Valorization of the Residual Fraction of Coal Tailings: A Mineral Circularity Strategy for the Clay Ceramic Industry in the Carboniferous Region of Santa Catarina, Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
- I.
- Classification as hazardous or non-hazardous waste;
- II.
- Potentiality and physical and chemical characteristics of the material;
- III.
- Available quantity and feasibility of the waste;
- IV.
- Applicability of the waste as a by-product in the ceramic industry.
2.1. Classification
2.2. Potentiality
2.3. Quantity and Viability
2.4. Applicability
3. Results
3.1. Classification
3.2. Potentiality
3.3. Quantity and Viability
3.4. Applicability
3.4.1. Technical Analysis
3.4.2. Environmental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Gao, X. Objectives Setting and Instruments Selection of Circular Economy Policy in China’s Mining Industry: A Textual Analysis. Resour. Policy 2021, 74, 102410. [Google Scholar] [CrossRef]
- Zhao, Y.; Zang, L.; Li, Z.; Qin, J. Discussion on the Model of Mining Circular Economy. Energy Procedia 2012, 16, 438–443. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A Review of Circular Economy Strategies for Mine Tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Trokanas, N.; Cecelja, F.; Yu, M.; Raafat, T. Optimising Environmental Performance of Symbiotic Networks Using Semantics. In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; Elsevier: Brno, Czech Republic, 2014; Volume 33, pp. 847–852. [Google Scholar]
- Lehtinen, U.; Ala-Rämi, K. Supply of Biomass and Agricultural Waste for Promoting Low-Carbon Business-Ecosystem. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Elsevier: Chennai, India, 2021; pp. 899–912. [Google Scholar]
- Hamam, M.; Spina, D.; Raimondo, M.; Di Vita, G.; Zanchini, R.; Chinnici, G.; Tóth, J.; D’Amico, M. Industrial Symbiosis and Agri-Food System: Themes, Links, and Relationships. Front. Sustain. Food Syst. 2023, 6, 1012436. [Google Scholar] [CrossRef]
- Oughton, C.; Kurup, B.; Anda, M.; Ho, G. Industrial Symbiosis to Circular Economy: What Does the Literature Reveal for a Successful Complex Industrial Area? Circ. Econ. Sustain. 2022, 2, 1317–1344. [Google Scholar] [CrossRef]
- Castellet-Viciano, L.; Hernández-Chover, V.; Bellver-Domingo, Á.; Hernández-Sancho, F. Industrial Symbiosis: A Mechanism to Guarantee the Implementation of Circular Economy Practices. Sustainability 2022, 14, 15872. [Google Scholar] [CrossRef]
- Acordi, J.; Simão, L.; Faraco, M.N.S.; Borgert, C.H.; Olivo, E.; Montedo, O.R.K.; Raupp-Pereira, F. Waste Valorization of Coal Mining Waste from a Circular Economy Perspective: A Brazilian Case Study Based on Environmental and Physicochemical Features. Resour. Policy 2023, 80, 103243. [Google Scholar] [CrossRef]
- Gonzatti, C.; Fiorentini, J.A.; Zorzi, L.; Agostini, I.M. Characterization of Soft Rocks in Brazilian Coal Beds. In Soft Rock Mechanics and Engineering; Kanji, M., He, M., Ribeiro e Sousa, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 663–698. [Google Scholar]
- José Zocche, J.; Dimer Leffa, D.; Paganini Damiani, A.; Carvalho, F.; Ávila Mendonça, R.; dos Santos, C.E.I.; Appel Boufleur, L.; Ferraz Dias, J.; de Andrade, V.M. Heavy Metals and DNA Damage in Blood Cells of Insectivore Bats in Coal Mining Areas of Catarinense Coal Basin, Brazil. Environ. Res. 2010, 110, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Schlickmann, M.B.; Dreyer, J.B.B.; Spiazzi, F.R.; Vieira, F.S.; Nascimento, B.; Nicoleite, E.R.; Kanieski, M.R.; Duarte, E.; Schneider, C.R.; de Aguiar, J.T. Impact Assessment From Coal Mining Area in Southern Brazil. J. Agric. Sci. 2018, 10, 426. [Google Scholar] [CrossRef]
