Research on the Mechanical, Thermal and Induction Healing Properties of Asphalt Wearing Course with Steel Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Samples Preparation
2.3. Experimental Method
2.3.1. Volume Performance Test
2.3.2. High Temperature Stability
2.3.3. Low-Temperature Crack Resistance
2.3.4. Intermediate-Temperature Crack Resistance
2.3.5. Moisture Stability
2.3.6. Skid Resistance Performance
2.3.7. Induction Heating Test
2.3.8. Healing Performance Test
3. Results and Discussion
3.1. Influence of SF Contents on Volume Performance
3.2. Influence of SF Contents on High Temperature Stability
3.3. Influence of SF Contents on Low Temperature Crack Resistance
3.4. Influence of SF Contents on Intermediate Temperature Stability
3.5. Influence of SF Contents on Moisture Stability
3.6. Influence of SF Contents on Skid Resistance Performance
3.7. Influence of SF Contents on Thermal Performance
3.7.1. Induction Heating Efficiency
3.7.2. Effective Heating Depth
3.8. Influence of SF Contents on Healing Performance
3.8.1. Determine Heating Temperature
3.8.2. Healing Effect Analysis
4. Conclusions
- The addition of SF can improve the high-temperature stability, low-temperature and intermediate-temperature crack resistance, and moisture stability of the asphalt wearing course, but it has an adverse effect on the volume performance and anti-skid performance.
- Samples with the same SF content exhibit uneven temperature distribution characteristics. The maximum, minimum, and average surface temperatures are all highly linearly related to heating time. The heating temperature increases with SF content, but the higher maximum heating rate causes worse heating uniformity and lowers the healing rate. Among them, the maximum temperature is most affected by the SF content. The maximum heating rate of the sample with 10% SF reached 3.92 °C/s, while its heating rate at the minimum temperature was similar to that of the sample with 6% SF, which was only about 0.7 °C/s, indicating the worst heating uniformity.
- When heated for 30 to 40 s, samples with 8% and 10% SF will experience local structural damage due to the maximum temperature exceeding 180 °C, while samples with 2%, 4%, and 6% SF content will not show structural damage when heated for 60 s. Therefore, a heating method that controls the maximum temperature of the upper surface is a convenient and reliable way to avoid local overheating.
- The incorporation of SF increases the initial fracture strength while reducing the natural (unheated) healing rate. The best healing level was the sample with 2% SF when the maximum temperature of the upper surface reaches H5 (160 °C). As the SF content decreases, the healing rate increases; however, the heating time also increases, which is not conducive to practical applications.
- The final recommended optimal SF content is 6% of the asphalt volume. At this time, the asphalt mixture has appropriate VV, VFA, moisture stability, and anti-skid properties, in addition to the best high-temperature stability, low-temperature crack resistance, and intermediate-temperature crack resistance. Meanwhile, it also exhibits uniform temperature distribution and high healing efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, F.; Luo, X.; West, R.C.; Taylor, A.J.; Moore, N.D. Energy-based crack initiation model for load-related top-down cracking in asphalt pavement. Constr. Build. Mater. 2018, 159, 587–597. [Google Scholar] [CrossRef]
- Wang, H.-P.; Guo, Y.-X.; Wu, M.-Y.; Xiang, K.; Sun, S.-R. Review on structural damage rehabilitation and performance assessment of asphalt pavements. Rev. Adv. Mater. Sci. 2021, 60, 438–449. [Google Scholar] [CrossRef]
- Liang, B.; Lan, F.; Shi, K.; Qian, G.; Liu, Z.; Zheng, J. Review on the self-healing of asphalt materials: Mechanism, affecting factors, assessments and improvements. Constr. Build. Mater. 2021, 266, 120453. [Google Scholar] [CrossRef]
