Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb
Abstract
:1. Introduction
2. Specimen Preparation and Testing
2.1. Geometry of Modified 3D Re-Entrant Honeycombs
2.2. Experimental Test of Modified 3D Re-Entrant Honeycombs
3. Result of Quasi-Static Experiment
3.1. Deformation of Four Modified 3D Re-Entrant Honeycombs with Different Angles
3.2. Crushing Force of Four Different Angle Modified 3D Re-Entrant Honeycombs
4. Numerical Analysis
4.1. Parameter Settings for the Finite Element Model
4.2. Verification of Finite Element Modelling
4.3. Parametric Studies
4.3.1. Poisson’s Ratio of Modified 3D Re-Entrant Honeycomb with Different Angles
4.3.2. Stress–Strain Result of Modified 3D Re-Entrant Honeycomb with Different Angles
4.3.3. Energy Absorption of the Modified 3D Re-Entrant Honeycomb with Different Angles
5. Optimization of Modified 3D Re-Entrant Honeycomb
5.1. Overall Optimization Scheme
5.2. Design Variables and Experiments
5.3. The Surrogate Models
5.4. Multi-Objective Optimization
6. Results and Discussion
7. Conclusions
- (1)
- Through the experiment, it can be revealed that four different angles of modified 3D re-entrant honeycomb all exhibit NPR phenomena. With the increase in the honeycomb angle, the porous voids of the honeycomb increase. Under the same external compression, the force is less likely to be transmitted to the lower part of the honeycomb. Additionally, the truss inside the honeycomb structure becomes increasingly unstable even to collapse during the compression process, emphasizing the negative Poisson’s ratio phenomena.
- (2)
- The FE results show that when the honeycomb angle is 45°, the maximum stress is relatively lower under different velocity conditions. Overall, as the honeycomb angle increases, the impact stress steadily decreases, and the EA value increases simultaneously. When the honeycomb angle remains constant, both the impact stress and EA value increase with the increase in impact velocity.
- (3)
- The pareto solution set is obtained through the NSGA-II algorithm, and the minimum value of C is selected as the best solution from the solution set. C is obtained when the values of 1/EA and PCS are 5.72 (1/kJ) and 2.28 MPa, and the corresponding values of α and v are 49.23° and 16.40 m/s, respectively. According to the FE verification calculation, the relative errors of EA and PCS values between the optimization values are 9.26% and 0.4%, respectively. Consequently, the optimization approach is efficient and a useful model for optimizing the design of corresponding honeycomb structures under the same mass.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Zhao, S.; Sun, R.; Scarpa, F.; Wang, J. In-Plane Mechanical Behavior of a New Star-Re- Entrant Hierarchical Metamaterial. Materials 2019, 11, 1132. [Google Scholar] [CrossRef]
- Li, T.; Liu, F.; Wang, L. Enhancing indentation and impact resistance in auxetic composite materials. Compos. Part B Eng. 2020, 198, 108229. [Google Scholar] [CrossRef]
- Ko, K.; Lee, S.; Hwang, Y.K.; Jin, S.; Hong, J.W. Investigation on the impact resistance of 3D printed nacre-like composites. Thin-Walled Struct. 2022, 177, 109392. [Google Scholar] [CrossRef]
- Choukir, S.; Singh, C.V. Role of topology in dictating the fracture toughness of mechanical metamaterials. Int. J. Mech. Sci. 2023, 241, 107945. [Google Scholar] [CrossRef]