- Faraco, M.N.S. Valorização de Frações Residuais Geradas No Beneficiamento de Carvão Mineral Da Região Sul de Santa Catarina; Universidade Federal de Santa Catarina—UFSC: Florianópolis, SC, Brazil, 2022. [Google Scholar]
- Silva, L.F.O.; Fdez-Ortiz de Vallejuelo, S.; Martinez-Arkarazo, I.; Castro, K.; Oliveira, M.L.S.; Sampaio, C.H.; de Brum, I.A.S.; de Leão, F.B.; Taffarel, S.R.; Madariaga, J.M. Study of Environmental Pollution and Mineralogical Characterization of Sediment Rivers from Brazilian Coal Mining Acid Drainage. Sci. Total Environ. 2013, 447, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.L.; Oliveira, M.L.S.; Hower, J.C.; Taffarel, S.R.; Kautzmann, R.M.; Silva, L.F.O. Nanominerals and Ultrafine Particles from Coal Fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 2014, 122, 50–60. [Google Scholar] [CrossRef]
- Zaccaron, A.; de Souza Nandi, V.; Dal Bó, M.; Peterson, M.; Angioletto, E.; Bernardin, A.M. Characterization and Use of Clays and Argillites from the South of Santa Catarina State, Brazil, for the Manufacture of Clay Ceramics. Clay Miner. 2020, 55, 172–183. [Google Scholar] [CrossRef]
- Camara, V.F.; Lisboa, H.M.; Hoinaski, L.; David, P.C. Levantamento Das Emissões Atmosféricas Da Indústria Da Cerâmica Vermelha No Sul Do Estado de Santa Catarina, Brasil. Cerâmica 2015, 61, 213–218. [Google Scholar] [CrossRef]
- Saviatto, E.; Zaccaron, A.; Nandi, V.d.S.; Acordi, J.; Arcaro, S.; Raupp-Pereira, F.; Galatto, S.L.; Ribeiro, M.J. Sustainable Mining: Reuse of Clay from Abandoned Areas in the South of Brazil for Ceramic Production Based on a Simplex Design. Materials 2023, 16, 6466. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F.; Hanif, A.; Patnaikuni, I. Thermal Performance Evaluation of Eco-Friendly Bricks Incorporating Waste Glass Sludge. J. Clean. Prod. 2018, 172, 1867–1880. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Edahbi, M.; Mansori, M.; Hakkou, R. Leaching and Geochemical Behavior of Fired Bricks Containing Coal Wastes. J. Environ. Manag. 2018, 209, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. Coal Mine Wastes Recycling for Coal Recovery and Eco-Friendly Bricks Production. Miner. Eng. 2017, 107, 123–138. [Google Scholar] [CrossRef]
- Zaccaron, A.; Nandi, V.d.S.; da Silva, D.B.; Comin, A.B. Estudo Da Utilização Do Resíduo Proveniente Do Beneficiamento Do Carvão Mineral Como Matéria-Prima Alternativa Na Fabricação de Blocos de Vedação. Cerâm. Ind. 2015, 20, 38–44. [Google Scholar] [CrossRef]
- Jung, J.-H.; Yoo, J.W.; Lee, J.-U.; Kim, H.-T. Application of Coal Wastes to Clay Bricks and Investigation of Their Physical Properties. J. Ind. Eng. Chem. 2005, 11, 175–179. [Google Scholar]
- Fomina, O.A.; Stolboushkin, A.Y. Development of a Novel Mold Design for Manufacturing of Hollow Ceramic Products from Coal Wastes. Mater. Today Proc. 2019, 11, 348–353. [Google Scholar] [CrossRef]
- Vasić, M.V.; Goel, G.; Vasić, M.; Radojević, Z. Recycling of Waste Coal Dust for the Energy-Efficient Fabrication of Bricks: A Laboratory to Industrial-Scale Study. Environ. Technol. Innov. 2021, 21, 101350. [Google Scholar] [CrossRef]
- Ahmad, S.; Iqbal, Y.; Muhammad, R. Effects of Coal and Wheat Husk Additives on the Physical, Thermal and Mechanical Properties of Clay Bricks. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 131–138. [Google Scholar] [CrossRef]
- Benedet, G.A.; Zaccaron, A.; Inocente, J.M.; de Souza Nandi, V.; Arcaro, S.; Raupp-Pereira, F.; Neto, D.G. Mining Circular Economy: Potential of Rice Husk Ash as an Alternative Mineral Source in the Production of Clay Ceramics Using Simplex Design. Process Saf. Environ. Prot. 2023, 176, 716–724. [Google Scholar] [CrossRef]