- Grossegger, D.; Garcia, A. Influence of the thermal expansion of bitumen on asphalt self-healing. Appl. Therm. Eng. 2019, 156, 23–33. [Google Scholar] [CrossRef]
- Xu, H.; Zou, Y.; Airey, G.; Wang, H.; Zhang, H.; Wu, S.; Chen, A. Wetting of bio-rejuvenator nanodroplets on bitumen: A molecular dynamics investigation. J. Clean. Prod. 2024, 444, 141140. [Google Scholar] [CrossRef]
- Grossegger, D.; Gomez-Meijide, B.; Vansteenkiste, S.; Garcia, A. Influence of rheological and physical bitumen properties on heat-induced self-healing of asphalt mastic beams. Constr. Build. Mater. 2018, 182, 298–308. [Google Scholar] [CrossRef]
- Shen, S.; Lu, X.; Liu, L.; Zhang, C. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels. Constr. Build. Mater. 2016, 126, 197–205. [Google Scholar] [CrossRef]
- Dinh, B.H.; Park, D.-W.; Le, T.H.M. Effect of rejuvenators on the crack healing performance of recycled asphalt pavement by induction heating. Constr. Build. Mater. 2018, 164, 246–254. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, M.; Li, P.; Zhang, J.; Qiao, R.; Cheng, C.; Xu, H. Preparation and characterization of self-healing microcapsules of asphalt. Constr. Build. Mater. 2020, 263, 120174. [Google Scholar] [CrossRef]
- Wan, P.; Wu, S.; Liu, Q.; Wang, H.; Zhao, F.; Wu, J.; Niu, Y.; Ye, Q. Sustained-release calcium alginate/diatomite capsules for sustainable self-healing asphalt concrete. J. Clean. Prod. 2022, 372, 133639. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Tan, Y.-Q.; Lv, H.-J.; Han, M.-Z. Evaluation of rheological and self-healing properties of asphalt containing microcapsules modified with graphene. Constr. Build. Mater. 2022, 357, 129287. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Li, Y.; Li, C.; Yang, X.; Liu, Q.; Wang, Q.; Wang, F.; et al. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. J. Clean. Prod. 2020, 268, 122387. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; Van De Ven, M. Characterization of the material from the induction healing porous asphalt concrete trial section. Mater. Struct. 2013, 46, 831–839. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Shu, B.; Li, Y.; Gu, D.; Gao, Y.; Chen, A.; Feng, J.; Wu, S.; Liu, Q.; et al. Microwave heating mechanism and self-healing performance of asphalt mixture with basalt and limestone aggregates. Constr. Build. Mater. 2022, 342, 127973. [Google Scholar] [CrossRef]
- Gómez-Meijide, B.; Ajam, H.; Lastra-González, P.; Garcia, A. Effect of air voids content on asphalt self-healing via induction and infrared heating. Constr. Build. Mater. 2016, 126, 957–966. [Google Scholar] [CrossRef]
- Li, M.; Wu, G.; Fini, E.H.; Yu, M.; Xu, Z. Investigating the healing capacity of asphalt mixtures containing iron slag. Constr. Build. Mater. 2020, 261, 119446. [Google Scholar] [CrossRef]
- Lou, B.; Sha, A.; Barbieri, D.M.; Liu, Z.; Zhang, F.; Jiang, W.; Hoff, I. Characterization and microwave healing properties of different asphalt mixtures suffered freeze-thaw damage. J. Clean. Prod. 2021, 320, 128823. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, G.; Wang, C. The non-thermal biological effects and mechanisms of microwave exposure. Int. J. Radiat. Res. 2021, 19, 483–494. [Google Scholar] [CrossRef]
- Fu, C.; Liu, K.; Liu, Q.; Zhang, Z.; Oeser, M. A sustainable inductive healing asphalt mixture for solving gradient healing behavior. J. Clean. Prod. 2022, 370, 133327. [Google Scholar] [CrossRef]
- Xu, H.; Wu, S.; Chen, A.; Zou, Y.; Yang, C.; Cui, P. Study on preparation and characterization of a functional porous ultra-thin friction course (PUFC) with recycled steel slag as aggregate. J. Clean. Prod. 2022, 380, 134983. [Google Scholar] [CrossRef]
- Wan, J.; Wu, S.; Xiao, Y.; Fang, M.; Song, W.; Pan, P.; Zhang, D. Enhanced ice and snow melting efficiency of steel slag based ultra-thin friction courses with steel fiber. J. Clean. Prod. 2019, 236, 117613. [Google Scholar] [CrossRef]