- Imbalzano, G.; Linforth, S.; Ngo, T.D.; Lee, P.V.S.; Tran, P. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos. Struct. 2018, 183, 242–261. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, J.; Li, S.; Fang, J.; Wang, E.; Li, Q. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading. Thin-Walled Struct. 2019, 142, 499–515. [Google Scholar] [CrossRef]
- Alderson, A.; Alderson, K.L.; Chirima, G.; Ravirala, N.; Zied, K.M. The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos. Sci. Technol. 2010, 70, 1034–1041. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, H.; Letov, N.; Zhao, Y.F.; Zhang, X.; Wu, Y.; Leung, C.L.A.; Wang, H. Data-driven design of biometric composite metamaterials with extremely recoverable and ultrahigh specific energy absorption. Compos. Part B Eng. 2023, 251, 110468. [Google Scholar] [CrossRef]
- Imbalzano, G.; Tran, P.; Ngo, T.D.; Lee, P.V.S. A numerical study of auxetic composite panels under blast loadings. Compos. Struct. 2016, 135, 339–352. [Google Scholar] [CrossRef]
- Abbaslou, M.; Hashemi, R.; Etemadi, E. Novel hybrid 3D-printed auxetic vascular stent based on re-entrant and meta-trichiral unit cells: Finite element simulation with experimental verifications. Mater. Today Commun. 2023, 35, 105742. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.; Liu, J.; Ye, D.; Duan, Y.; Li, K.; Yin, Z.; Huang, Y. Flexible metamaterial electronics. Adv. Mater. 2022, 34, 2200070. [Google Scholar] [CrossRef]
- Hajarian, A.; Zargar, O.; Zakerzadeh, M.R.; Baghernejad, S.; Baghani, M. Fabrication, characterization, and modeling of a structural flexible skin for applications in morphing wings. Mech. Mater. 2022, 172, 104409. [Google Scholar] [CrossRef]
- Ren, X.; Shen, J.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic nail: Design and experimental study. Compos. Struct. 2018, 184, 288–298. [Google Scholar] [CrossRef]
- Ma, N.; Han, Q.; Han, S.; Li, C. Hierarchical re-entrant honeycomb metamaterial for energy absorption and vibration insulation. Int. J. Mech. Sci. 2023, 250, 108307. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Wang, K.; Yao, S.; Peng, Y. On impact behaviors of 3D concave structures with negative Poisson’s ratio. Compos. Struct. 2022, 298, 115999. [Google Scholar] [CrossRef]
- An, X.; Lai, C.; He, W.; Fan, H. Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression and sound absorption. Compos. Part B Eng. 2021, 224, 109232. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G. Energy absorption of re-entrant honeycombs in tension and compression. Eng. Struct. 2023, 288, 116237. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhou, Y.; Mo, Z.; Li, J. In-plane crushing behavior of a novel re-entrant diamond-shaped honeycomb and its variant structures. Mater. Lett. 2023, 352, 135106. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, S.; Ding, C.; Qi, C. Quasi-static crushing behavior of novel circular double arrowed auxetic honeycombs: Experimental test and numerical simulation. Thin-Walled Struct. 2022, 177, 109434. [Google Scholar] [CrossRef]
- Rong, L.; Yifeng, Z.; Siqi, M.; Evrard, I.A. Dynamic characteristics of sandwich panels with novel improved star-shaped honeycomb. Int. J. Mech. Sci. 2023, 260, 108641. [Google Scholar] [CrossRef]
- Montazeri, A.; Bahmanpour, E.; Safarabadi, M. Three-point bending behavior of foam-filled conventional and auxetic 3D-printed honeycombs. Adv. Eng. Mater. 2023, 25, 2300273. [Google Scholar] [CrossRef]