- Raupp-Pereira, F. Valorização de Resíduos Industriais Como Fonte Alternativa Mineral: Composições Cerâmicas e Cimentíceas; Universidade de Aveiro: Aveiro, Portugal, 2006. [Google Scholar]
- Cabral Junior, M.; Tanno, L.C.; Sintoni, A.; Motta, J.F.M.; Coelho, J.M. A Industria de Cerâmica Vermelha e o Suprimento Mineral No Brasil: Desafios Para o Aprimoramento Da Competitividade. Cerâm. Ind. 2012, 17, 36–42. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Vieira, C.M.F. On the Production of Fired Clay Bricks from Waste Materials: A Critical Update. Constr. Build. Mater. 2014, 68, 599–610. [Google Scholar] [CrossRef]
- Lavrinenko, A.A.; Svechnikova, N.Y.; Konovnitsyna, N.S.; Igumensheva, E.A.; Kuklina, O.V.; Khasanzyanova, A.I. Utilization of Bituminous Coal Flotation Wastes in the Manufacture of Ceramic Brick. Solid Fuel Chem. 2018, 52, 406–410. [Google Scholar] [CrossRef]
- IBGE Cidades e Estados. Available online: https://www.ibge.gov.br/cidades-e-estados (accessed on 12 December 2023).
- Machado, D.M.; Gambalonga Júnior, B.; Simão, L.; Ribeiro, M.J.; Montedo, O.R.K.; Raupp-Pereira, F.; Arcaro, S. Valorization of Brazilian Waste Foundry Sand from Circular Economy Perspective. J. Clean. Prod. 2023, 407, 137046. [Google Scholar] [CrossRef]
- Oliveira, K.A.; Simão, L.; Rebouças, L.B.; Hotza, D.; Montedo, O.R.K.; Novaes de Oliveira, A.P.; Raupp-Pereira, F. Ceramic Shell Waste Valorization: A New Approach to Increase the Sustainability of the Precision Casting Industry from a Circular Economy Perspective. Waste Manag. 2023, 157, 269–278. [Google Scholar] [CrossRef]
- Prates, P.B.; de Moraes, E.G.; Cesconeto, F.R.; Vicente, F.A.; Boca Santa, R.A.A.; Schabbach, L.M.; Riella, H.G.; Fredel, M.C. Evaluation of Magnesium Chloride Waste Recovery: A Case Study in Nanofertilizers. Rev. Bras. Gest. Ambient. Sustentabilidade 2022, 9, 419–437. [Google Scholar] [CrossRef]
- Simão, L.; Souza, M.T.; Ribeiro, M.J.; Klegues Montedo, O.R.; Hotza, D.; Novais, R.M.; Raupp-Pereira, F. Assessment of the Recycling Potential of Stone Processing Plant Wastes Based on Physicochemical Features and Market Opportunities. J. Clean. Prod. 2021, 319, 128678. [Google Scholar] [CrossRef]
- Souza, M.T.; Simão, L.; Montedo, O.R.K.; Raupp Pereira, F.; de Oliveira, A.P.N. Aluminum Anodizing Waste and Its Uses: An Overview of Potential Applications and Market Opportunities. Waste Manag. 2019, 84, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Vilaça, A.S.I.; Simão, L.; Montedo, O.R.K.; Novaes de Oliveira, A.P.; Raupp-Pereira, F. Waste Valorization of Iron Ore Tailings in Brazil: Assessment Metrics from a Circular Economy Perspective. Resour. Policy 2022, 75, 102477. [Google Scholar] [CrossRef]
- Zocche, J.J.; Sehn, L.M.; Pillon, J.G.; Schneider, C.H.; Olivo, E.F.; Raupp-Pereira, F. Technosols in Coal Mining Areas: Viability of Combined Use of Agro-Industry Waste and Synthetic Gypsum in the Restoration of Areas Degraded. Clean. Eng. Technol. 2023, 13, 100618. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Pinto, D.; Nagel-Hassemer, M.E.; Dal Moro, L.; Mores, G.d.V.; Bodah, B.W.; Neckel, A. Brazilian Coal Tailings Projects: Advanced Study of Sustainable Using FIB-SEM and HR-TEM. Sustainability 2022, 15, 220. [Google Scholar] [CrossRef]
- Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H. Depositional Setting, Petrology and Chemistry of Permian Coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. Int. J. Coal Geol. 2010, 84, 213–236. [Google Scholar] [CrossRef]
- IEA World Energy Outlook Special Report: Coal in Net Zero Transitions; IEA: Paris, France, 2022.