- Garcia, A.; Norambuena-Contreras, J.; Partl, M.N. A parametric study on the influence of steel wool fibers in dense asphalt concrete. Mater. Struct. 2014, 47, 1559–1571. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M.; van Bochove, G. Optimization of composition and mixing process of a self-healing porous asphalt. Constr. Build. Mater. 2012, 30, 59–65. [Google Scholar] [CrossRef]
- Garcia, A.; Salih, S.; Gómez-Meijide, B. Optimum moment to heal cracks in asphalt roads by means electromagnetic induction. Constr. Build. Mater. 2020, 238, 117627. [Google Scholar] [CrossRef]
- Ajam, H.; Gomez-Meijide, B.; Artamendi, I.; Garcia, A. Mechanical and healing properties of asphalt mixes reinforced with different types of waste and commercial metal particles. J. Clean. Prod. 2018, 192, 138–150. [Google Scholar] [CrossRef]
- Lastra-Gonzalez, P.; Indacoechea-Vega, I.; Calzada-Perez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, A. Mechanical assessment of the induction heating as a method to accelerate the drying process of cold porous asphalt mixtures. Constr. Build. Mater. 2019, 208, 646–650. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Jato-Espino, D.; Tabakovic, A.; Castro-Fresno, D. Optimizing the valorization of industrial by-products for the induction healing of asphalt mixtures. Constr. Build. Mater. 2019, 228, 116715. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Xie, J.; Amirkhanian, S.; Liu, Q.; Zhang, J.; Xiao, Y.; Zhao, Z.; Xu, H.; Li, N.; et al. Enhanced induction heating and self-healing performance of recycled asphalt mixtures by incorporating steel slag. J. Clean. Prod. 2022, 366, 132999. [Google Scholar] [CrossRef]
- Yang, C.; Xie, J.; Wu, S.; Amirkhanian, S.; Wang, Z.; Song, J.; Zhou, X.; Wang, F.; Zhang, L. Enhancement mechanism of induction heating on blending efficiency of RAP-virgin asphalt in steel slag recycled asphalt mixtures. Constr. Build. Mater. 2021, 269, 121318. [Google Scholar] [CrossRef]
- Liu, K.; Fu, C.; Xu, P.; Li, S.; Huang, M. An eco-friendliness inductive asphalt mixture comprising waste steel shavings and waste ferrites. J. Clean. Prod. 2021, 283, 124639. [Google Scholar] [CrossRef]
- Liu, K.; Tong, J.; Fu, C.; Xu, P.; Wang, F.; Pang, H. Calculative method of effective induction heating depth and its influences on induction healing of dense-graded asphalt pavement. Constr. Build. Mater. 2022, 359, 129388. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Luo, S.; Yang, X.; Li, Q. Asphalt mixture design for porous ultra-thin overlay. Constr. Build. Mater. 2019, 217, 251–264. [Google Scholar] [CrossRef]
- Hu, M.; Li, L.; Peng, F. Laboratory investigation of OGFC-5 porous asphalt ultra-thin wearing course. Constr. Build. Mater. 2019, 219, 101–110. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Wei, X.; Dong, N.; Yu, H. Performance Evaluation of Ultra-Thin Wearing Course with Different Polymer Modified Asphalt Binders. Polymers 2022, 14, 3235. [Google Scholar] [CrossRef]
- Sun, D.; Sun, G.; Zhu, X.; Xiao, F.; Dai, Z.; Liu, F. Electrical characteristics of conductive ultrathin bonded wearing course for active deicing and snow melting. Int. J. Pavement Eng. 2019, 20, 1299–1308. [Google Scholar] [CrossRef]
- Wan, J.; Wu, S.; Hu, X.; Li, Y.; Pan, P.; Gan, W. Assessment on Steel Slag-Based SMA-5 and AC-5 Asphalt Mixtures for Maintenance and Induction Heating. J. Mater. Civ. Eng. 2022, 34, 04021471. [Google Scholar] [CrossRef]
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavements. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- ASTM D2726-11; D04 Committee Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- JTG F20-2011; Technical Specification for Construction of Highway Asphalt Pavements. China Communications Press: Beijing, China, 2011.
