | 28.5 | 180 | 365 | Up to standard | 1.3 |
Apparent Density/g·cm−3 | Firing Loss/% | Moisture Content/% | Water Requirement/% | Microbead Content/% | Specific Surface Area/m2·kg−1 | Fineness |
---|---|---|---|---|---|---|
2.2 | 3 | 0.8 | 96 | 93.5 | 350 | 10 |
Apparent Density/kg·m−3 | Packing Density/kg·m−3 | Crushing Index/% | Silt Content/% | Moisture Content/% | Particle Size Range/mm |
---|---|---|---|---|---|
2700 | 1620 | 3.8 | 0.8 | 0.2 | 4.75–31.5 |
Aggregate Type | Apparent Density/kg·m−3 | Packing Density/kg·m−3 | Silt Content/% | Moisture Content/% | Chloride Ion Content/% | Fineness Modulus |
---|---|---|---|---|---|---|
River sand | 2590 | 1730 | 1.8 | 2 | 0.28 | 3 |
Aeolian sand | 2600 | 1375 | 0.4 | 2.2 | 0.03 | 0.6 |
Group | Cement | Fly Ash | Water | Gravel | River Sand | Aeolian Sand | Whisker | Fiber |
---|---|---|---|---|---|---|---|---|
OC | 286 | 71 | 160 | 1270 | 654 | 0 | 0 | 0 |
ASC | 286 | 71 | 160 | 1270 | 131 | 523 | 0 | 0 |
PF | 286 | 71 | 160 | 1270 | 131 | 523 | 0 | 0.9 |
HF1 | 286 | 71 | 160 | 1270 | 131 | 523 | 2.8 | 0.9 |
HF2 | 286 | 71 | 160 | 1270 | 131 | 523 | 5.6 | 0.9 |
HF3 | 286 | 71 | 160 | 1270 | 131 | 523 | 8.4 | 0.9 |
HF4 | 286 | 71 | 160 | 1270 | 131 | 523 | 11.2 | 0.9 |
HF5 | 286 | 71 | 160 | 1270 | 131 | 523 | 14 | 0.9 |
Fiber | Density | Dimensional Dimension | Mechanical Property | ||
---|---|---|---|---|---|
Length | Diameter | Modulus of Elasticity | Tensile Strength | ||
Calcium carbonate whisker | 2.8 g·cm−3 | 25 μm | 1 μm | 550 GPa | 4750 MPa |
Polypropylene fibers | 0.9 g·cm−3 | 12 mm | 75 μm | >586 MPa | >4.8 MPa |
Relevance Argument | 7 d | 28 d | ||
---|---|---|---|---|
Gray Correlation Entropy | Gray Entropy Correlation Degree | Gray Correlation Entropy | Gray Entropy Correlation Degree | |
Spectral area | 2.0091 | 0.9662 | 2.0193 | 0.9712 |
Porosity | 2.0199 | 0.9714 | 2.0085 | 0.9659 |
BFS | 2.0739 | 0.9973 | 2.0711 | 0.996 |
FFS | 2.0118 | 0.9675 | 2.0138 | 0.9684 |
r ≤ 0.02 μm | 2.0731 | 0.9970 | 2.0705 | 0.9957 |
0.02 μm < r ≤ 0.05 μm | 2.0352 | 0.9787 | 2.0459 | 0.9839 |
0.05 μm < r ≤ 0.2 μm | 2.0664 | 0.9937 | 2.0341 | 0.9782 |
r > 0.2 μm | 2.0522 | 0.9869 | 2.0646 | 0.9929 |
t/d | Group | Experimental Value | Predicted Value | ∆/% | Average Error | t/d | Group | Experimental Value | Predicted Value | ∆/% | Average Error |
---|---|---|---|---|---|---|---|---|---|---|---|
7 | ASC | 0.822 | 0.7480 | 9.03 | 8.16 | 28 | ASC | 0.8857 | 0.7777 | 12.19 | 7.48 |
PF | 0.9651 | 1.1094 | 14.95 | PF | 0.9627 | 1.1181 | 16.14 | ||||
HF1 | 1.0241 | 1.1156 | 8.94 | HF1 | 1.0204 | 1.1088 | 8.66 | ||||
HF2 | 1.0355 | 1.0803 | 4.33 | HF2 | 1.0465 | 1.0866 | 3.83 | ||||
HF3 | 1.0509 | 1.0335 | 1.66 | HF3 | 1.0486 | 0.9932 | 5.28 | ||||
HF4 | 1.1259 | 1.0591 | 5.93 | HF4 | 1.105 | 1.0898 | 1.38 | ||||
HF5 | 0.9047 | 1.0157 | 12.27 | HF5 | 0.8400 | 0.8806 | 4.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, H.; Yu, S.; Guo, H. Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete. Materials 2024, 17, 1952. https://doi.org/10.3390/ma17091952
Zhou Y, Li H, Yu S, Guo H. Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete. Materials. 2024; 17(9):1952. https://doi.org/10.3390/ma17091952
Chicago/Turabian StyleZhou, Yi, Hao Li, Shuyu Yu, and Haolong Guo. 2024. "Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete" Materials 17, no. 9: 1952. https://doi.org/10.3390/ma17091952
APA StyleZhou, Y., Li, H., Yu, S., & Guo, H. (2024). Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete. Materials, 17(9), 1952. https://doi.org/10.3390/ma17091952