- Sarker, S.K.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of Strategically Important Critical Minerals from Mine Tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Najar, M.; Karn, A.; Dhamande, S.; Singh, U.; Agnihotri, A. Process for Recovery and Value Addition of Silica Mineral Values of Distinctly Siliceous Mining Rejects. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Falagán, C.; Grail, B.M.; Johnson, D.B. New Approaches for Extracting and Recovering Metals from Mine Tailings. Miner. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Araya, N.; Kraslawski, A.; Cisternas, L.A. Towards Mine Tailings Valorization: Recovery of Critical Materials from Chilean Mine Tailings. J. Clean. Prod. 2020, 263, 121555. [Google Scholar] [CrossRef]
- ANM Resolução N° 85. Available online: https://www.gov.br/anm/pt-br/resolucao-da-anm-ganha-selo-de-qualidade-regulatoria-do-ministerio-da-economia/resolucao-anm-no-85-02-12-2021.pdf/view (accessed on 25 October 2023).
- ABNT NBR 10004; Resíduos Sólidos-Classificação. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004; ISBN 9788507011972.
- ABNT NBR 10005; Procedimento Para Obtenção de Extrato Lixiviado de Resíduos Sólidos. Associação Brasileira de Cerâmica: Rio de Janeiro, Brazil, 2004.
- ABNT NBR 10006; Procedimento Para Obtenção de Extrato Solubilizado de Resíduos Sólidos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- ABNT NBR 10007; Amostragem de Resíduos Sólidos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004; ISBN 9788507007036.
- USEPA. Test Method for Evaluating Solid Waste Report Number SW-846; USEPA: Washington, DC, USA, 1986.
- ASTM D7348-21; Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. ASTM: West Conshohocken, PA, USA, 2021; p. 7.
- ASTM D5865-13; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2019; p. 19.
- ASTM D3175-20; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2020; p. 14.
- ASTM D7582-15; Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM: West Conshohocken, PA, USA, 2023; p. 9.
- ASTM D5373-21; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2021; p. 11.
- SINDICER Industrias Do Polo Cerâmico de Morro Da Fumaça. Available online: https://www.sindicermf.com.br/ (accessed on 12 December 2023).
- Pereira, Z.; Mendes, M.; Souza, P.A.; Rodrigues, C.; Fernandes, P.; Ade, M.; Araújo, C.; Almeida, J.R.L.; Santos, E.M.; Rocha, H.V.; et al. Palynology of Bonito and Barro Branco Coal Seams from Rio Bonito Formation (Lower Permian of Paraná Basin) in the Criciúma Coal Region, Southernmost Brazil. J. S. Am. Earth Sci. 2019, 91, 27–35. [Google Scholar] [CrossRef]
- Wildner, W.; Camozzato, E.; Toniolo, J.A.; Binotto, R.B.; Iglesias, C.M.F.; Laux, J.H. Mapa Geológico Do Estado de Santa Catarina; CPRM: Porto Alegre, Brazil, 2014. [Google Scholar]
- Amiri, H.; Azadi, S.; Karimaei, M.; Sadeghi, H. Farshad Dabbaghi Multi-Objective Optimization of Coal Waste Recycling in Concrete Using Response Surface Methodology. J. Build. Eng. 2022, 45, 103472. [Google Scholar] [CrossRef]
- ASTM C324-01; Standard Test Method for Free Moisture in Ceramic Whiteware Clays. ASTM: West Conshohocken, PA, USA, 2022; p. 2.
- ASTM C326-09; Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. ASTM: West Conshohocken, PA, USA, 2018; p. 2.
- ABNT NBR 15270-2; Componentes Cerâmicos-Blocos e Tijolos Para Alvenaria-Parte 2: Métodos de Ensaio. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2017.
- ASTM C20-00; Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM: West Conshohocken, PA, USA, 2022; p. 3.
- SMWW. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Eds.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- EPA Method 7473 (SW-846); Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. EPA: Washington, DC, USA, 1998; p. 17.