- Luan, Y.; Ma, Y.; Ma, T.; Wang, C.; Xia, F. Research on the effects of asphalt performance on rutting resistance and its correlation with rutting performance indicators. Constr. Build. Mater. 2023, 400, 132773. [Google Scholar] [CrossRef]
- ASTM D8225-19; D04 Committee Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature. ASTM: West Conshohocken, PA, USA, 2019. [CrossRef]
- Chowdhury, P.S.; Noojilla SL, A.; Reddy, M.A. Evaluation of fatigue characteristics of asphalt mixtures using Cracking Tolerance index (CTIndex). Constr. Build. Mater. 2022, 342, 128030. [Google Scholar] [CrossRef]
- Ameli, A.; Pakshir, A.H.; Babagoli, R.; Habibpour, A.; Norouzi, N.; Davoudinezhad, S. The effects of gilsonite and crumb rubber on moisture damage resistance of stone matrix asphalt mixtures. Constr. Build. Mater. 2021, 274, 122052. [Google Scholar] [CrossRef]
- JTG E60-2008; Field Test Methods of Subgrade and Pavement for Highway Engineering. China Communications Press: Beijing, China, 2008.
- Cui, W.; Wu, K.; Cai, X.; Tang, H.; Huang, W. Optimizing Gradation Design for Ultra-Thin Wearing Course Asphalt. Materials 2020, 13, 189. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Schlangen, E. Induction heating of asphalt mastic for crack control. Constr. Build. Mater. 2013, 41, 345–351. [Google Scholar] [CrossRef]
Test Items | Unit | Measured Value | Specified Range | Specification |
---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 45 | 40–55 | T 0604-2011 |
Softening point | °C | 96 | ≥90 | T 0606-2011 |
Ductility (5 cm/min, 5 °C) | cm | 38 | ≥30 | T 0605-2011 |
Dynamic viscosity (60 °C) | Pa·s | 178,468 | ≥100,000 | T 0620-2000 |
Rotational viscosity at 135 °C | Pa·s | 5.19 | ≤7 | T 0625-2011 |
Rotational viscosity at 175 °C | Pa·s | 1.193 | ≤1.5 | T 0625-2011 |
Test Items | Unit | Measured Value | Specified Range | Specification |
---|---|---|---|---|
Apparent relative density | g/cm3 | 3.021 | ≥2.7 | T 0304-2005 |
Flakiness and elongation | % | 3.7 | ≤12 | T 0312-2005 |
Los Angeles abrasion | % | 7.4 | ≤20 | T 0317-2005 |
Crushed ratio | % | 11.6 | ≤18 | T 0316-2005 |
Water absorption rate | % | 0.81 | ≤1 | T 0304-2005 |
Ruggedness | % | 2.7 | ≤8 | T 0314-2005 |
Polished stone value | % | 49 | ≥42 | T 0321-2005 |
Parameter | Unit | Measured Value |
---|---|---|
Density | g/cm3 | 7.8 |
Oil content | % | <0.2 |
Equivalent diameter | μm | 70–130 |
Average fiber length | mm | 4.2 |
Melting point | °C | 1530 |
SF Content (%) | Temperature Type | Linear Fitting Formula | R2 |
---|---|---|---|
2 | Max | Y = 45.47 + 0.72x | 0.99241 |