- Lim, T.-C. Mechanics of Metamaterials with Negative Parameters; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Wang, H.; Lu, Z.; Yang, Z.; Li, X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos. Struct. 2019, 208, 758–770. [Google Scholar] [CrossRef]
- Qi, C.; Jiang, F.; Remennikov, A.; Pei, L.-Z.; Liu, J.; Wang, J.-S.; Liao, X.-W.; Yang, S. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs. Compos. Part B Eng. 2020, 197, 108117. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, Y.; Gao, D.; Yu, C.; Ren, X.; Zhang, C. In-plane elastic properties of a novel re-entrant auxetic honeycomb with zigzag inclined ligaments. Eng. Struct. 2022, 268, 114788. [Google Scholar] [CrossRef]
- Tan, H.; He, Z.; Li, E.; Cheng, A.; Chen, T.; Tan, X.; Li, Q.; Xu, B. Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box. Struct. Multidiscip. Optim. 2021, 64, 2009–2024. [Google Scholar] [CrossRef]
- Xu, F.; Yu, K.; Hua, L. In-plane dynamic response and multi-objective optimization of negative Poisson’s ratio (NPR) honeycomb structures with sinusoidal curve. Compos. Struct. 2021, 269, 114018. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, S.; Qi, C.; Liu, H.-T.; Remennikov, A.; Pei, L.-Z. Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels. Compos. Struct. 2023, 305, 116494. [Google Scholar] [CrossRef]
- Wang, E.; Li, Q.; Sun, G. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance. Thin-Walled Struct. 2020, 147, 106494. [Google Scholar] [CrossRef]
- Qi, C.; Pei, L.Z.; Remennikov, A.; Yang, S.; Liu, J.; Wang, J.S.; Liao, X.W. Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact. Compos. Struct. 2020, 252, 112711. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, S.; Qi, C. Quasi-static crushing response of a novel 3D re-entrant circular auxetic metamaterial. Compos. Struct. 2022, 300, 116066. [Google Scholar] [CrossRef]
α | 30° | 45° | 60° | 75° |
---|---|---|---|---|
Lx (mm) | 66.144 | 68.688 | 72.0 | 75.86 |
Lz (mm) | 66.144 | 68.688 | 72.0 | 75.86 |
Ly (mm) | 32.0 | 35.312 | 37.856 | 39.456 |
L1 (mm) | 1.5 | 1.5 | 1.5 | 1.5 |
L2 (mm) | 2 | 2 | 2 | 2 |
L3 (mm) | 1.5 | 1.5 | 1.5 | 1.5 |
d (mm) | 2 | 2 | 2 | 2 |
t (mm) | 0.8 | 0.8 | 0.8 | 0.8 |
PCS (MPa) | EA (kJ) | PCS (MPa) | EA (kJ) | PCS (MPa) | EA (kJ) | PCS (MPa) | EA (kJ) | |
---|---|---|---|---|---|---|---|---|
v/α | 30° | 45° | 60° | 75° | ||||
1 m/s | 1.20 | 0.12 | 1.42 | 0.13 | 1.99 | 0.14 | 2.10 | 0.14 |
10 m/s | 1.82 | 0.13 | 1.72 | 0.16 | 2.24 | 0.18 | 3.22 | 0.20 |
30 m/s | 2.20 | 0.14 | 2.68 | 0.17 | 3.10 | 0.25 | 3.79 | 0.28 |
50 m/s | 2.40 | 0.17 | 3.19 | 0.21 | 3.6 | 0.28 | 4.10 | 0.33 |
70 m/s | 3.10 | 0.19 | 3.45 | 0.26 | 3.9 | 0.34 | 4.23 | 0.36 |
EA | PCS | |
---|---|---|
R2 (>0.9) | 0.974 | 0.919 |
RMSE (<0.2) | 0.060 | 0.105 |
NSGA II | Simulation | Error | |
---|---|---|---|
1/EA | 5.72 | 6.25 | 9.26% |
PCS | 2.28 | 2.27 | 0.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shi, B.-Q.; Wang, B.; Yu, G.-Q. Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb. Materials 2024, 17, 2083. https://doi.org/10.3390/ma17092083
Zhang J, Shi B-Q, Wang B, Yu G-Q. Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb. Materials. 2024; 17(9):2083. https://doi.org/10.3390/ma17092083
Chicago/Turabian StyleZhang, Jun, Bo-Qiang Shi, Bo Wang, and Guo-Qing Yu. 2024. "Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb" Materials 17, no. 9: 2083. https://doi.org/10.3390/ma17092083
APA StyleZhang, J., Shi, B. -Q., Wang, B., & Yu, G. -Q. (2024). Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb. Materials, 17(9), 2083. https://doi.org/10.3390/ma17092083