- Straupnik, I.A. An Overview of the Environmental Impact of Coal Industry Waste. IOP Conf. Ser. Earth Environ. Sci. 2022, 1070, 012004. [Google Scholar] [CrossRef]
- Fang, H.; Gui, H.; Yu, H.; Li, J.; Wang, M.; Jiang, Y.; Wang, C.; Chen, C. Characteristics and Source Identification of Heavy Metals in Abandoned Coal-Mining Soil: A Case Study of Zhuxianzhuang Coal Mine in Huaibei Coalfield (Anhui, China). Hum. Ecol. Risk Assess. An Int. J. 2021, 27, 708–723. [Google Scholar] [CrossRef]
- Vogt, C.; Lauterjung, J.; Fischer, R.X. Investigation of the Clay Fraction (<2 Μm) of the Clay Minerals Society Reference Clays. Clays Clay Miner. 2002, 50, 388–400. [Google Scholar]
- He, H.; Yue, Q.; Qi, Y.; Gao, B.; Zhao, Y.; Yu, H.; Li, J.; Li, Q.; Wang, Y. The Effect of Incorporation of Red Mud on the Properties of Clay Ceramic Bodies. Appl. Clay Sci. 2012, 70, 67–73. [Google Scholar] [CrossRef]
- Andreola, F.; Lancellotti, I.; Manfredini, T.; Bondioli, F.; Barbieri, L. Rice Husk Ash (RHA) Recycling in Brick Manufacture: Effects on Physical and Microstructural Properties. Waste Biomass Valoriz. 2018, 9, 2529–2539. [Google Scholar] [CrossRef]
- Weiler, J.; do Amaral Filho, J.R.; Scheiner, I.A.H. Processamento de Rejeitos de Carvão e Redução Do Impacto Ambiental. Augmdomus 2014, 6, 80–94. [Google Scholar]
- Souza, G.P.; Sousa, S.J.G.; Terrones, L.A.H.; Holanda, J.N.F. Mineralogical Analysis of Brazilian Ceramic Sedimentary Clays Used in Red Ceramic. Cerâmica 2005, 51, 382–387. [Google Scholar] [CrossRef]
- Manoharan, C.; Sutharsan, P.; Dhanapandian, S.; Venkatachalapathy, R. Characteristics of Some Clay Materials from Tamilnadu, India, and Their Possible Ceramic Uses. Cerâmica 2012, 58, 412–418. [Google Scholar] [CrossRef]
- Janković, B.; Manić, N.; Stojiljković, D.; Jovanović, V. The Assessment of Spontaneous Ignition Potential of Coals Using TGA–DTG Technique. Combust. Flame 2020, 211, 32–43. [Google Scholar] [CrossRef]
- Massaro, M.M.; Son, S.F.; Groven, L.J. Mechanical, Pyrolysis, and Combustion Characterization of Briquetted Coal Fines with Municipal Solid Waste Plastic (MSW) Binders. Fuel 2014, 115, 62–69. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Corpas-Iglesias, F.A.; Pérez-Villarejo, L.; Iglesias-Godino, F.J. Recycling of Sawdust, Spent Earth from Oil Filtration, Compost and Marble Residues for Brick Manufacturing. Constr. Build. Mater. 2012, 34, 275–284. [Google Scholar] [CrossRef]
- de la Casa, J.A.; Lorite, M.; Jiménez, J.; Castro, E. Valorisation of Wastewater from Two-Phase Olive Oil Extraction in Fired Clay Brick Production. J. Hazard. Mater. 2009, 169, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Anjum, F.; Naz, M.Y.; Ghaffar, A.; Shukrullah, S.; AbdEl-Salam, N.M.; Ibrahim, K.A. Study of Thermal and Mechanical Traits of Organic Waste Incorporated Fired Clay Porous Material. Phys. B Condens. Matter 2020, 599, 412479. [Google Scholar] [CrossRef]
- Aouba, L.; Bories, C.; Coutand, M.; Perrin, B.; Lemercier, H. Properties of Fired Clay Bricks with Incorporated Biomasses: Cases of Olive Stone Flour and Wheat Straw Residues. Constr. Build. Mater. 2016, 102, 7–13. [Google Scholar] [CrossRef]