Min | Y = 24.10 + 0.51x | 0.98767 | |
Avg | Y = 26.05 + 0.71x | 0.99418 | |
4 | Max | Y = 49.19 + 1.02x | 0.99236 |
Min | Y = 23.51 + 0.85x | 0.98685 | |
Avg | Y = 28.61 + 1.03x | 0.99183 | |
6 | Max | Y = 54.28 + 1.51x | 0.99721 |
Min | Y = 27.97 + 0.89x | 0.98706 | |
Avg | Y = 29.97 + 1.40x | 0.99684 | |
8 | Max | Y = 18.16 + 3.95x | 0.9874 |
Min | Y = 16.34 + 1.56x | 0.9819 | |
Avg | Y = 21.10 + 2.20x | 0.99753 | |
10 | Max | Y = 5.46 + 4.86x | 0.98276 |
Min | Y = 26.07 + 0.91x | 0.99633 | |
Avg | Y = 27.47 + 1.91x | 0.99876 |
SF Content/% | Designation | Maximum Temperature Control Value/°C | Corresponding Average Temperature/°C | Corresponding Heating Time/s | Description |
---|---|---|---|---|---|
0 | H1 | - | - | No heating | |
2 | H1 | - | - | No heating | |
H2 | 100 | 79.6 | 76 | ||
H3 | 120 | 99.4 | 104 | ||
H4 | 140 | 119.2 | 132 | ||
H5 | 160 | 138.9 | 160 | ||
H6 | 180 | 158.7 | 189 | ||
4 | H1 | - | - | No heating | |
H2 | 100 | 79.5 | 50 | ||
H3 | 120 | 99.8 | 70 | ||
H4 | 140 | 120.1 | 89 | ||
H5 | 160 | 140.4 | 109 | ||
H6 | 180 | 160.8 | 129 | ||
6 | H1 | - | - | No heating | |
H2 | 100 | 72.6 | 30 | ||
H3 | 120 | 91.4 | 44 | ||
H4 | 140 | 110.2 | 57 | ||
H5 | 160 | 129 | 70 | ||
H6 | 180 | 147.8 | 83 | ||
8 | H1 | - | - | No heating | |
H2 | 100 | 66.5 | 21 | ||
H3 | 120 | 77.7 | 26 | ||
H4 | 140 | 88.9 | 31 | ||
H5 | 160 | 100.1 | 37 | ||
H6 | 180 | 111.3 | 42 | ||
10 | H1 | - | - | No heating | |
H2 | 100 | 63.9 | 19 | ||
H3 | 120 | 71.3 | 24 | ||
H4 | 140 | 78.6 | 28 | ||
H5 | 160 | 85.9 | 32 | ||
H6 | 180 | 93.2 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wu, S.; Liu, Q.; Wang, J.; Wan, P.; Xu, H.; Jiang, Q. Research on the Mechanical, Thermal and Induction Healing Properties of Asphalt Wearing Course with Steel Fibers. Materials 2024, 17, 2040. https://doi.org/10.3390/ma17092040
Liu W, Wu S, Liu Q, Wang J, Wan P, Xu H, Jiang Q. Research on the Mechanical, Thermal and Induction Healing Properties of Asphalt Wearing Course with Steel Fibers. Materials. 2024; 17(9):2040. https://doi.org/10.3390/ma17092040
Chicago/Turabian StyleLiu, Wei, Shaopeng Wu, Quantao Liu, Jiazhu Wang, Pei Wan, Haiqin Xu, and Qi Jiang. 2024. "Research on the Mechanical, Thermal and Induction Healing Properties of Asphalt Wearing Course with Steel Fibers" Materials 17, no. 9: 2040. https://doi.org/10.3390/ma17092040
APA StyleLiu, W., Wu, S., Liu, Q., Wang, J., Wan, P., Xu, H., & Jiang, Q. (2024). Research on the Mechanical, Thermal and Induction Healing Properties of Asphalt Wearing Course with Steel Fibers. Materials, 17(9), 2040. https://doi.org/10.3390/ma17092040