- Nieto, F.; Abad, I.; Azañón, J.M. Smectite Quantification in Sediments and Soils by Thermogravimetric Analyses. Appl. Clay Sci. 2008, 38, 288–296. [Google Scholar] [CrossRef]
- Benedet, G.A.; Zaccaron, A.; Inocente, J.M.; de Souza Nandi, V.; Arcaro, S.; Raupp-Pereira, F.; Gorini Neto, D. Development of Eco-Friendly Clay Ceramics Using Rice Husk Ash as a Secondary Mineral Source of Quartz. Mater. Today Commun. 2024, 38, 108103. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Yan, Z.; Fang, T.; Wang, R. Transformation Behavior of Mineral Composition and Trace Elements during Coal Gangue Combustion. Fuel 2012, 97, 644–650. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Zhang, J.; Zhang, C.; Chen, J.; Liu, C. Effect of Particle Size and Thermal Activation on the Coal Gangue Based Geopolymer. Mater. Chem. Phys. 2021, 267, 124657. [Google Scholar] [CrossRef]
- Lourenzi, P.d.S.; Kalkreuth, W. O Potencial de Geração CBM (Coalbed Methane) Na Jazida Sul Catarinense: 1. Características Petrográficas e Químicas Das Camadas de Carvão Da Formação Rio Bonito, Permiano Da Bacia Do Paraná. Braz. J. Geol. 2014, 44, 471–491. [Google Scholar] [CrossRef]
- Phonphuak, N.; Thiansem, S. Using Charcoal to Increase Properties and Durability of Fired Test Briquettes. Constr. Build. Mater. 2012, 29, 612–618. [Google Scholar] [CrossRef]
- Calkins, W.H. The Chemical Forms of Sulfur in Coal: A Review. Fuel 1994, 73, 475–484. [Google Scholar] [CrossRef]
- Weiler, J.; Schneider, I.A.H. Pyrite Utilization in the Carboniferous Region of Santa Catarina, Brazil—Potentials, Challenges, and Environmental Advantages. REM-Int. Eng. J. 2019, 72, 515–522. [Google Scholar] [CrossRef]
- Dondi, M. Technological Characterisation of Clay Materials: Experimental Methods and Data Interpretation. Int. Ceram. J. 2003, 55–59. [Google Scholar]
- Milheiro, F.A.C.; Freire, M.N.; Silva, A.G.P.; Holanda, J.N.F. Densification Behaviour of a Red Firing Brazilian Kaolinitic Clay. Ceram. Int. 2005, 31, 757–763. [Google Scholar] [CrossRef]
- Muñoz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Muñoz Velasco, L. Fired Clay Bricks Manufactured by Adding Wastes as Sustainable Construction Material—A Review. Constr. Build. Mater. 2014, 63, 97–107. [Google Scholar] [CrossRef]
- Sutcu, M.; Alptekin, H.; Erdogmus, E.; Er, Y.; Gencel, O. Characteristics of Fired Clay Bricks with Waste Marble Powder Addition as Building Materials. Constr. Build. Mater. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Doğan-Sağlamtimur, N.; Bilgil, A.; Szechyńska-Hebda, M.; Parzych, S.; Hebda, M. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse. Materials 2021, 14, 877. [Google Scholar] [CrossRef] [PubMed]
- Galatto, S.L.; Peterson, M.; Alexandre, N.Z.; da Costa, J.A.D.; Izidoro, G.; Sorato, L.; Levati, M. Incorporação de Resíduo Do Tratamento de Drenagem Ácida Em Massa de Cerâmica Vermelha. Cerâmica 2009, 55, 53–60. [Google Scholar] [CrossRef]
- ABNT NBR 15270-1; Componentes Cerâmicos-Blocos e Tijolos Para Alvenaria-Parte 1: Requisitos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2017.
- Casagrande, G.S.; Zaccaron, A.; Gesuino, D.B.; Ambrosio, P.G.; Galatto, S.L.; Redivo, R.V.; Madeira, K.; Rosso, F.; Peterson, M. Análise Da Viabilidade Técnica e Ambiental Da Adição de Resíduos Provenientes de Termoelétrica e Beneficiamento de Carvão Em Massa de Cerâmica Vermelha. Matéria 2023, 28, e20230066. [Google Scholar] [CrossRef]
Materials | Formulations (%w) | |||||||
---|---|---|---|---|---|---|---|---|
STD | F2.5 | F5 | F10 | F15 | F20 | F30 | F40 | |
STD | 100 | 97.5 | 95 | 90 | 85 | 80 | 70 | 60 |
BB:Fl(α) | 0 | 2.5 | 5 | 10 | 15 | 20 | 30 | 40 |
Parameter | BB:Fl(α) | Recommended Value | L.Q. |
---|---|---|---|
pH in water (1:1) | 3.50 | 2 to 12.4 | 0.10 |
Parameter | BB:Fl(α) (mg/kg) | Releasable Limit per kg of Waste | L.Q. |
---|---|---|---|
Sulfide | 5.10 | 500 mg | 40.0 |
Parameter | BB:Fl(α) (mg/L) | Maximum Leached Limit (mg/L) | L.Q. |
---|---|---|---|
Leached pH | 3.50 | - | - |
Lead | 0.03 | 1.0 | 0.05 |
Barium | 0.20 | 70.0 | 0.10 |
Cadmium | N.D. | 0.5 | 0.01 |
Silver | N.D. | 5.0 | 0.01 |
Arsenic | <0.001 | 1.0 | 0.01 |
Fluoride | 0.65 | 150.0 | 0.10 |
Mercury | <0.001 | 0.1 | 0.001 |
Selenium | <0.001 | 1.0 | 0.001 |
Parameter | BB:Fl(α) (mg/L) | Maximum Solubilized Limit (mg/L) | L.Q. |
---|---|---|---|
Solubilized pH | 5.02 | - | - |
Sulfates | 410.00 | 250.0 | 10.0 |
Chlorides | 97.16 | 250.0 | 0.10 |
Phenol | N.D. | 0.01 | 0.01 |
Total Iron | 22.80 | 0.3 | 0.02 |
Manganese | 0.79 | 0.1 | 0.01 |
Copper | 0.01 | 2.0 | 0.01 |
Zinc | 0.09 | 5.0 | 0.01 |
Aluminum | N.D. | 0.2 | 0.10 |
Lead | N.D. | 0.01 | 0.001 |
Sodium | 30.94 | 200 | 0.01 |
Cadmium | N.D. | 0.005 | 0.0001 |
Silver | N.D. | 0.05 | 0.01 |
Barium | <0.01 | 0.7 | 0.10 |
Arsenic | <0.001 | 0.01 | 0.001 |
Fluoride | 1.62 | 1.5 | 0.10 |
Mercury | <0.001 | 0.001 | 0.001 |
Nitrate Nitrogen | N.D. | 10.0 | 0.10 |
Selenium | <0.001 | 0.01 | 0.001 |
Oxides (%) | SiO2 | Al2O3 | Fe2O3 | K2O | TiO2 | CaO | SO3 | Others | LOI |
---|---|---|---|---|---|---|---|---|---|
STD | 60.85 | 17.39 | 7.65 | 2.40 | 1.72 | 0.32 | - | 0.22 | 9.45 |
BB:Fl(α) | 49.19 | 19.86 | 5.08 | 3.44 | 1.56 | 1.80 | 0.27 | 0.17 | 18.63 |
Raw Material | Diameter (µm) | |||
---|---|---|---|---|
D10 | D50 | D90 | Average | |
STD | 1.43 | 5.73 | 17.48 | 7.85 |
BB:Fl(α) | 2.08 | 8.44 | 18.75 | 9.59 |
Parameters | Calorific Value (cal/g) | Volatile Matter (%) | Hygroscopic Moisture (%) |
---|---|---|---|
STD | 117.00 | 7.01 | 2.69 |
BB:Fl(α) | 983.00 | 10.56 | 1.36 |
Parameters (%) | BB:Fl(α) |
---|---|
Carbon | 21.84 |
Hydrogen | 2.03 |
Nitrogen | 0.70 |
Total Sulfur | 1.25 |
Oxygen | 5.06 |
Ash Content | 69.12 |
Sulfur Content Determination (%) | BB:Fl(α) |
---|---|
Total | 1.25 |
Pyritic | 0.95 |
Sulfatic | 0.13 |
Organic | 0.17 |
Parameter | Results (mg/L) | Recommended Value | ||
---|---|---|---|---|
STD | F2.5 | F20 | ||
pH in water (1:1) | 5.74 | 5.51 | 6.46 | 2.0 a 12.4 |
Parameter | Results (mg/kg) | Releasable Limit per kg of Waste | ||
---|---|---|---|---|
STD | F2.5 | F20 | ||
Sulfide | 0.18 | 0.28 | 1.2 | 500 mg |
Parameter | Results (mg/L) | Maximum Leached Limit (mg/L) | ||
---|---|---|---|---|
STD | F2.5 | F20 | ||
Arsenic | 0.017 | <0.010 | <0.010 | 1.0 |
Barium | 0.692 | 0.479 | 0.205 | 70.0 |
Cadmium | <0.010 | <0.010 | <0.010 | 0.5 |
Lead | <0.010 | <0.010 | <0.010 | 1.0 |
Total chromium | <0.010 | <0.010 | <0.010 | 5.0 |
Total fluoride | 0.24 | 0.17 | 1.26 | 150.0 |
Silver | <0.010 | <0.010 | <0.010 | 0.1 |
Selenium | <0.010 | 0.012 | 0.03 | 5.0 |
Mercury | <0.0002 | <0.0002 | <0.0002 | 0.1 |
Parameter | Results (mg/L) | Maximum Solubilized Limit (mg/L) | ||
---|---|---|---|---|
STD | F2.5 | F20 | ||
Aluminum | 1.249 | 0.134 | 0.115 | 0.200 |
Arsenic | <0.010 | <0.010 | <0.010 | 0.010 |
Barium | <0.700 | 0.062 | 0.027 | 0.700 |
Cadmium | <0.005 | <0.005 | <0.005 | 0.005 |
Lead | <0.010 | <0.010 | <0.010 | 0.010 |
Chlorides | <0.010 | <0.010 | 0.95 | 250.0 |
Copper | <0.010 | <0.010 | <0.010 | 2.0 |
Total chrome | <0.010 | <0.010 | <0.010 | 0.050 |
Iron | 0.311 | 0.106 | 0.019 | 0.300 |
Fluoride | 0.12 | 0.33 | 1.56 | 1.50 |
Manganese | 0.297 | 0.910 | 0.881 | 0.100 |
Nitrate | 0.016 | 0.217 | 0.117 | 10.0 |
Silver | <0.010 | <0.010 | 0.0108 | 0.050 |
Selenium | <0.010 | <0.010 | 0.047 | 0.010 |
Sodium | 3.414 | 6.100 | 8.399 | 200.0 |
Sulfates | 48.88 | 113.68 | 611.6 | 250.0 |
Surfactants | 0.113 | 0.084 | 0.158 | 0.5 |
Zinc | 0.013 | 0.056 | 0.046 | 5.0 |
Mercury | <0.0002 | <0.0002 | <0.0002 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo, W.B.; Zaccaron, A.; Saviatto, E.; Olivo, E.F.; Acordi, J.; Raupp-Pereira, F.; Ribeiro, M.J. Valorization of the Residual Fraction of Coal Tailings: A Mineral Circularity Strategy for the Clay Ceramic Industry in the Carboniferous Region of Santa Catarina, Southern Brazil. Materials 2024, 17, 2131. https://doi.org/10.3390/ma17092131
Rebelo WB, Zaccaron A, Saviatto E, Olivo EF, Acordi J, Raupp-Pereira F, Ribeiro MJ. Valorization of the Residual Fraction of Coal Tailings: A Mineral Circularity Strategy for the Clay Ceramic Industry in the Carboniferous Region of Santa Catarina, Southern Brazil. Materials. 2024; 17(9):2131. https://doi.org/10.3390/ma17092131
Chicago/Turabian StyleRebelo, Wagner Benedet, Alexandre Zaccaron, Emily Saviatto, Eduarda Fraga Olivo, Juliana Acordi, Fabiano Raupp-Pereira, and Manuel Joaquim Ribeiro. 2024. "Valorization of the Residual Fraction of Coal Tailings: A Mineral Circularity Strategy for the Clay Ceramic Industry in the Carboniferous Region of Santa Catarina, Southern Brazil" Materials 17, no. 9: 2131. https://doi.org/10.3390/ma17092131
APA StyleRebelo, W. B., Zaccaron, A., Saviatto, E., Olivo, E. F., Acordi, J., Raupp-Pereira, F., & Ribeiro, M. J. (2024). Valorization of the Residual Fraction of Coal Tailings: A Mineral Circularity Strategy for the Clay Ceramic Industry in the Carboniferous Region of Santa Catarina, Southern Brazil. Materials, 17(9), 2131. https://doi.org/10.3390/ma17092131